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Abstract. This article examines the issue of developing semantics for agent communication languages.
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1. Introduction

One of the main reasons why multi-agent systems are currently a major area of
research and development activity is that they are seen as a key enabling technol-
ogy for the Internet-wide electronic commerce systems that are widely predicted to

w xemerge in the near future 20 . If this vision of large-scale, open multi-agent
systems is to be realized, then the fundamental problem of interoperability must be
addressed. It must be possible for agents built by different organizations using
different hardware and software platforms to safely communication with one-
another via a common language with a universally agreed semantics.

The interoperability requirement has led to the development of several standard-
Ž . w xized agent communication languages ACLs 30, 19 . However, to gain acceptance,

particularly for sensitive applications such as electronic commerce, it must be
possible to determine whether or not any system that claims to conform to an ACL

standard actually does so. We say that an ACL standard is ¨erifiable if it enjoys this
property. Unfortunately, verifiability has to date received little attention by the

Ž w x.standards community although it has been recognized as an issue 19, p. 46 . In
this article, we establish a simple formal framework that allows us to precisely
define what it means for an ACL to be verifiable. This framework is defined in
Section 3, following a brief discussion of the background to this work. We then
formally define what it means for an ACL to be verifiable in Section 4. The basic
idea is to show how demonstrating conformance to an ACL semantics can be seen

w xas a verification problem in the standard software engineering sense 7 . Demon-
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strating that a program semantically complies to a standard involves showing that
the program satisfies the specification given by the semantics. If the semantics are
logical, then demonstrating compliance thus reduces to a proof problem. We
discuss the practical implications of these definitions in Section 4.1. In Section 5,
we give examples of some ACLs, and show that some of these are verifiable, while
others are not. In Section 6, we discuss an alternative approach to verification, in
which verification is done via model checking rather than proof. Finally, in Section
7, we discuss the implications of our results, with emphasis on future directions for
work on verifiable ACLs.

2. Background

Current techniques for developing the semantics of ACLs trace their origins to
speech act theory. In this section, we give a brief overview of this work.

2.1. Speech acts

The theory of speech acts is generally recognized as having begun in the work of
w xthe philosopher John Austin 4 . Austin noted that a certain class of natural

language utterances}hereafter referred to as speech acts}had the characteristics
of actions, in the sense that they change the state of the world in a way analogous
to physical actions. It may seem strange to think of utterances changing the world

Žin the way that physical actions do. If we pick up a block from a table to use an
.overworked but traditional example , then the world has changed in an obvious

way. But how does speech change the world? Austin gave as paradigm examples
declaring war and saying ‘‘I now pronounce you man and wife.’’ Stated in the
appropriate circumstances, these utterances clearly change the state of the world in
a very tangible way.1

Austin identified a number of performatï e ¨erbs, which correspond to various
different types of speech acts. Examples of such performative verbs are request,
inform, and promise. In addition, Austin distinguished three different aspects of

Žspeech acts: the locutionary act, or act of making an utterance e.g., saying ‘‘Please
.make some tea’’ , the illocutionary act, or action performed in saying something

Ž .e.g., ‘‘He requested me to make some tea’’ , and perlocution, or effect of the act
Ž .e.g., ‘‘He got me to make tea’’ .

Austin referred to the conditions required for the successful completion of
performatives as felicity conditions. He recognized three important felicity condi-
tions:

.1. a There must be an accepted conventional procedure for the performative.

.b The circumstances and persons must be specified in the procedure.
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2. The procedure must be executed correctly and completely.
3. The act must be sincere, and any uptake required must be completed, insofar as

is possible.

Austin’s work was refined and considerably extended by Searle, in his 1969 book
w xSpeech Acts 38 . Searle identified several properties that must hold for a speech act

performed between a hearer and a speaker to succeed, including normal IrO
conditions, preparatory conditions, and sincerity conditions. For example, consider
a request by SPEAKER to HEARER to perform ACTION:

1. Normal IrO conditions. Normal IrO conditions state that HEARER is able to
Ž .hear the request, thus must not be deaf, . . . , the act was performed in normal

Ž .circumstances not in a film or play, . . . , etc.
2. Preparatory conditions. The preparatory conditions state what must be true of

the world in order that SPEAKER correctly choose the speech act. In this case,
HEARER must be able to perform ACTION, and SPEAKER must believe that
HEARER is able to perform ACTION. Also, it must not be obvious that HEARER

will do ACTION anyway.
3. Sincerity conditions. These conditions distinguish sincere performances of the

request; an insincere performance of the act might occur if SPEAKER did not
really want ACTION to be performed.

Searle also gave a five-point typology of speech acts:

1. Representatï es. A representative act commits the speaker to the truth of an
expressed proposition. The paradigm case is informing.

2. Directï es. A directive is an attempt on the part of the speaker to get the hearer
to do something. Paradigm case: requesting.

3. Commissï es. Commit the speaker to a course of action. Paradigm case: promis-
ing.

Ž .4. Expressï es. Express some psychological state e.g., gratitude . Paradigm case:
thanking.

5. Declarations. Effect some changes in an institutional state of affairs. Paradigm
case: declaring war.

2.2. Speech acts in artificial intelligence

In the late 1960s and early 1970s, a number of researchers in artificial intelligence
Ž . w xAI began to build systems that could plan how to autonomously achieve goals 2 .
Clearly, if such a system is required to interact with humans or other autonomous
agents, then such plans must include speech actions. This introduced the question
of how the properties of speech acts could be represented such that planning

w xsystems could reason about them. Cohen and Perrault 15 gave an account of the



WOOLDRIDGE12

semantics of speech acts by using techniques developed in AI planning research
w x18 . The aim of their work was to develop a theory of speech acts:

w xB y modeling them in a planning system as operators defined . . . in terms of
speakers and hearers beliefs and goals. Thus speech acts are treated in the same

w xway as physical actions. 15

The formalism chosen by Cohen and Perrault was the STRIPS notation, in which the
w xproperties of an action are characterized via pre- and postconditions 18 . The idea

w xis very similar to Hoare logic 24 . Cohen and Perrault demonstrated how the pre-
and postconditions of speech acts such as request could be represented in a
multimodal logic containing operators for describing the beliefs, abilities, and wants
of the participants in the speech act.

Consider the Request act. The aim of the Request act will be for a speaker to get
a hearer to perform some action. Figure 1 defines the Request act. Two precondi-

Ž . Žtions are stated: the ‘‘cando.pr’’ can-do preconditions , and ‘‘want.pr’’ want
.preconditions . The cando.pr states that for the successful completion of the

Request, two conditions must hold. First, the speaker must believe that the hearer
of the Request is able to perform the action. Second, the speaker must believe that
the hearer also believes it has the ability to perform the action. The want.pr states
that in order for the Request to be successful, the speaker must also believe it
actually wants the Request to be performed. If the preconditions of the Request are

Žfulfilled, then the Request will be successful: the result defined by the ‘‘effect’’
.part of the definition will be that the hearer believes the speaker believes it wants

some action to be performed.

Figure 1. Definitions from the Plan-Based Theory of Speech Acts.
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While the successful completion of the Request ensures that the hearer is aware
of the speaker’s desires, it is not enough in itself to guarantee that the desired
action is actually performed. This is because the definition of Request only models
the illocutionary force of the act. It says nothing of the perlocutionary force. What
is required is a mediating act. Figure 1 gives a definition of CauseToWant, which is
an example of such an act. By this definition, an agent will come to believe it wants
to do something if it believes that another agent believes it wants to do it. This
definition could clearly be extended by adding more preconditions, perhaps to do
with beliefs about social relationships or power structures.

Using these ideas, and borrowing a formalism for representing the mental state
w xof agents that was developed by Robert Moore 31 , Douglas Appelt was able to

w ximplement a system that was capable of planning to perform speech acts 3 .

2.3. Speech acts as rational action

While the plan-based theory of speech acts was a major step forward, it was
recognized that a theory of speech acts should be rooted in a more general theory
of rational action. This observation led Cohen and Levesque to develop a theory in
which speech acts were modeled as actions performed by rational agents in the

w xfurtherance of their intentions 13 . The foundation upon which they built this
w xmodel of rational action was their theory of intention, described in 12 . The formal

theory is too complex to describe here, but as a flavor, here is the Cohen]Levesque
w xdefinition of requesting, paraphrased in English 13, p. 241 :

A request is an attempt on the part of spkr, by doing e, to bring about a state
Ž . Žwhere, ideally, i addr intends a , relative to the spkr still having that goal, and

. Ž .addr still being helpfully inclined to spkr , and ii addr actually eventually does
a , or at least brings about a state where addr believes it is mutually believed
that it wants the ideal situation.

Actions in the Cohen]Levesque framework were modeled using techniques
w xadapted from dynamic logic 23 .

2.4. Agent communication languages: KQML and FIPA

Throughout the 1980s and 1990s, interest in multi-agent systems developed rapidly
w x6, 41 . An obvious problem in multi-agent systems is how to get agents to
communicate with one-another}the interoperability issue referred to in the
introduction. To this end, in the early 1990s, the DARPA Knowledge Sharing Effort
Ž . Ž .KSE began to develop the Knowledge Query and Manipulation Language KQML

Ž .and the associated Knowledge Interchange Format KIF as a common framework
Ž . w xvia which multiple expert systems cf. agents could exchange knowledge 33, 30 .
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KQML is essentially an ‘‘outer’’ language for messages: it defines a simple
LISP-like format for messages, and 41 performatï es, or message types, that define
the intended meaning of a message. Example KQML performatives include ask-if
and tell. The content of messages was not considered part of the KQML standard,
but KIF was also defined, to express such content. KIF is essentially classical
first-order predicate logic, recast in a LISP-like syntax.

wTo better understand the KQML language, consider the following example 30, p.
x354 :

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS

)

The intuitive interpretation of this message is that the sender is asking about the
price of IBM stock. The performative is ask- one, which an agent will use to ask a
question of another agent where exactly one reply is needed. The various other
components of this message represents its attributes. The most important of these
is the :content field, which specifies the message content. In this case, the
content simply asks for the price of IBM shares. The :receiver attribute
specifies the intended recipient of the message, the :language attribute specifies

Žthat the language in which the content is expressed is called LPROLOG the
.recipient is assumed to ‘‘understand’’ LPROLOG , and the final :ontology at-

tribute defines the terminology used in the message.
Formal definitions of the syntax of KQML and KIF were developed by the KSE, but

w xKQML lacked any formal semantics until Labrou and Finin’s 26 . These semantics
were presented using a pre- and postcondition notation, closely related to Cohen

w xand Perrault’s plan-based theory of speech acts 15 . These pre- and postconditions
were specified by Labrou and Finin using a logical language containing modalities
for belief, knowledge, wanting, and intending. However, Labrou and Finin recog-
nized that any commitment to a particular semantics for this logic itself would be
contentious, and so they refrained from giving it a semantics. However, this rather
begs the question of whether their semantics are actually well-founded. We return
to this issue later.

The take-up of KQML by the multi-agent systems community was significant.
Ž .However, Cohen and Levesque among others criticized KQML on a number of

w xgrounds 14 , the most important of which being that, the language was missing an
entire class of performatives}commissï es, by which one agent makes a commit-
ment to another. As Cohen and Levesque point out, it is difficult to see how many
multi-agent scenarios could be implemented without commissives, which appear to

w xbe important if agents are to coordinate their actions with one-another 25 .
Ž .In 1995, the Foundation for Intelligent Physical Agents FIPA began its work on

developing standards for agent systems. The centerpiece of this initiative is the
w x 2development of an ACL 19 . This ACL is superficially similar to KQML: it defines an
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Ž .‘‘outer’’ language for messages, it defines 20 performatives such as inform for
defining the intended interpretation of messages, and it does not mandate any
specific language for message content. In addition, the concrete syntax for FIPA ACL

messages closely resembles that of KQML. Here is an example of a FIPA ACL
Ž w x.message from 19, p. 10 :

(inform
:sender agent1
:receiver agent2
:content (price good2 150)
:language sl
:ontology hp1-auction

)

Even a superficial glance confirms that the FIPA ACL is similar to KQML; the
w xrelationship is discussed in 19, pp. 68]69 .

The FIPA ACL has been given a formal semantics, in terms of a Semantic
Ž .Language SL . The approach adopted for defining these semantics draws heavily

w x w xon 13 , but in particular on Sadek’s enhancements to this work 9 . SL is a
quantified multimodal logic, which contains modal operators for referring to the
beliefs, desires, and uncertain beliefs of agents, as well as a simple dynamic
logic-style apparatus for representing agent’s actions. The semantics of the FIPA

ACL map each ACL message to a formula of SL, which defines a constraint that the
sender of the message must satisfy if it is to be considered as conforming to the
FIPA ACL standard. FIPA refer to this constraint as the feasibility condition. The
semantics also map each message to an SL-formula which defines the rational effect
of the action. The rational effect of a messages is its purpose: what an agent will be

Ž .attempting to achieve in sending the message cf. perlocutionary act . However, in
Ža society of autonomous agents, the rational effect of a message cannot and

.should not be guaranteed. Hence conformance does not require the recipient of
a message to respect the rational effect part of the ACL semantics}only the
feasibility condition.

To illustrate the FIPA approach, we give an example of the semantics of the FIPA
w xinform performative 19, p. 25 :

² :i , inform j, wŽ .
FP: B w n ! B Bif w k U wŽ . w x1i i j j

RE: B wj

Ž w x.The B is a modal connective for referring to the beliefs of agents see e.g., 21 ;i
Bif is a modal connective that allows us to express whether an agent has a definite
opinion one way or the other about the truth or falsity of its parameter; and U is a
modal connective that allows us to represent the fact that an agent is ‘‘uncertain’’
about its parameter. Thus an agent i sending an inform message with content w to
agent j will be respecting the semantics of the FIPA ACL if it believes w, and it is
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not the case that it believes of j either than j believes whether w is true or false,
or that j is uncertain of the truth or falsity of w.

FIPA recognize that ‘‘demonstrating in an unambiguous way that a given agent
w ximplementation is correct with respect to the semantics is not a problem which

w x Žhas been solved’’ 19, p. 46 , and identify it as an area of future work. Checking
that an implementation respects the syntax of an ACL like KQML or FIPA is, of

.course, trivial. If an agent communication language such as FIPA’s ACL is ever to be
widely used}particularly for such sensitive applications as electronic commerce
}then such conformance testing is obviously crucial. However, the problem of

Ž . w xconformance testing ¨erification is not actually given a concrete definition in 19 ,
and no indication is given of how it might be done. In short, the aim of the
remainder of this article is to unambiguously define what it means for an agent
communication language such as that defined by FIPA to be verifiable, and then to
investigate the issues surrounding such verification.

3. Agent communication frameworks

In this section, we present an abstract framework that allows us to precisely define
the verifiable ACL semantics problem. First, we will assume that we have a set

� 4Ag s 1, . . . , n of agents names}these are the unique identifiers of agents that
will be sending messages to one another in a system.

We shall assume that agents communicate using a communication language LL .CC

w xThis ACL may be KQML together with KIF 26 , it may be the FIPA-97 communication
w xlanguage 19 , or some other proprietary language. The exact nature of LL is notCC

important for our purposes. The only requirements that we place on LL are that itCC

has a well-defined syntax and a well-defined semantics. The syntax identifies a set
Ž .wff LL of well-formed formulae of LL }syntactically acceptable constructions ofCC CC

ŽLL . Since we usually think of formulae of LL as being messages, we use m withCC CC
X . Ž .annotations: m , m , . . . to stand for members of wff LL .1 CC

The semantics of LL are assumed to be defined in terms of a second languageCC

LL , which we shall call the semantic language. The idea is that if an agent sends aSS

message, then the meaning of sending this message is defined by a formula of LL .SS

w xThis formula defines what FIPA 19, p. 48 refer to as the feasibility precondition}
essentially, a constraint that the sender of the message must satisfy in order to be
regarded as being ‘‘sincere’’ in sending the message. For example, the feasibility
precondition for an inform act would typically state that the sender of an inform
must believe the content of the message, otherwise the sender is not being sincere.

The idea of defining the semantics of one language in terms of another might
seem strange, but the technique is common in computer science:

}when Hoare-logic style semantics are given for programming languages, the
semantics of a program written in, for example, PASCAL or C are defined in terms

w xof a second language}that of classical first-order logic 24 ;
}an increasingly common approach to defining the semantics of many program-

ming languages is to give them a temporal semantics, whereby the semantics of a
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program in a language such as C or PASCAL are defined as a formula of temporal
w xlogic 28 .

Note that in this article we are not concerned with the effects that messages have
on recipients. This is because although the ‘‘rational effect’’ of a message on its

Žrecipient is the reason that the sender will send a message e.g., agent i informs
.agent j of w because i wants j to believe w , the sender can have no guarantee

that the recipient will even receive the message, still less that it will have the
intended effect. The key to our notion of semantics is therefore what properties
must hold of the sender of a message, in order that it can be considered to be
sincere in sending it.

Formally, the semantics of the ACL LL are given by a functionCC

@ # : wff LL ª wff LLŽ . Ž .CC CC SS

which maps a single message m of LL to a single formula @ m# of LL , whichCC CC SS

represents the semantics of m. Note that the ‘‘sincerity condition’’ @ m# forCC

Ž .message m acts in effect like a specification in the software engineering sense ,
which must be satisfied by any agent that claims to conform to the semantics.
Verifying that an agent program conforms to the semantics is thus a process of
checking that the program satisfies this specification.

To make the idea concrete, recall the FIPA semantics of inform messages, given
Ž .in 1 , above. In our framework, we can express the FIPA semantics as

² :@ i , inform j, w # s B w n ! B Bif w k U wŽ . Ž .CC i i j j

It should be obvious how this corresponds to the FIPA definition.
In order that the semantics of LL be well-defined, we must also have aCC

semantics for our semantic language LL itself. While there is no reason inSS

principle why we should not define the semantics of LL in terms of a furtherSS

Ž .Xlanguage LL , and so on , we assume without loss of generality that the semanticsSS

Ž .of LL are given with respect to a class mod LL of logical models for LL . MoreSS SS SS

precisely, the semantics of LL will be defined via a satisfaction relation ‘‘* ,’’SS SS

where

* : wff LL = mod LL .Ž . Ž .SS SS SS

Ž . Ž .By convention, if M g mod LL and w g wff LL then we write M * w toSS SS SS

Ž . Žindicate that w, M g* . If M * w, then we read this as ‘‘w is satisfied orSS SS

.equivalently, is true in M.’’ The meaning of a formula w of LL is then the set ofSS

models in which w is satisfied. We define a function

@ # : wff LL ª PP mod LLŽ . Ž .Ž .SS SS SS

Ž .such that if w g wff LL , then @w # is the set of models in which w is satisfied:SS SS

<@w # s M M g mod LL and M * w .� 4Ž .SS SS SS



WOOLDRIDGE18

Agents are assumed to be implemented by programs, and we let P stand for the set
of all such agent programs. For each agent i g Ag, we assume that p g P is thei
program that implements it. For our purposes, the contents of P are not important
}they may be JAVA, C, or Cqq programs, for example. At any given moment, we
assume that a program p may be in any of a set L of local states. The local statei i
of a program is essentially just a snapshot of the agent’s memory at some instant in

Žtime. As an agent program p executes, it will perform operations such asi
.assignment statements that modify its state. Let L s D L be the set of allig A g i
Ž X .local states. We use l with annotations: l , l , . . . to stand for members of L.1

One of the key activities of agent programs is communication: they send and
receive messages, which are formulae of the communication language LL . WeCC

assume that we can identify when an agent emits such a message, and write
Ž .send p , m, l to indicate the fact that agent i g Ag, implemented by programi

p g P, sends a message m g LL when in state l g L .i CC i
We now define what we mean by the semantics of an agent program. Intuitively,

the idea is that when an agent program p is in state l, we must be able toi
characterize the properties of the program as a formula of the semantic language
LL . This formula is the theory of the program. In theoretical computer science, theSS

derivation of a program’s theory is the first step to reasoning about its behavior. In
particular, a program theory is the basis upon which we can ¨erify that the program
satisfies its specification. Formally, a program semantics is a function that maps a
pair consisting of an agent program and a local state to a formula LL of theSS

semantic language. Note that the semantics of P must be defined in terms of the
same semantic language that was used to define the semantics of LL }otherwiseSS

there is no point of reference between the two. Formally then, a semantics for
agent programrstate pairs is a function

@ # : P = L ª wff LL .Ž .P SS

The relationships between the various formal components introduced above are
summarized in Figure 2. We now collect these various components together and
define what we mean by an agent communication framework.

Ž .Definition 1 An agent communication framework is a 2n q 4 -tuple:

² :Ag , p , . . . , p , L , . . . , L , LL , LL , @ #1 n 1 n CC SS P

� 4where Ag s 1, . . . , n is a nonempty set of agents, p g P is an agent program, Li i
² Ž . :is the set of local states of p , LL s wff LL , @ # is a communication lan-i CC CC CC

² Ž . :guage, LL s wff LL , @ # is a semantic language, and @ # is a semantics forSS SS SS P

P.

ŽWe let F be the set of all such agent communication frameworks, and use f with
X .annotations: f , f , . . . to stand for members of F.1



SEMANTIC ISSUES IN AGENT COMMUNICATION 19

Figure 2. The components of an agent communication framework.

4. Verifiability defined

We are now in a position to define what it means for an agent program, in sending
a message while in some particular state, to be respecting the semantics of a
communication framework. Recall that a communication language semantics de-
fines, for each message, a constraint, or specification, which must be satisfied by the
sender of the message if it is to be considered as satisfying the semantics of the
communication language. The properties of a program when in some particular
state are given by the program semantics, @ # . This leads to the followingP

definition.

Definition 2 Suppose

² :f s Ag , p , . . . , p , L , . . . , L , LL , LL , @ #1 n 1 n CC SS P

Ž .is an agent communication framework, and that send p , m, l for some i g Ag,i
Ž .m g wff LL , and l g L . Then i is said to respect the semantics of framework fCC i

Ž Ž . .written p , l * m iffi f

@ @p , l # # : @ @ m# # .i P SS CC SS

Note that the problem could equivalently have been phrased in terms of logical
Ž .consequence: p , l * m iff @ m# is an LL -logical consequence of @p , l # . If wei f CC SS i P

had a sound and complete proof system & for LL , then we could similarly haveSS SS

Ž .phrased it as a proof problem: p , l * m iff @p , l # & @ m# . The first ap-i f i p SS CC

proach, however, is probably the most general.
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Using this definition, we can define what it means for a communication frame-
work to have a verifiable semantics.

Definition 3 An agent communication framework

² :f s Ag , p , . . . , p , L , . . . , L , LL , LL , @ #1 n 1 n CC SS P

Ž .is ¨erifiable iff it is a decidable question whether p , l * m for arbitrary p , l, m.i f i

The intuition behind verifiability is as follows: if an agent communication frame-
work enjoys this property, then we can determine whether or not an agent is
respecting the framework’s communication language semantics whenever it sends a
message.

If a framework is verifiable, then we know that it is possible in principle to
determine whether or not an agent is respecting the semantics of the framework.
But a framework that is verifiable in principle is not necessarily verifiable in
practice. This is the motivation behind the following definition.

Definition 4 An agent communication framework f g F is said to be practically
Ž . < < < <¨erifiable iff it is decidable whether p , l * m in time polynomial in f = p =i f

< < < <m = l .

If we have a practically verifiable framework, then we can do the verification in
polynomial time, which implies that we have at least some hope of doing automatic
verification using computers that we can envisage today. Our ideal, when setting
out an agent communication framework f , should clearly be to construct f such
that it is practically verifiable. However, practical verifiability is quite a demanding
property, as we shall see in Section 5. In the following subsection, we examine the
implications of these definitions.

4.1. What does it mean to be ¨erifiable?

If we had a verifiable agent communication framework, what would it look like?
Let us take each of the components of such a framework in turn. First, our set Ag

Žof agents, implemented by programs p , where these programs are written in ani
.arbitrary programming language . This is straightforward: we obviously have such

components today. Next, we need a communication language LL , with a well-de-CC

fined syntax and semantics, where the semantics are given in terms of LL , aSS

semantic language. Again, this is not problematic: we have such a language LL inCC

both KQML and FIPA-97 language. Taking the FIPA case, the semantic language is SL,
a quantified multimodal logic with equality. This language in turn has a well
defined syntax and semantics, and so next, we must look for a program semantics
@ # . At this point, we encounter problems.P
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Put simply, the FIPA semantics are given in terms of mental states, and since we
do not understand how such states can be systematically attributed to programs, we
cannot verify that such programs respect the semantics. More precisely, the

Žsemantics of SL are given in the normal modal logic tradition of Kripke possible
. Ž .worlds semantics, where each agent’s ‘‘attitudes’’ belief, desire, . . . are character-

ized as relations holding between different states of affairs. Although Kripke
semantics are attractive from a mathematical perspective, it is important to note
that they are not connected in any principled way with computational systems. That

Ž .is, for any given p g P, where p is, say, a JAVA program , there is no known wayi i
Ž .of attributing to that program an SL formula or, equivalently, a set of SL models ,

which characterizes it in terms of beliefs, desires, and so on. Because of this, we say
Ž .that SL and most similar logics with Kripke semantics are ungrounded}they have

no concrete computational interpretation. In other words, if the semantics of LLSS

Ž .are ungrounded as they are in the FIPA-97 SL case , then we have no semantics for
programs}and hence an unverifiable communication framework. Although work
is going on to investigate how arbitrary programs can be ascribed attitudes such as

Žw x.beliefs and desires, the state of the art 8 is considerably behind what would be
required for ACL verification. Other researchers have also recognized this difficulty
w x39, 34 .

Note that it is possible to choose a semantic language LL such that a principledSS

program semantics @ # can be derived. For example, temporal logic has longP

w xbeen used to define the semantics of programming languages 29 . A temporal
semantics for a programming language defines for every program a temporal logic
formula characterizing the meaning of that program. Temporal logic, although
ultimately based on Kripke semantics, is firmly grounded in the histories traced out
by programs as they execute}though of course, standard temporal logic makes no
reference to attitudes such as belief and desire. Also note that work in knowledge
theory has shown how knowledge can be attributed to computational processes in a

w xsystematic way 17 . However, this work gives no indication of how attitudes such as
Ždesiring or intending might be attributed to arbitrary programs. We use tech-

niques from knowledge theory to show how a grounded semantics can be given to a
.communication language in Example 2 of Section 5.

Another issue is the high computational complexity of the verification process
w xitself 32 . Ultimately, determining whether an agent implementation is respecting

the semantics of a communication framework reduces to a logical proof problem,
and the complexity of such problems is well-known. If the semantic language LLSS

of a framework f is equal in expressive power to first-order logic, then f is of
Žcourse not verifiable. For quantified multimodal logics, such as that used by FIPA

.to define the semantics of their ACL , the proof problem is often much harder than
this}proof methods for quantified multimodal logics are very much at the fron-

Ž w x.tiers of theorem-proving research cf. 1 . In the short term, at least, this complex-
ity issue is likely to be another significant obstacle in the way of ACL verification.

To sum up, it is entirely possible to define a communication language LL withCC

semantics in terms of a language LL . However, giving a program semantics for aSS

Ž .semantic language such as that of FIPA-97 with ungrounded semantics is a serious
unsolved problem.
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5. Example frameworks

To illustrate the idea of verification, as introduced above, in this section we will
consider a number of progressively richer agent communication frameworks. For
each of these frameworks, we discuss the issue of verifiability, and where possible,
characterize the complexity of the verification problem.

5.1. Example 1: Classical propositional logic

For our first example, we define a simple agent communication framework f in1
which agents communicate by exchanging formulae of classical propositional logic.
The intuitive semantics of sending a message w is that the sender is informing
other agents of the truth of w. An agent sending out a message w will be

Žrespecting the semantics of the language if it ‘‘believes’’ in a sense that we
.precisely define below that w is true. An agent will not be respecting the

semantics if it sends a message that it ‘‘believes’’ to be false. We also assume that
agent programs exhibit a simple behavior of sending out all messages that they
believe to be true. We show that framework f is verifiable, and that in fact every1
agent program in this framework respects the semantics of f .1

Formally, we must define the components of a framework f :1

² :f s Ag , p , . . . , p , L , . . . , L , LL , LL , @ #1 1 n 1 n CC SS P

These components are as follows. First, Ag is some arbitrary nonempty set}the
contents are not significant. Second, since agents communicate by simply exchang-
ing messages that are simply formulae of classical propositional logic, LL , we have0

Ž .LL s LL . Thus the set wff LL contains formulae made up of the propositionCC 0 0
� 4symbols F s p, q, r, . . . combined into formulae using the classical connectives

Ž . Ž . Ž .‘‘!’’ not , ‘‘n’’ and , ‘‘k’’ or , and so on.
We let the semantic language LL also be classical propositional logic, and defineSS

the LL semantic function @ # simply as the identity function: @w # s w, for allCC CC CC

w g LL . The semantic function @ # for SS is then the usual propositionalCC SS SS

denotation function}the definition is entirely standard, and so we omit it in the
interests of brevity.

An agent i’s state l is defined to be a set of formulae of propositional logic,i
Ž Ž ..hence L s PP wff LL . An agent i’s program p is assumed to simply implementi 0 i

the following rule:

;w g wff LL , ; l g L , send p , w , l iff w g l 2Ž . Ž . Ž .CC i i

In other words, an agent program p sends a message m when in state l iff m isi
present in l. The semantics of agent programs are then defined as follows:

� 4@p , w , w , . . . , w # s w n w n ??? n w .i 0 1 k P 0 1 k
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In other words, the meaning of a program in state l is just the conjunction of
formulae in l. The following theorem sums up the key properties of this simple
agent communication framework.

Theorem 1

1. Framework f is ¨erifiable.1
2. E¨ery agent in f does indeed respect the semantics of f .1 1

Ž . Ž . � 4Proof: For 1 , suppose that send p , m, l for arbitrary p , m, l s w , w , . . . , w .i i 0 1 k
Then p is respecting the semantics for f iffi 1

� 4@ @p , w , w , . . . , w # # : @ @ m# #i 0 1 k P SS CC SS

which by the f definitions of @ # and @ # reduces to1 P CC

@w n w n ??? n w # : @ m# .0 1 k SS SS

But this is equivalent to showing that m is an LL -logical consequence of w n w0 0 1
n ??? n w . Since LL logical consequence is obviously a decidable problem, we arek 0

Ž . w x Ž .done. For 2 , we know from Eq. 2 that send p , m, l iff m g l. Since m is clearly ai
logical consequence of l if m g l, we are done.

An obvious next question is whether f is practically verifiable, i.e., whether1
verification can be done in polynomial time. Here, observe that verification reduces
to a problem of determining logical consequence in LL , which reduces to a test for0
LL -validity, and hence in turn to LL -unsatisfiability. Since the LL -satisfiability0 0 0
problem is well-known to be NP-complete, we can immediately conclude the
following.

Theorem 2 The f ¨erification problem is co-NP-complete.1

Note that co-NP-complete problems are ostensibly harder than merely NP-complete
problems, from which we can conclude that practical verification of f is highly1
unlikely to be possible.3

5.2. Example 2: Grounded semantics for propositional logic

One could argue that Example 1 worked because we made the assumption that
agents explicitly maintain databases of LL formulae: checking whether an agent0
was respecting the semantics in sending a message w amounted to determining
whether w was a logical consequence of this database. This was a convenient, but,
as the following example illustrates, unnecessary assumption. For this example, we
will again assume that agents communicate by exchanging formulae of classical
propositional logic LL , but we make no assumptions about their programs or0
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internal state. We show that despite this, we can still obtain a verifiable semantics,
because we can ground the semantics of the communication language in the states
of the program. There is an impartial, objective procedure we can apply to obtain a
declarative representation of the ‘‘knowledge’’ implicit within an arbitrary program,

w xin the form of Fagin-Halpern-Moses-Vardi knowledge theory 17 . To check
whether an agent is respecting the semantics of the communication language, we
simply check whether the information in the message sent by the agent is a logical
consequence of the knowledge implicit within the agent’s state, which we obtain
using the tools of knowledge theory.

In what follows, we assume all sets are finite. As in Example 1, we set both the
communication language LL and the semantic language LL to be classicalCC SS

Ž wpropositional logic LL . We require some additional definitions see 17, pp.0
x .103]114 for more details . Let the set G of global states of a system be defined by

Ž X .G s L = ??? = L . We use g with annotations: g , g , . . . to stand for members1 n 1
� 4of G. We assume that we have a vocabulary F s p, q, . . . of primitive proposi-

tions to express the properties of a system. In addition, we assume it is possible to
determine whether or not any primitive proposition p g F is true of a particular
global state or not. We write g * p to indicate that p is true in state g. Next, we
define a relation ; : G = L for each agent i g Ag to capture the idea ofi i
indistinguishability. The idea is that if an agent i is in state l g L , then a globali

² X X :state g s l , . . . , l is indistinguishable from the state l that i is currently in1 n
Ž . Xwritten g ; l iff l s l . Now, for any given agent program p in local state l, wei i i

Ž qŽ ..define the positï e knowledge set of p in l, written ks p , l to be the set ofi i
propositions that are true in all global states that are indistinguishable from l, and

Ž yŽ ..the negatï e knowledge set of p in l, written ks p , l to be the set ofi i
propositions that are false in all global states that are indistinguishable from l.
Formally,

q <ks p , l s p p g F and ;g g G, g ; l implies g * p� 4Ž .i i

y <ks p , l s p p g F and ;g g G, g ; l implies g ^ p� 4Ž .i i

w xReaders familiar with epistemic logic 17 will immediately recognize that this
construction is based on the definition of knowledge in distributed systems. The

qŽ . Ž yŽ ..idea is that if p g ks p , l , respectively, p g ks p , l , then given the informa-i i
Ž .tion that i has available in state l, p must necessarily be true respectively, false .

qŽ .Thus ks p , l represents the set of propositions that the agent i knows are truei
yŽ .when it is in state l; and ks p , l represents the set of propositions that i knowsi

are false when it is in state l.
The LL semantic function @ # is defined to be the identity function again, soCC CC

@w # s w. For the program semantics, we defineCC

@p , l # s p n ! p .H Hi P j k
q yŽ . Ž .p gks p , l p gks p , lj i k i
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The formula @p , l # thus encodes the knowledge that the program p has abouti P i
the truth or falsity of propositions F when in state l. The LL semantic functionSS

@ # is assumed to be the standard LL semantic function, as in Example 1. AnSS 0
agent will thus be respecting the semantics of the communication framework if it
sends a message such that this message is guaranteed to be true in all states
indistinguishable from the one the agent is currently in. This framework has the
following property.

Theorem 3 Framework f is ¨erifiable.2

Ž .Proof: Suppose that send p , m, l for arbitrary p , m, l. Then p is respecting thei i i
semantics for f iff2

@ @p , l # # : @ @ m# #i P SS CC SS

which by the f definitions of @ # and @ # reduces to2 P CC

p n ! p : @ m# .H Hj k SS@ # SSq yŽ . Ž .p gks p , l p gks p , lj i k i

Ž < <.Computing G can be done in time O L = ??? = L ; computing ; can be done1 n i
Ž < < < <. qŽ . yŽ .in time O L = G ; and given G and ; , computing ks p , l and ks p , li i i i

Ž < < < <. qŽ . yŽ .can be done in time O F = G . Once given ks p , l and ks p , l , determining
whether

p n ! p : @ m#H Hj k SS@ # SSq yŽ . Ž .p gks p , l p gks p , lj i k i

reduces to the LL logical consequence problem0

p n ! p * @ m# .H Hj k SS
q yŽ . Ž .p gks p , l p gks p , lj i k i

This problem is obviously decidable.

Since f verification reduces to LL logical consequence checking, we can use a2 0
similar argument to that used for Theorem 2 to show the problem is in general no
more complex than f verification:1

Theorem 4 The f ¨erification problem is co-NP-complete.2

Note that the main point about this example is the way that the semantics for
programs were grounded in the states of programs. In this example, the communi-
cation language was simple enough to make the grounding easy. More complex
communication languages with a similarly grounded semantics are possible. We
note in closing that it is straightforward to extend framework f to allow a much2
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Žricher agent communication language including requesting, informing, and com-
. w xmissives 40 .

5.3. Example 3: The FIPA-97 ACL

For the final example, consider a framework f in which we use the FIPA-97 ACL,3
w xand the semantics for this language defined in 19 . Following the discussion in

Section 4.1, it should come as no surprise that such a framework is not verifiable. It
is worth spelling out the reasons for this. First, since the semantic language SL is a
quantified multimodal logic, with greater expressive power than classical first order

Žlogic, it is clearly undecidable. As we noted above, the complexity of the decision
problem for quantified modal logics is often much harder than for classical

w x .predicate logic 1 . So the f verification problem is obviously undecidable. But of3
course the problem is worse than this, since as the discussion in Section 4.1
showed, we do not have any idea of how to assign a program semantics for
semantic languages like SL, because these languages have an ungrounded, mentalis-
tic semantics.

6. Verification via model checking

The problem of verifying whether an agent implements the semantics of a commu-
nication language has thus far been presented as one of determining logical
consequence, or, equivalently, as a proof problem. Readers familiar with verifica-
tion from theoretical computer science will recognize that this corresponds to the
‘‘traditional’’ approach to verifying that a program satisfies a specification. Other
considerations aside, a significant drawback to proof theoretic verification is the
problem of computational complexity. As we saw above, even if the semantic
language is as impoverished as classical propositional logic, verification will be
co-NP-complete. In reality, logics for verification must be considerably more expres-
sive than this.

Problems with the computational complexity of verification logics led researchers
in theoretical computer science to investigate other approaches to formal verifica-

w xtion. The most successful of these is model checking 27, 22, 10 . The idea behind
model checking is as follows. Recall that in proof theoretic verification, to verify
that a program p has some property w when in state l, we derive the theory ofi
that program @p , l # and attempt to establish @p , l # & w, i.e., that property w isi P i P

w xa theorem of the theory @p , l # . In temporal semantics, for example 28, 29 ,i P

@p , l # is a temporal logic formula such that the models of this formula corre-i P

spond to all possible runs of the program p .i
In contrast, model checking approaches work as follows. To determine whether

or not p has property w when in state l, we proceed as follows:i

}Take p , l, and from them generate a model M that encodes all the possiblei p , li

computations of p .
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}Determine whether or not M * w, i.e., whether the formula w is valid inp , li

M ; the program p has property w in state l just in case the answer is ‘‘yes.’’p ,l ii

In order to encode all computations of the program, the model generated in the
w xfirst stage will be a branching time temporal model 16 . Intuitively, each branch,

Ž .or path , through this model will correspond to one possible execution of the
program. Such a model can be generated automatically from the text of a program
in a typical imperative programming language.

The main advantage of model checking over proof theoretic verification is in
w xcomplexity: model checking using the branching time temporal logic CTL 11 can

Ž < < < <. < <be done in time O w = M , where w is the size of the formula to be checked,
< < Ž . w xand M is the size of the model i.e., the number of states it contains 16 .

Model-checking approaches have recently been used to verify finite-state systems
120 w xwith up to 10 states 10 .

Using a model checking approach to conformance testing for ACLs, we would
define the program semantics as a function

@ # : P = L ª mod LLŽ .P SS

which assigns to every programrstate pair an LL -model, which encodes theSS

Ž .properties of that programrstate pair. Verifying that p , l * m would involvei f
checking whether @p , l # * @ m# , i.e., whether the sincerity condition @ m# wasi P SS CC CC

valid in model @p , l # .i P

The comparative efficiency of model checking is a powerful argument in favor of
Ž .the approach. Algorithms have been developed for propositional belief-desire-in-

tention logics that will take a model and a formula and will efficiently determine
w xwhether or not the formula is satisfied in that model 35, 5 . These belief-desire-in-

tention logics are closely related to those used to give a semantics to the FIPA-97
ACL. However, there are two unsolved problems with such an approach.

The first problem is that of developing the program semantics @ # . We haveP

procedures that, given a program, will generate a branching temporal model that
encode all computations of that program. However, these are not the same as
models for belief-desire-intention logics. Put simply, the problem is that we do not
yet have any techniques for systematically assigning beliefs, desires, intentions, and

Ž w x.uncertainties as in the FIPA-97 SL case 19 to arbitrary programs. This is again the
problem of grounding that we referred to above. As a consequence, we cannot do

Ž .the first stage of the model checking process for ACLs that have ungrounded
FIPA-like semantics.

The second problem is that model checking approaches have been shown to be
useful for systems that can be represented as finite state models using propositional

Žtemporal logics. If the verification logic allows arbitrary quantification, or the
.system to be verified is not finite state , then a model checking approach is unlikely

to be practicable.
To summarize, model checking approaches appear to have considerable advan-

tages over proof-theoretic approaches to verification with respect to their much
reduced computational complexity. However, as with proof-theoretic approaches,
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the problem of ungrounded ACL semantics remains a major problem, with no
apparent route of attack. Also, the problem of model checking with quantified
logics is an as-yet untested area. Nevertheless, model checking seems a promising
direction for ACL conformance testing.

7. Discussion

If agents are to be as widely deployed as some observers predict, then the issue of
interoperation}in the form of standards for communication languages}must be
addressed. Moreover, the problem of determining conformance to these standards
must also be seriously considered, for if there is no way of determining whether or
not a system that claims to conform to a standard does indeed conform to it, then
the value of the standard itself must be questioned. This article has given the first
precise definition of what it means for an agent communication framework to be
verifiable, and has identified some problematic issues for verifiable communication
language semantics, the most important of which being that:

]We must be able to characterize the properties of an agent program as a formula
of the language LL used to give a semantics to the communication language.SS

Ž .LL is often a multimodal logic, referring to in the FIPA-97 case, for example theSS

beliefs, desires, and uncertainties of agents. We currently have very little idea
about systematic ways of attributing such mentalistic descriptions to programs
}the state of the art is considerably behind what would be needed for anything
like practical verification, and this situation is not likely to change in the near
future.

Ž]The computational complexity of logical verification, particularly using quanti-
.fied multimodal languages , is likely to prove a major obstacle in the path of

practical agent communication language verification. Model checking ap-
proaches appear to be a promising alternative.

In addition, the article has given examples of agent communication frameworks,
Žsome of which are verifiable by this definition, others of which, including the

w x.FIPA-97 ACL 19 , are not.
The results of this article could be interpreted as negative, in that they imply that

verification of conformance to ACLs using current techniques is not likely to be
possible. However, the article should emphatically not be interpreted as suggesting
that standards}particularly, standardized ACLs}are unnecessary or a waste of
time. If agent technology is to achieve its much vaunted potential as a new
paradigm for software construction, then such standards are important. However, it
may well be that we need new ways of thinking about the semantics and verifica-
tion of such standards. A number of promising approaches have recently appeared

w xin the literature 39, 34, 40 . One approach that can work effectively in certain
w xcases is mechanism design 36 . The basic idea is that in certain multi-agent

Ž .scenarios auctions are a well-known example , it is possible to design an interac-
tion protocol so that the dominant strategy for any participating agent is to tell the
truth. Vickrey’s mechanism is probably the best-known example of such a tech-



SEMANTIC ISSUES IN AGENT COMMUNICATION 29

w xnique 37 . In application domains where such techniques are feasible, they can be
used to great effect. However, most current multi-agent applications do not lend
themselves to such techniques. While there is therefore great potential for the
application of mechanism design in the long term, in the short term it is unlikely to
play a major role in agent communication standards.

Notes

1. Notice that when referring to the effects of communication, we are ignoring ‘‘pathological’’ cases,
such as shouting while on a ski run and causing an avalanche. Similarly, we will ignore ‘‘microscopic’’

Ž .effects such as the minute changes in pressure or temperature in a room caused by speaking .
2. FIPA simply refer to their ACL as ‘‘ACL,’’ which can result in confusion when discussing ACLs in

general. To avoid ambiguity, we will always refer to ‘‘the FIPA ACL.’’
3. In fact, f will be practically verifiable if and only if P s NP, which is regarded as extremely unlikely2

w x32 .
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