
Evaluation of Modeling Techniques for Agent-Based
Systems

Onn Shehory
IBM Research Lab in Haifa - the Tel-Aviv site

IBM Building, Tel Aviv 61336, ISRAEL
onn@il.ibm.com

Arnon Sturm
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL
sturm@tx.technion.ac.il

ABSTRACT
To develop agent-based systems, one needs a methodology that
supports the development process as common in other disciplines. In
recent years, several such methodologies and modeling techniques
have been suggested. An important question is, to what extent do the
existing methodologies address the developers' needs. In this paper
we attempt to answer this question. In particular, we discuss
suitability of agent modeling techniques to agent-based systems
development. In evaluating existing modeling techniques, we
address criteria from software engineering as well as characteristics
of agent-based systems. Our evaluation shows that some aspects of
modeling techniques for agent-based systems may benefit from
further enhancements. As we show, these aspects include
distribution, concurrency, testing and communication richness. We
also find space for (relatively small) improvements in aspects such
as the refining of the models throughout the development process
and the coverage and consistency checking of the suggested models.

1. INTRODUCTION
The discipline of Agent Oriented Software Engineering (AOSE) has
emerged during the last decade. In this domain, methodologies and
modeling techniques have been suggested in order to support the
development process of agent-based systems. Both the scientific and
industrial communities have recognized the potential advantages of
agent-based systems. Nevertheless, the number of deployed
commercial agent-based applications is not large. One of the reasons
for this is the lack of mature, off the shelf, methodologies for agent-
based application development. The need for such methodologies
has been discussed by several studies [1,7,9]. For example,
according to [6], AOSE is a key factor for introducing agent-based
systems to the industry as an engineering approach. In addition, one
would like the advantages of an organized development process
such as reusability, testing, and maintenance to be applied to agent-
based systems as well. As part of AOSE research we can find
methodologies and modeling techniques that present concepts of
software agent modeling at different levels, i.e., different lifecycle
stages. In this paper we examine these techniques in attempt to
answer the following questions: (1) Which agent-based system
characteristics and software engineering principles are addressed
within AOSE modeling techniques, and to what extent? (2) What

should be the properties of the future agent-oriented modeling
techniques? The previous work mentioned above overlooked some
of the software engineering aspects and agent application properties.
Moreover, that work did not provide evaluation criteria for assessing
advantages and drawbacks of different modeling techniques. In this
paper we provide answers to the first question. Our on-going
research attempts to provide answers to the second question as well.
Here, we review some agent-oriented modeling techniques and
evaluate them according to both software engineering criteria and
agent-based system characteristics. From this evaluation we draw
conclusions regarding the extent to which the examined agent
modeling techniques address developers' needs. In addition, we
examine the need for additional modeling features and extensions.
Our evaluation and conclusions are based on available documents
regarding those techniques. Note that some documents and tools of
these techniques are not publicly available.
The paper is organized as follows. In section 1, we present the
criteria we use to examine the agent-based systems modeling
techniques. In section 2, a case study describes a working project
dealing with an auction agent. This case study is used to demonstrate
the modeling techniques we evaluate. Section 3 describes the
modeling techniques and their evaluation. Section 4 summarizes the
evaluation and presents the conclusions.

1.1 Software Engineering Evaluation Criteria
The major goal of this paper is to evaluate existing modeling
technique for agent-based system. For this, one should refer to
software-engineering criteria and agent-based system characteristics.
In this section we focus on the former, whereas the latter will be
discussed in the next section. There are numerous criteria for
evaluating the quality of a modeling technique from the software-
engineering viewpoint. Our selection of software-engineering
criteria for the evaluation is based on [1,12] and their relevancy to
agent-based systems. Following these criteria helps in providing
documentation, encouraging reuse and maintaining the development
lifecycle. Among other desirable criteria, a modeling technique
should adhere to the following:
1. Preciseness: the semantics of a modeling technique must be

unambiguous in order to avoid misinterpretation of the models
(of the modeling technique) by those who use it.

2. Accessibility: a modeling technique should be comprehensible
to both experts and novices.

3. Expressiveness (and applicable to multiple domains): a
modeling technique should be able to present:
• the structure of the system;
• the knowledge encapsulated within the system;
• the data flow within the system;
• the control flow within the system;
• the interaction of the system with external systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AGENTS’01, February 11-13, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005…$5.00.

624

4. Modularity: a modeling technique should be expressible in
stages. That is, when new specification requirements are added,
there is no need to modify pervious parts, and these may be
used as part of the new specification.

5. Complexity Management: a modeling technique should be
expressed, and then examined, at various levels of detail.
Sometimes, high-level requirements are needed, while in other
situations, more detail is required. Examination and
development of all levels should be facilitated.

6. Executability (and testability): either a prototyping capacity or
a simulation capacity should be associated with at least some
aspects of the modeling technique. That is, the modeling
technique has related tools that allow (possibly inefficient)
computation for sample input. These should demonstrate
possible behaviors of the system being modeled, and help
developers determine whether the intended requirements have
been expressed.

7. Refinability (and implementability): a modeling technique
should provide a clear path for refining a model through
gradual stages to reach an implementation, or at least for clearly
connecting the implementation level to the design specification.

8. Analyzability: a methodology, or, preferably, an associated
tool is available to check the internal consistency or
implications of the models, or to identify aspects that seem to
be unclear, such as the interrelations among seemingly
unrelated operations. Such tools encourage both consistency
and coverage.

9. Openness: a modeling technique should provide a good basis
for modeling agent-based systems without coupling them to a
specific architecture, infrastructure or programming language.

1.2 Agent-Based Systems Characteristics
As mentioned above, another facet of evaluating agent-based system
modeling technique is the examination of agent-based system
characteristics. In this section we focus on selected agent-
characterizing features as a basis for our evaluation. We select the
agent-based system characteristics from [7,8,9,17].
1. Autonomy: unlike objects, agents may be active and are

responsible for their own activities: the agent has control over
both its reactive and proactive behaviors. The modeling
technique should support the capability of describing an agent's
self-control feature.

2. Complexity: agent-based systems are basically sets of
components (agents) that interact with each other in order to
achieve their goals. These systems may consist of decision
making mechanisms, learning mechanisms, reasoning
mechanism and other complex algorithms. Modeling complex
algorithms and mechanisms requires strong expressive power
and many layers of details. A modeling technique should
support such expressiveness in order to model the functionality
of agent-based systems. Moreover, the complexity feature
requires that modeling technique should be modular, support
complexity management and describe the complex nature of an
agent.

3. Adaptability: agent-based systems have to be flexible in order
to adjust their activities to the dynamic environmental changes.
The adaptability feature may require that a modeling technique
be modular and that it can activate each component according
to the environmental state.

4. Concurrency: an agent may need to perform several
activities/tasks at the same time. The concurrency feature raises
the requirement that some agent-based systems must be
designed as parallel processing systems. This requires ability to
express parallelism and concurrency in the design and
implementation/deployment stages.

5. Distribution: multi-agent systems are sometimes working on
different hosts and should be distributed over a network. This
requires ability to express distribution in the design and
implementation/deployment stages.

6. Communication richness: a basic definition of an agent
consists of its autonomous activity. As such, the agent must
establish communication with its environment. The
environment may include other agents and information sources.
The communication is characterized by its type (either inter-
agent communication or intra-agent communication), its
content and its architecture (e.g. client-server, peer-to-peer).
This requires that a modeling technique should be able to
express the communication characterization in order to produce
agent communication command or sentences during the
implementation stage.

2. A CASE STUDY AUCTION AGENT
The modeling techniques evaluated in this paper are demonstrated
via a case study of an existing, fully implemented, single agent
application. In this section we describe the agent, however its use as
a case study only appears in the proceeding sections. This agent is an
auction agent, that is, it participates and bids in web-based auctions
on behalf of its user. To be able to use this agent for purchasing a
specific item, its user must provide the agent with the following
parameters: item number, user identification, private maximal price,
bid step, monitoring frequency and bidding strategy and its
parameters. Once activated, the agent enters the auction site and
locates the specific product. Then, the agent monitors the site and
retrieves the following information: leading offer (current price,
user), bid step and closing date. After retrieving this information the
agent parses it and acts according to the strategy that was previously
selected by the user. The agent halts its auction-related activity either
when its buying startegy dictate withdrawal or when the closing date
of the auction passes. As mentioned above, the agent we deal with in
our case study was fully developed, that is, analysis, design,
implementation and testing were all performed.
The agent software components are the following:
1. The configurator is a GUI component that enables the agent's

user to control and monitor the agent's activity.
2. The parser translates the information retrieved from the auction

site into an internal structure.
3. The bidder submits bids to the auction site according to the

agent's buying strategy. It implements two stages of the bidding
(as required by the specific auction site): the bid and its
confirmation.

4. The manager controls the agent's activity, monitors the auction
site, activates the parser, determines the next bid as needed,
activates the bidder as required and terminates the agent's
purchasing activity.

In our case studies throughout the paper we refer to both the agent
described above and the auction site with which the agent was
coupled. In times, we find it necessary to provide some details of the
auction site, since, to study and evaluate the modeling techniques

625

presented in this paper, the environment in which the agent resides is
important too.

3. AGENT MODELING TECHNIQUES
In this section, we describe and evaluate several agent modeling
techniques. For each modeling technique we provide a short
description, a case study (based on our auction agent), and
evaluation based on the criteria mentioned above.

3.1 AOM and GAIA
Agent-Oriented Methodology (AOM) and GAIA, which extends
AOM, are methodologies that concentrate on the modeling aspect of
agent-based systems. Our analysis and evaluation are based on
AOM and GAIA details as appear in [19,20]. Following, the term
AOM will refer to GAIA as well. AOM is based on a set of models,
which are used in different stages of the agent development (both
analysis and design). Following the AOM guidelines, the analysis of
an intended agent-based system results in the definition of roles,
which are characterized by three attributes - permissions,
responsibilities and protocols - and an interaction model which
depicts interactions between roles:
• The permissions attribute states what resources may be used to

carry out the role and what resource constraints the role's
executor is subject to.

• The responsibilities attribute determines the functionality of the
role. This functionality is expressed in terms of safety and
liveness properties. The safety properties indicate what
conditions must be true through all of the states of the system.
The safety properties are invariant. The liveness properties
indicate what sequence of states the role's lifecycle consists of,
and what alternative computational paths are available for the
role.

• The protocols attribute states the interactions of the role with
other roles. In addition it states the internal activities of the
role. AOM distinguishes between external activities (refered to
as protocols) and internal ones. The internal activities will be
elaborated upon as a part of the service model later in this
section.

Each role has a schema, which describes the permissions,
responsibilities and protocols attributes. An example of role
schemata is depicted in Figure 1. In this Figure, the Manager's
role schema (of the case study Auction Agent) consists of a
description of the way in which the Manager should control the
agent's activities. The Manager's protocols and activities consist of
the CheckAuctionSite protocol, the ActivateParser activity, the
CheckForBid activity and the Bid protocol. The Manager's
permission is comprised of (a) read access1 to the AuctionDetails
(which is a part of the internal structure of the agent); (b)
supplying of the ItemNumber. The responsibilities are separated
into two categories: safety and liveness.
The true statement that appears at the safety properties entry
indicates that there are no constraints on the role. As for the
liveness properties, the statement indicates that the order of
execution of the protocols and activities is as following: after the
protocol of CheckAuctionSite is executed the ActivateParser
activity is performed. Following, the CheckForBid activity is

1 In AOM notation, bolded words are reserved words which are

being used for indicating the access right to a specific resource.

performed. This sequence of protocols and activities occurs one or
more times. After that sequence, the Bid Protocol may occur2. The
interaction model is used for a protocol description.

Role Schema: AuctionSiteManager (ASM)

Description:
 Manage the auction site

Protocol and Activities:
CheckAuctionSite , Bid, ValidateUser

Permission:
 reads supplied ItemNumber // the item number in the auction site
 AuctionDetails // the auction information
 generates supplied ItemNumber // the item number in the auction site
 supplied Price // the price for the Bid
 supplied User // the user make the Bid
 Bid // new Bid entity or nil

Responsibilities:
 Liveness:
 AuctionSiteManager = (CheckAuctionSite)+ |
 (ValidateUser)* | (ValidateUser .Bid)*

 Saftey :
 User=illegal => Bid=nil
Role Schema: Manager (MA)

Description:
 Controls the auction agent activities

Protocol and Activities:
 CheckAuctionSite , ActivateParser ,CheckForBid , Bid

Permission:
 reads supplied ItemNumber // the item number in the auction site
 AuctionDetails // the auction information

Responsibilities:
 Liveness:
 Manager = (CheckAuctionSite .ActivateParser .CheckForBid)+[Bid]
 Saftey :
 true

Figure 1: the Manager and the AuctionSiteManager schemata

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

Figure 2: The Interaction Model of the CheckAuctionSite

protocol

An example of the interaction model is depicted in Figure 2. The
Figure shows the generic interaction model of AOM (on the right
side) and the case study model (on the left side). In the case study
model, there is a description of the CheckAuctionSite protocol,
which consists of the roles of Mangaer and the
AuctionSiteManager. The Mangaer supplies the ItemNumber and
the AuctionSiteManager returns the AuctionDetails.
The AOM design phase consists of three models. These models are
derived from the role and the interaction models built in the analysis
stage:
• The agent model defines roles, which are carried out by each

agent type. Each agent type has an indication of its instances
number. The agent model is depicted in Figure 3. The Figure
shows the roles assigned to the agent types and the agent types
instances number.

2 The square brackets indicate an optional activity or protocol.

626

 AuctionSite Auction Agent

1

AuctionSiteManager Parser Bidder Configuratorr Manager

1

Figure 3: The Agent model represents the Auction Agent

• The service model describes the functionality of the agent by
extending the protocols and responsibilities models from the
analysis stage.Each service includes the documentation of its
input, output, pre-condition and post-condition. The service
model is depicted in Figure 4. It presents a subset of the
agent’s services. These are derived from the Manager, the
AuctionSiteManager and the interaction model.

Service Input Output Pre
condition

Post
Condition

get auction
details

ItemNumber AuctionDetails true True

Validate user User Exist true (exist=true) ∨
(exist=false)

Bid User,
ItemNumber,
Price

Success user exist (success=true)
∨(success=false)

Figure 4: The Service Model

• The acquaintance model describes the communication path
between the agent types. This is graphically expressed by a
directed graph as depicted in Figure 5. The nodes in the graph
represent agent types whereas the vertices represent the
communication path. In the case study acquaintance model,
there is a bi-directonal communication path between the
AuctionSite and the AuctionAgent.

AuctionSite

AuctionAgent

Figure 5: The Acquaintance Model

3.1.1 Software-Engineering Evaluation
1. Preciseness: the liveness and safety properties, which are used

for depicting the functionality of a role in a formal way (i.e., for
each symbol and notation there is a clear meaning and
interpretation), makes AOM accurate and prevents
misinterpretation of the modeled functionality. The symbols
and notations of each of the other AOM models have a clear
meaning as well.

2. Accessibility: AOM is easy to understand and use due to its
simple models and their clarity. Understanding and usage of
AOM can be achieved by following the description and
examples of the different models as appear in [19,20].

3. Expressiveness: AOM is expressive and can handle a large
variety of systems due to its generic structure. However, AOM
is mostly suitable for small and medium scale systems. This is
because of its flatness, which limits the ability to model large
amount of details. The structure of the system, the encapsulated
knowledge, the data and control flows are not presented
explicitly within AOM.

4. Modularity: AOM is mostly modular due to its design with
some building blocks such as roles, protocols, activities and
agent types. In AOM, one can assign new roles to agents and

remove ones with no effect on the internal model of the roles.
However, changes within the protocol might cause changes
within the internal structure of the role. These result in changes
in permissions of the role, thus limits the modularity of AOM.

5. Complexity Management: in AOM, there is no hierarchical
presentation or any other mechanism for complexity
management. The system description is flat.

6. Executability: this issue is not dealt with within AOM.
7. Refinability: this issue is not dealt with within AOM.
8. Analyzability: this issue is not dealt with within AOM.
9. Openness: AOM does not dictate any particular architecture,

infrastructure or programming language. It leaves the
implementation issue open for the programmer to deal with.
Thus, it has an open modeling technique.

3.1.2 Agent-based System Characteristics
1. Autonomy: in AOM the autonomy is expressed by the fact that

the role encapsulates its functionality (i.e., it is responsible for
it). This functionality is internal and is not affected by the
environment, thus represents the role's autonomy. In addition,
in AOM one can model alternative computational paths, which
gives the role (and agents that consist of this role) the
autonomy in making decisions.

2. Complexity: in AOM one can describe the agent's complexity
by integrating several models: the role model, the acquaintance
model and the agent model. However, it is difficult to model
some procedural processes and complex computation in AOM.

3. Adaptability: adaptability in AOM can be expressed by the
liveness properties. The liveness property operators within
AOM symbolize optional execution, thus expresses the
potential adaptability of the agent to environmental changes
(although the changes are not described explicitly).

4. Concurrency: this issue is not dealt with within AOM.
5. Distribution: AOM allows the expression of distribution via

the acquaintance model, where each role can be performed on
any host or processor. Yet, it does not explicitly address the
distribution issue.

6. Communication richness: the communication aspects that are
dealt with within AOM are the protocols and the
communication paths between agents. However, the content of
a message and the communication architecture are not
expressed in any of the AOM models.

3.2 ADEPT
The Advanced Decision Environment for Process Tasks (ADEPT)
system is a complete infrastructure for designing and implementing
multi-agent systems. As such, ADEPT supplies a set of tools (i.e.,
models and a language) to achieve its purpose. Our evaluation of
ADEPT is based on details provided in [8,10,11,16]. In ADEPT, the
main building block (from the modeling viewpoint) is the agency.
An agency is recursively defined and consists of a single responsible
(or controlling) agent, a set of tasks and a set of sub-agencies. The
tasks that the agent is responsible for can be viewed as simple
services with a well-defined input, output, guard and functional
specifications. An ADEPT-specific language called SDL (Service
Description Language) defines the services and the information of
the agent. In addition, ADEPT has a negotiation model, which
includes a protocol, a service level agreement (SLA) and a reasoning

627

model. The protocols are relatively standard and are based on
speech-act theory. To communicate, agents in ADEPT need a
protocol and a SLA. The latter is a template that defines the
agreement type. One of the fields of the SLA indicates the service
associated with it. This template should be known to both the client
and the server agents. The reasoning model consists of two
knowledge-based components: a declarative one and a procedural
one. The declarative one sets the negotiation context and the
procedural one specifies which action should be taken given the
declarative knowledge. The procedural knowledge-base is
represented as a set of strategies and mechanisms for selecting
between them.
Figure 6 depicts an ADEPT model of the case study Auction Agent.
The Figure presents two agents associated with their agencies and
tasks. The Auction Agent is responsible for the agency, which
should perform the tasks of managing, bidding, configuring and
parsing. A rounded rectangle indicates a responsible agent, a box
indicates an agency, diamond denotes a task and the arrows indicate
the services supplied by the agent. The specification of the
information encapsulated within the agents is depicted in Figure 7
and the service specification of the Get_Auction_Details service is
depicted in Figure 8.

 get_auction_details

 perform_bid

Auction Site

Get_Auction_Details Bid

 managing

 bidding

 configuring

 parsing

Auction Agent

Configure
Figure 6: The Agent-Agencies Model

(class Agent_Info
 (Types_String item_number)
 (Types_User user)
 (Types_Float private_maximal_price)
 (Types_Float bid_step)
 (Types_Long monitoring_frequency)
 (Types_Strategy bidding_strategy))

(class Auction_Site_Info
 (Types_String item_number)
 (Types_Float bid_step)
 (Types_Date closing_date)
 (Types_Bid leading_offer))

Figure 7: SDL description of an information object

(service
name Get_Auction_Details
inputs (Types_String item_number cli man)
outputs (Auction_Site_Info auction_details)
guard ("")
body (

sequence {
get_auction_details (item_number = service::item_number
service::auction_details = auction_details)
} - >

(get_auction_details)))

Figure 8: SDL description of the Get_Auction_Details service
provided by the Auction Site agent

3.2.1 Software-Engineering Evaluation
1. Preciseness: a formal specification of SDL is provided. Other

formal specifications of ADEPT have not been published yet
however exist. These formal specifications prevent
misinterpretation of ADEPT models.

2. Accessibility: learning, understanding and implementing
ADEPT models is not difficult. The majority of the ADEPT
models are intelligible and provide a clear notations and

semantics. However, the reasoning model might introduce
some difficulties in its understanding and assimilation, due to
its complex logic.

3. Expressiveness: integration of the models supported by
ADEPT provides an expressive power, especially for business
processes. These models represent the structure of the system
(sometimes a reflection of the organization structure), the
behavior of the system and its response to environmental
changes. The data and control flow can be analyzed and
understood from the SDL and the reasoning model, but they are
not presented explicitly. This implies difficulty for the
designers and implementers in modeling and understanding the
data and control flow. In addition, SDL represents the
knowledge structure within the system. An implementation of
an ADEPT agent or MAS is coupled to the ADEPT
architecture, which means that its uses the ADEPT modules
(such as Service Execution Module and Communication
Module). These modules execute the different models
mentioned before. Hence, there is no need for defining the
system structure.

4. Modularity: the use of agencies and agents increases the
modularity, as agencies can be easily moved from one agency
to another.

5. Complexity Management: hierarchical presentation and
complexity management can be achieved by using the agent
and agencies model, which enables (de-) composition of agents
and agencies.

6. Executability: ADEPT has its own engine, which means that
once the modeling phase was finished the agent can be
executed. However, it is not clear how much effort the designer
has to invest in the modeling phase (analysis and design) in
order to get the agent to run.

7. Refinability: ADEPT has its own definition language (SDL),
which defines the services derived from the model of agents
and agencies. This means that the model of agents and agencies
can be refined by SDL.

8. Analyzability the consistency and coverage checks are not
dealt with within ADEPT.

9. Openness: ADEPT is a closed system. The different models
are tightly coupled to the ADEPT architecture.

3.2.2 Agent-based System Characteristics
1. Autonomy: the autonomous nature of an agent is modeled by

encapsulating tasks within an agency. This means that agent
that controls the agency is autonomous in the timing and
execution of the encapsulated tasks. The decision-making
aspect of the agent's autonomy is modeled by combining the
service model and the reasoning model within ADEPT. These
models describe the agent’s activities upon environment and
the agent's state changes.

2. Complexity: by using the ADEPT models one can present
large and complex systems. However, the tools supplied by
ADEPT are not powerful enough to express complex
algorithms.

3. Adaptability: the adaptability in ADEPT is expressed by the
reasoning model. The reasoning model has the capability of
representing several states regarding the negotiation context
and additional rules. The negotiation context and additional

628

rules provide the agent with guidance regarding the activities it
should perform. This enables the agent to adapt to
environmental and state changes.

4. Concurrency: is not dealt with within ADEPT from the
modeling viewpoint.

5. Distribution: is not dealt with within the ADEPT from the
modeling viewpoint.

6. Communication richness: the communication between agents
is handled by the system architecture, but its modeling is
unclear.

3.3 DESIRE
The Design and Specification of Interacting Reasoning (DESIRE)
framework is a complete environment for design and
implementation of MAS. It allows the system designer to explicitly
and precisely specify both the intra-agent and inter-agent
functionality. Our evaluation of DESIRE is based on the information
provided in [3,4,13,15]. In DESIRE, the following models are
supported: (1) task (de-) composition, (2) information exchange, (3)
sequencing of (sub-) tasks, (4) subtask delegation and (5) knowledge
structure.

 retrieve auction information

 parse auction information
managing
 check auction info

 bid
 bidding

 confirmation
configure agent

Figure 9: Task Hierarchy of the Auction Agent

The task (de-) composition model includes the information about the
task hierarchy, the task input, the task output and the relationships
between tasks. Each task in the hierarchy can be primitive as well as
composed. Additional information regarding the task composition
model is encapsulated within the information exchange model. The
task hierarchy model of the Auction Agent is depicted in Figure 9. In
this Figure, the managing task consists of the retrieve auction
information, parse auction information, check auction info and
bidding tasks. The bidding task consists of the bid and confirmation
tasks. The tasks which do not consist of other tasks are primitive.

managing

parse auction
information

check auction
info

bidding

bid

 confirmation

item
number

auction
info

retrieve auction
information

parsed auction
info

bid info

bid info

bid result

finish

finish_no_bid

O
K

Figure 10: The component managing of the Auction Agent

if component-state(managing,start)
then next-component-state(retrieve_auction_info,active)
 and next-target-set(retrieve_auction_info,get-info)
 and next-link-state(item_number,awake)
 and next-link-state(auction_info,awake)

if evaluation(retrieve_auction_info,get-info,succeed)
then next-component-state(parse_auction_info)
 and next-target-set(parse_auction_info, get_info)
 and next-link-state(parsed_auction_info,awake)

if evaluation(parse_auction_info,get-info,succeed)
then next-component-state(check_auction_info)
 and next-target-set(check_auction_info, get_bid_info)
 and next-link-state(bid_info,awake)
 and next-link-state(finish_no_bid ,awake)

if evaluation(check_auction_info,get_bid_info,succeed)
then next-component-state(bid)
 and next-target-set(bid, place_bid)
 and next-link-state(finish,awake)

Figure 11: The task control knowledge of managing

In DESIRE, the information exchange between tasks is specified as
information links between components. Each information link
directs the output of one component to the input of another one. The
information exchange model is depicted in Figure 10. This Figure
shows the task hierarchy that was previously presented in Figure 9.
The additional information is the information links that depict the
data flow. For example, the link ItemNumber indicates that there is
an input to the retrieve auction information task. Its output is fed as
input, via the auction info link to the check auction info task. Note
that the information exchange model has a formal syntax. Task
sequencing is explicitly modeled within the component as task
control knowledge, which can be seen in Figure 11. This knowledge
includes the order of subtasks, their activation target (usually
referred to as a goal in the context of agents) and the amount of
effort, which can be afforded. The target is the focus of the activity
of the component and the effort is the component and the link states.
For example, if the task parse_auction_information succeeds then
the next task should be check_auction_info and its target should be
get_bid_info. In addition, DESIRE awakes the relevant links that
should be activated if the check_auction_info task is successful.
DESIRE has the additional advantage that the specifications and
their semantics can be expressed formally, using temporal logic.

3.3.1 Software-Engineering Evaluation
1. Preciseness: the DESIRE infrastructure is based on temporal

logic, which is precise and prevents misinterpretation of the
modeling outcomes.

2. Accessibility: DESIRE has a wide range of modeling
capabilities. However, this richness results in difficulty to learn
and implement it.

3. Expressiveness: DESIRE can express many application
domains using and integrating its models. DESIRE has many
tested systems such as Generic Design Agent [5] and
Collaborative Information Agents [13]. The data flow modeling
within DESIRE is performed using the links in the task
composition model. The control flow can be understood from
the task control knowledge. The data modeling is done using
the knowledge structure mechanism. An implementation of a
DESIRE agent or MAS is coupled to the DESIRE architecture,

629

which means that it uses the DESIRE infrastructure. This
infrastructure supports the execution of the modeled system.
Hence, there is no need for defining the system structure.

4. Modularity: DESIRE supports modularity within the
component model. This means that components can be
changed and replaced without any effect on others.

5. Complexity Management: the hierarchical presentation and
complexity management is achieved within the models of task
hierarchy and components.

6. Executability: DESIRE has its own engine. After the modeling
is finished, the modeled system should run. DESIRE has an
automated implementation generator, however, the designer
can not determine the implemented software architecture.

7. Refinability: the DESIRE models are not formally assigned to
a specific development stage (i.e., analysis, design, and
implementation). However, DESIRE enables to refine the
models at any stage.

8. Analyzability: correctness and coverage are checked using the
formal semantic specification.

9. Openness: DESIRE is an open system in the sense that it is not
coupled to a specific programming language or architecture.

3.3.2 Agent-based System Characteristics
1. Autonomy: the autonomy of an agent can be expressed within

the DESIRE task control knowledge. In this model, one can
track the possible execution paths of the agent activities
regardless of the environment. That is, the agent has its
autonomy of executing the tasks. Also, one can model a
decision mechanism of the agent, which reflects the autonomy
of the agent from the decision-making aspect.

2. Complexity: DESIRE models enable one to describe the
required complexity of a software agent. However, (according
to the reviewed literature) DESIRE does not provide tools for
modeling complex computation.

3. Adaptability: the flexibility of the agent is modeled within the
task control knowledge. In this model the agent’s behavior can
change according to new goals and other environmental
changes.

4. Concurrency: the concurrency issue is dealt with from the
functional point of view but not from the execution point of
view. This means that one can model concurrency within the
task control knowledge but the implementation of this
concurrency is not explicitly addressed.

5. Distribution: the distribution issue in DESIRE can be
expressed using the task composition model, where each task
can be performed on any host or processor. However the
distribution issue is not addressed explicitly in DESIRE.

6. Communication richness: the communication in DESIRE is
partially dealt with by presenting the links between
components. However, the DESIRE literature does not refer to
a message content and means.

4. CONCLUSION
In this paper, we reviewed a few of the existing techniques for agent-
based system modeling. In addition to these techniques, we have
also performed evaluation of the Formal Agent Framework [14] and
the Agent Unified Modeling Language [2]. The details of that
evaluation are presented in [18]. In this review we have used widely

acceptable software-engineering and agent-based system evaluation
criteria. The goal of this paper is not to identify the best modeling
technique for agent-based systems among the existing ones, but to
point out the issues that should be addressed in future research and
development of agent-oriented modeling techniques. As a secondary
result, we have also provided a set of criteria that developers of
agent-based systems can use to determine the appropriate modeling
technique and system for a specific project according to its
characterization.

Table 1. Modeling Techniques Evaluation Summary

 Methods
Criteria

AOM ADEPT DESIRE

Preciseness * * +
Accessibility + - *
Expressiveness * + +
Modularity - + +
Complexity
Management

- + +

Executability NS + *
Refinablility NS * *
Analyzability NS NS +
Openness + - +
Autonomy * + +
Complexity - * *
Adaptability * * +
Concurrency NS NS *
Distribution NS NS NS
Communication
richness

- - -

 + good, * satisfying, - dissatisfying, NS - not supported
Table 1 provides a qualitative summary of our evaluation. Each
modeling technique is evaluated by indicating to what level it
addresses each criterion. In general, we found the modeling
techniques adequately addressing agent-based system characteristics.
Yet, our conclusions regarding software engineering issues suggest
that AOSE still has a way to go to provide industrially applicable
modeling technique. In particular, the following issues may benefit
from further enhancements:
• Executability - AOM does not deal with the execution issues.

ADEPT deals with the implementation issues of the execution,
i.e. a prototype can be created out of the design specification.
DESIRE generates working applications out of the design
specification (although these applications are not necessarily
efficient). All of the examined modeling techniques do not
address the testing issue. Testing is an important part of the
software development process since it allows increased
reliability of the final product. As such, it would be beneficial
to have an automatic code and test cases generation included
in agent-oriented modeling techniques.

• Refinablility - The modeling techniques that we reviewed do
not clearly define the development process. The models,
which are part of the modeling technique, are not associated
with the development stages (i.e., analysis, design and
implementation). This results in difficulty to determine what
part of the agent should be modeled in each development
stage. Hence, it is not clear how the refinement should be done
and what level of detail should be produced at each stage of
the development lifecycle. In addition, each one of the
modeling techniques uses models of which encapsulated

630

information (sometimes) overlaps, and the designer may need
to synchronize between them.

• Analyzablility - the reviewed modeling techniques do not have
accessible tools to perform the modeling phase (although
some of them do have working environments). However, most
of them have a firm basis for the consistency and coverage
checks.

• Openness - the evaluation of openness indicates that most of
the modeling techniques that deal with the execution issue are
not based on a specific architecture for MAS.

Although agent-based system characteristics are usually properly
addressed, a few issues can benefits from being dealt with:
• Distribution - the distribution and concurrency issues are not

dealt with from the deployment viewpoint in ADEPT and
DESIRE and in AOM it is not addressed at all.

• Communication richness - the reviewed modeling techniques
provide some details regarding the required communication.
However, they do not model the message content as well as
the communication architecture.

To conclude, the current agent-oriented modeling techniques already
provide a wide array of features advantageous for agent modeling.
However, as our evaluation suggests, there is a need for further
exploration of the issues mentioned above. Base on these findings,
we intend in future research, to address the needs of agent-based
system developers. This should be done in order to find the required
modeling techniques and components for building agent-based
systems.

5. REFERENCES
[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C.

Puchol, M. G. Staskauskas and J. Von Olnhausen, A
Framework for Evaluating Specification Methods for Reactive
Systems, Experience Report, Proc. of 17th Intl. Conf. on
Software Engineering, 1995.

[2] B. Bauer, J.P. Muller, and J. Odell, Agent UML: A Formalism
for Specifying Multiagent Software Systems: P. Ciancarinin
and M.J. Wooldridge (eds.) Agent-Oriented Software
Engineering, LNCS 1957, Springer, 2000, pp. 91-103.

[3] F. M. T. Brazier, B. Dunin-Keplicz, N. R. Jennings and J.
Treur, DESIRE: Modelling Multi-Agent Systems in a
Compositional Formal Framework. Intl. Journal of Cooperative
Information Systems, vol. 6, Formal Methods in Cooperative
Information Systems: Multi-Agent Systems, (M. Huhns and M.
Singh, eds.), 1997, pp. 67-94.

[4] F. M. T. Brazier, B. Dunin-Keplicz, J. Treur and L. C.
Verbrugge, Modeling Internal Dynamic Behaviour of BDI
agents. In: J.-J. Ch. Meyer and P.Y. Schobbes (eds.), Formal
Models of Agents, LNAI 1760, Springer, 1999, pp. 36-56.

[5] F. M. T. Brazier., C. M. Jonker, J. Treur and N.J.E.
Wijngaards, Compositional Design of a Generic Design Agent.
In: G. Luger, L. Interrante (eds.), Proc. of AAAI Workshop on
AI and Manufacturing: State of the Art and State of Practice.
AAAI Press, 1998, pp. 30-39.

[6] C. A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of
agent-oriented methodologies. In J. P. Muller, M. P.Singh, and
A. S. Roa, (eds.), Intelligent Agent V, Proc. of ATAL-98,
LNAI 1555, Springer, 1999,pp. 317-330.

[7] N. R. Jennings and M. Wooldridge, Agent-Oriented Software
Engineering, Handbook of Agent Technology (ed. J.
Bradshaw) AAAI/MIT Press, 2000 (to appear).

[8] N. R. Jennings, P. Faratin, M. J. Johnson, P. O'Brien, M. E.
Wiegand: Using Intelligent Agents to Manage Business
Processes, Proc. of PAAM96, London, UK, 1996, 345-360

[9] N. R. Jennings, On Agent-Based Software Engineering,
Artificial Intelligence, 117 (2), 2000 , 277-296.

[10] N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien and B.
Odgers, Autonomous Agents for Business Process
Management, Int. Journal of Applied AI 14 (2), 2000, 145-189.

[11] N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B. Odgers
and J. L. Alty, Implementing a Business Process Management
System using ADEPT: A Real-World Case Study, Intl. Journal
of Applied AI 14 (5), 2000, 421-465.

[12] S. Katz, Draft of Formal Specification Method Book,
http://www.cs.technion.ac.il/~cs236368/ , 2000.

[13] C. M. Jonker, M. Klusch, and J. Treur, Design of Collaborative
Information Agents. In: M. Klusch, and L. Kerschberg (eds.),
Cooperative Information Agents IV, Proc. of CIA 2000. LANI
1860, Springer, 2000, pp. 262-283.

[14] M. Luck and M. d'Inverno, Structuring a Z Specification to
Provide a Formal Framework for Autonomous Agent Systems,
Proc. of ZUM'95, J. Bowen and M. Hinchey (eds.), LNCS,
967, 47-62, Springer, 1995.

[15] M. Mulder, J. Treur and M.Fisher, Agent Modelling in
MetateM and DESIRE. In: M. P. Singh, A. S. Rao, M. J.
Wooldridge (eds.), Intelligent Agents IV, Proc. of ATAL'97.
LNAI 1365, Springer, 1998, pp. 193-207.

[16] T. J. Norman, N. R. Jennings, P. Faratin and E. H. Mamdani:
Designing and implementing a multi-agent architecture for
business process management, in Intelligent Agents III (eds. J.
P. Mueller, M. J. Wooldridge and N. R. Jennings) LNAI 1193,
Springer, 1996, 261-275.

[17] O. Shehory, Architectural Properties of Multi-Agent Systems,
Technical Report CMU-RI-TR-98-28, The Robotics Institute,
Carnegie Mellon University, 1998.

[18] O. Shehory and A. Sturm, Evaluating Agent-Based System
Modeling Techniques, Technical Report TR-ISE/IE-003-2000,
Faculty of Industrial Engineering and Management Technion -
Israel Institute of Technology, 2000.

[19] M. Wooldridge, N. R. Jennings, and D. Kinny, A Methodology
for Agent-Oriented Analysis and Design Proc. of Agents-99,
Seattle, WA, 1999, 69-76.

[20] M. Wooldridge, N. R. Jennings, and D. Kinny, The Gaia
Methodology for Agent-Oriented Analysis and Design, Journal
of Autonomous Agents and MAS 3 (3), 2000, 285-312.

631

