
Coordinating with Obligations

Mihai Barbuceanu
Enterprise Integration Laboratory

University of Toronto
4 Taddle Creek Road, Rosebrugh Building,

Toronto, Ontario, Canada, M5S 3G9
mihai@ie.utoronto.ca

Tom Gray and Serge Mankovski
Mitel Corporation

350 Legget Drive, P.O. Box 13089
Kanata, Ontario, Canada K2K 1X3

{tom~ray,sergemankowski}@mitel.com

Abstract

Organizations constrain the behavior of agents by imposing
multiple, often contradictory, obligations and interdictions
amongst them. To work in harmony, agents must find ways
to satisfy these constraints, or to break less important ones
when necessary. In this paper, we present a solution to
this problem based on a representation of obligations and
interdictions in an organizational framework, together with
nn inference method that also decides which obligations to
break in contradictory situations. These are integrated in an
operational, practically useful agent development language
that covers the spectrum from defining organizations, roles,
agents, obligations, goals, conversations to inferring and ex-
ccuting coordinated agent behaviors in multi-agent appli-
cations, One strength of the approach is the way it sup-
ports negotiation by exchanging deontic constraints amongst
agents, We illustrate this and the entire system with a ne-
gotiated solution to the feature interaction problem in the
telecommunications industry and a work process coordina-
tion example for a manufacturing supply chain.

1 Introduction and Motivation

Working together in harmony requires that everybody ful-
fils their obligations and respects everybody else’s rights.
In other words, it requires that everybody respects the so-
cial laws of their community. To build agents that can be
trusted to work with and on behalf of humans in organiza-
tions requires the same thing, that agents know and fulfil
their obligations while respecting the rights and authority
of humans and of other agents in the organzation. Multiple
symultaneous obligations and interdictions require agents to
find the right behavior that achieves the goals induced by
obligations without violating the interdictions. Often, there
is no way to fmd the right behavior without violating less
important obligations or interdictions in order to ensure the
more important ones are fulfilled. Current models of col-
lective behavior often oversimplify this situation. The the
Cohen-Levesque account of teamwork [8] for example and
the implemented systems based on it [lo, 161 assume that

lkrniission lo ~wdic digilnlhrd copks ol’nll or perl ol’lhis mnlcrial for
pcwonnl or clnssroonl use is gnwled willlout lice provided chat the topics
nre tlol Innde or distribuled for profit or conuncrcinl advnnlage. lllc copy-
rip,lH uolice, hc title of lhe publication and its dale nppenr. z~ntl nolice is
give ll~nl copying is by pmnission ol’ACM, Inc. ‘To copy ohcnvise.
lo republi~ll. lo posl OII servers or lo redistribuk to lisk requir‘% prior . . I.
spec~hc prnwwon and/or Ike.
AU~OIIOII~OUS Agents L)8 Minneapolis MN llSA
Capyrigla 199X0-89791-983-l/38/ 5.,.$5.00

all members of a team have essentially a single obligation
towards a common mutual goal.

In this paper we present a solution to building agents
that can find the right behavior in face of multiple, possibly
conflicting obligations and interdictions. The solution relies
on (1) a representation - semantically founded on dynamic
deontic logic - of social laws as obligations, permissions and
interdictions among the roles that agents play in an organi-
zation and (2) a constraint propagation reasoning method
allowing agents to infer the applicable obligations and to
decide among conflicting ones. This is presented in Sec-
tion 2. The approach is fully implemented and operational,
being integrated in a coordination language that supports
agent development along the entire spectrum from organi-
zation and role specification, defbrition of social obligations
and interdictions, agent construction, proactive and inter-
actionist agent behavior according to the applicable social
laws and to the agent’s own conversation plans. This is pre-
sented in Section 3. Prom the application perspective, one
consequence of the approach is the way it supports nego-
tiation as exchange of obligations and interdictions among
agents. In Section 4 we illustrate this with an agent ne-
gociated solution to the feature interaction problem in the
telecommunications industry, one of the industries we work
with directly in applying our system. A second application,
in work process coordination for distributed supply chains,
is reviewed in Section 4. We end with condusions, a review
of related work and future work hints.

2 Representing and Reasoning about Obligation

Intuitively, an agent al has an obligation towards an agent
a2 for achieving a goal G iff the non-performance by al of
the required actions allows a2 to apply a sanction to al.
The sanction is expressed as a cost or loss of utility. Agent
a2 (who has authority) is not necessarily the beneiiciary of
executing G by the obliged agent (you may be obliged to your
manager for helping a colleague), and one may be obliged
to oneself (e.g. for the education of one’s children).

Semantics. We model obligations, permissions and inter-
dictions (OPI-s) using the reduction of deontic logic to dy-
namic logic due to [13] in a multi-agent framework. Briefly,
we defiue pbligation, interdiction and permission as follows,
where VA> denotes a violation by i of a constraint imposed
by j wrt action or go+ a (associated with a cost to be paid):

, F’i a = - [cY]‘v:J: i is forbidden by j to execute cy. An
agent is forbidden to do a iff in any state resulting after
executing cr the violation predicate holds.

62

. pU e E gij CC i is permitted by j to execute (Y.
l?or~i~~ is th: same as non-interdiction.

E P I(-cr): i is oblig ed by j to execute cr. Obli-
gation is an interdiction for the negation of the action (for-
bidden not to do LY ,

AR shown by [13 j , this reduction eliminates the paradoxes
that have plagued deontic logic for years and moreover, leads
to a number of theorems which, as wiU be shown immedi-
ately, allow ua to apply an efficient constraint propagation
m&hod to reason about OPI-s in action networks. Both of
thcsc arc essential for applying this model to real applica-
tions,

The main theorems that we use are as follows (indices
dropped for clarity), where ; denotes sequential composi-
tion, U nondeterministic choice and & parallel composition
of actions.

- F
=Fau/?)eFcrAFp(2)
- (Fav Fj?) 3 F(c&p) (3)
= O(cY;/3) 3 (OaA [CVJOP)

1

t
q/3) f [CYJFP (1)

(4)

(O@J W) 3 O(Q u P) (5)
O(a & /3) z (OcvA O/3) (6)

-P

i

a;P) E <a > P/3 (7
-PaUp)E(PaVP/3) 8) 1
- P Q & P) 3 (PaA PP) (9)

O(LY Up) A Pa A Pp ZI op (10).
In words, these theorems teU us that: (1) A sequence

is forbidden iff after executing the first action the remain-
ing aubsequence is forbidden. (2) A choice is forbidden iff
all components are also forbidden. (3) If at least one com-
ponent of a parallel composition is forbidden, the parallel
composition is forbidden as well. (4) A sequence is obliged
lff Lhe First action is obliged and after executing it the re-
maining subsequence is obliged as well. (5) If at least one
component of a choice is obliged, the choice is also obliged.
(6) A parallel composition is obliged iff all components are
obliged. (7) A sequence is permitted iff there is a way to ex-
ecute the first action after which the remaining subsequence
is permitted. (8) A choice is permitted iff at least one com-
ponent of it is permitted. (9) If a parallel composition is
permitted, then all components must be permitted. (10) If
a choice is obliged and one component is forbidden while the
other is permitted, then the permitted component is obliged.

Dconlic Constraint Propagation. To infer the consequences
of given obligations and interdictions and to solve conflicts
amongst Lhem we use constraint propagation over acyclic
nctworlm in which goals are connected to their subgoals.
Figure 1 shows a somewhat arbitrary such network in which
g1 is a choice between 62 and g3, g2 is a sequence containing
g8 and g9, g3 has g4 and g5 executing in parallel, etc. If
the arc connecting a goal to one of its subgoals is 1abeUed
with a I-‘, it means that the subgoal is negated in the goal.
In figure 1, 64 is negated in g3, meaning that g3 consists of
not doing g4 in parallel with doing g5.

Figure 1 illustrates this process using a goal network
where we have initially asserted that (forbidden g4) and
(obliged g6), For each of these assertions the propagation
process Iravcrses the network along supergoal and subgoal
links and applies the deontic theorems listed previously. For
example, since g4 is a choice, forbidding it also forbidds all
its alternatives, cf. theorem (2). This makes both g8 and g6
forbidden, Since g8 is forbidden, g2 is also forbidden as a
sequence with one subaction forbidden, cf. (1). Propagating
along supergoals, since g4 is negated in g3, it follows that
63 becomes obliged, having both subgoals obliged, cf. (6)
(86 userted as such initially, and -g4 obliged because g4 is

gfihoice

(obliged g7)

Asserted:

(forbidden 64)
bblig~ $3

Inferred:

(obliged 63)
(forbidden S6)
(forbidden SS)
(forbidden S2)

Figure 1: Deontic propagation in a goal network.

gl: choice

g2:atomic @atomic g4z atomic

Asserted:
(forbidden g2 :cost low)
(forbidden g3 :cost med)
(forbidden S4 :cost high)
(obIiged gl :cost high)
Inferred:

(forbidden gl :cost low)
(obliged g2 :cost high)

Figure 2: Deontic propagation with costs and conflicts.

forbidden). Next, since g3 is obliged, gl becomes obliged as
well, cf. (5). As g5 has been asserted as obliged and since
g6 is forbidden, it follows that g7 must be obliged, cf. (10).
We note that g9 has no label, as nothing could be inferred
about it.

When goals are asserted as obliged or forbidden, we can
also propagate the cost of violating the obligation or inter-
diction. This helps us handle conflicting situations. In figure
2 we assert every subgoal of a choice as forbidden with given
qualitative costs. Then the choice goal is asserted as forbid-
den with a cost equal to the cost of the smallest cost alter-
native (this is just one possibility). If later the choice goal
is asserted as obliged with a greater cost, then we propagate
this upon the smallest cost subgoal. Now we have contradic-
tory labelings for gl and g2, but by comparing the violation
costs the agent is justified to accept gl and g2 as obligatory
because thus it will incur a smaller penalty. This scheme
works with both quantitative and qualitative violation costs
by means of a cost abstract data type allowing each agent
to define the nature of violation costs it uses.

Deontic Propagation Algorithm. The propagation algo-
rithm puts the theorems in section 2 in rule form inside a
recursive invocation mechanism. In figure 3 we show one
example of such a rule. The rule is activated when (1) a
subgoal gi of a choice type goal g has been propagated as
forbidden, (2) g is obliged, (3) all its subgoals are forbidden,
(4) SO is the sum of all obligation costs on g (derived from
all independent obligations placed on g) and (S)g-min and
c-min are the subgoal with smallest interdiction cost and
that cost respectively. In this case, the rule checks whether
c-min is less than SO. If so, g-min becomes obliged (or for-
bidden if it occurs negated in g). Otherwise, the choice g
becomes forbidden with c-min as violation cost.

Labelings consist of multiple, independently justified propo-
sitions of type (obliged <goal> <cost>) or (forbidden
<goal> <cost>). These propositions are stored in a LTMS
[12] and are justified by the other propositions that make
the rules applicable. This allows us to implement non-

63

g: choice

Propngntlon4vlc: choke-conflict3
wlv2n-nsscrtcd I?(@)

muclbllmt O(g) and

sum-O-costs&, SO) and
43 CT . . 0 . . ‘. nll.subgools-forbidden aad

min-subgoal-F-cost(~, g-min, c-min)
gl si gn

rpropngntc I! c-mln <= s0
then Lf negatcd(g-min, g)

then Q-min, SO)
clsc O(g-min, SO)

else P(g, c.min)

Figure 3: Deontic propagation rule.

monotonic reasoning and to provide explanations of every
labeling in the system.

The propagation process propagates one input deontic
assertion at a time. For each assertion, all goals reachable
from the goal of the input assertion along both supergoal
and subgoal links are visited at most once. For each visited
goal, all rules are checked and those applicable are executed.

Action Scheduling. Knowing which actions are obliged
and which arc forbidden is not sufficient for execution. The
ngcnt also needs to know the relative order of actions and
the allowed time windows for execution. These however,
dcpcnd on different constraints about resource usage and
capacity, action duration, time horizons and the execution
semantics of composed actions. To deal with these, we first
include in the representation of each action (1) an execu-
tion time window specjfied as an interval [earliest-start,
latest-and] , and (2) a specification of the duration of atomic
actions, The time window contains the time limits (in a dis-
crete model of time) within which the action can be executed
consistently with all other constraints, and is computed by
&cduling as explained immediately. Second, for composed
actions, we define the following execution semantics. For
pnrallel actions, all subactions are constrained to be exe-
cuted within the time-window of the parallel (super)action,
with temporal overlapping allowed. For choices, only the
chosen (obliged) subactions must be executed within the
time-window specified by the choice (super)action, also with
overlapping allowed. For sequences, all subactions must
be executed within the time-window of the sequence (su-
pcr)action, without temporal overlapping amongst subac-
tions. Note that these temporal constraints operate outside
the dcontic propagation framework which assumes that all
obligations and interdictions hold for the entite time hori-
zon (including all action time windows). Third, we assume
finite capacity of resources, in that a resource can be used
by a given finite number of actions at any moment.

Consider now the action network shown in figure 4 with
the given durations and associated resource usage (all re-
sources can support only one action at a time). Suppose that
the time window for pari is given, time-window(pnrl, [2,1’7]).
Assume also that (obliged parl) and (forbidden a10).
Dcontic propagation determines (obliged seqi) , (obliged
soql) , (obliged seq3) and (forbidden seq4). But in
what order should the agent execute the obliged actions?
This can only be determined by scheduling the obliged ac-
tions in a way that considers all the resource, duration and
order canstraints. In our system, we solve the problem by
endowing the agent with a constraint based scheduler of the

a4 a5 n9 ill0

R~SOWXS and usage: rl(a1, a4, a7), r2(aZ. a5. a8, alO), r3(a3, a6)
Action duration: a1(3), d(4). a3(5), a4(3). a5(5), a6(4), a7(3). aS(3)

a%4 a1009

Figure 4: Action network to be scheduled

-__---_-. same resource
- sequence

Figure 5: Same problem in a usual scheduling depiction

type described e.g. in [3]. Its output is a complete ordering
of actions that is consistent with all input constraints, plus
the allowed execution time windows for each action, as im-
plied by the ordering. Figure 5 shows the same problem in
a normal scheduling depiction, where sequences correspond
to jobs, the topmost parallel action sets the time window for
every job and each action uses some !inite capacity resource
and has its own specified duration.

3 The Coordination Language

Having presented the representation and reasoning mech-
anisms for OPI-s, we now show how these are integrated
and used within an implemented, practical coordination lan-
guage for multi-agent system development.

Organizations, Agents and Roles. Organizations are sys-
tems that constrain the actions of member agents by im-
posing mutual obligations and interdictions. The associ-
ation of obligations and interdictions is mediated by the
roles agents play in the organization. For example, when
an agent joins a software production organization in the
system administrator role, he becomes part of a speci fit
constraining web of mutual obligations, interdictions and
permissions - social constrai nts or laws - that link him as a

64

(dof-organization 01
rrolo13 ((customer Customer)

(developer Bob)
(help-desk-attendant Bob)
(development-manager Alice)
(help-desk-manager John)) 1

(d&agent ‘Bob
:databaae ‘bob-db
:acquaintances ‘((Alice development-manager)

(John help-desk-manager)) 1

Figure 6: Organizations and agents

(def-role ‘help-desk-member
:aupor-roles ‘(division-member)
:min-agents 1)

(dof!-rolo ‘help-desk-manager
:aupor-roles ‘(help-desk-member)
:max-agents I)

(doe-rolo ‘help-desk-attendant
:supor-roles ‘(help-desk-member))

Figure 7: Roles

aysfom administrator to developers, managers and every
other role and member of the organization. Not fulfilling an
obligation or interdiction is sane tioned by paying a cost or
by A loss of utility, which allows an agent to apply rational
d c&ion malting when choosing what to do.

Our coordination language allows organizations to be de-
scribed as consisting of a set of roles filled by a number of
agents, In the example in figure 6 customer, developer,
help-dook-attendant; etc. are roles filled respectively by
agents Cuaeomer, Bob, etc.

An agent can be a member of one or more organizations
and in each of them it can play one or more roles. An agent is
aware of the existence of some of the other agents in specific
roles, but not necessnrily of all of them. Each agent has its
local store of beliefs (its database).

A role describes a major function together with the obli-
g&ions, interdictions and permissions attached to it. Roles
can be organized hierarchically (for example developer and
devel.opmenVmanager would be both development-member
roles) and subsets of them may be declared as disjoint in that
the same agent can not perform them (like help-desk-member
and cuetomor). For each role there may be a minimum
and a maximum number of agents that can perform it (e.g.
minimum and maximum 1 president). Some examples are
&own in figure 7.

Situationrr. A situation is a specific combination of occur-
ing cvcnts and agent’s local state in which the agent acquires
obligations and/or interdictions and starts acting in accor-
dance with these. Situations are generically defined in terms
of roles, rather than in terms of specific agents. That means
that any set of agents that play the specified roles can be
involved in the situation, if all conditions are met.

Consider the situation in figure 8. This is a description of
a situation in which an agent in the help-desk-attendant

(def-situation ‘accept-help-desk-work-s
“attendant must accept vork uhen idle’,
:acting ‘help-desk-attendant
:authority ‘help-desk-manager
:beneficiary ‘customer
:received
‘(request :from (help-desk-manager ?manager)

:receiver-role help-desk-attendant
:content do-help-desk-attending)

: such-that
) (andcbelieves ?agent ’ (now-doing idle)

:pspace ‘at-work)
(knoun-to-me-as ?agent ?manager

‘help-desk-manager))
:belief s-in
, (list (proposition ‘not ‘nov-doing ‘idle)

(proposition ‘requested-hdv ?manager)
:pspace ‘at-work)

: add-clause
, (clause

(conse ‘obliged ‘accept-hd-vork :cost 8)
(ante ‘not ‘now-doing ‘idle)
(ante ‘requested-hdv ?manager)))

Figure 8: A Situation

role (the acting party) acquires an obligation to accept work
from the agent in the help-desk-manager role (the author-
ity party). The beneficiary is someone in the client role.
According to the definition, this happens when the help
desk attendant receives a request in this sense from the help
desk manager such that the help desk attendant knows the
sender of the request as a help desk manager and the help
desk attendant is currently idle. Situations are always de-
scribed from the viewpoint of the acting party (here the
help-desk-attendant). If the above conditions are met,
the help desk attendant will add two new beliefs to its con-
text, namely it is not idle anymore and that the help desk
manager has requested work. These beliefs justify the agent
to believe that it has an obligation to accept the requested
work. This is described by the agent creating a new LTMS
clause, as shown in the :add-clause slot. To deal with
this request from its manager, the agent stores the beliefs
relevant to this request in a special propositional space (or
:pspace) of its database, named at-vork. This enables the
agent to differentiate the beliefs related to this request from
other beliefs and to reason separately in chosen spaces (con-
text switching). To help with this, spaces can also inherit
beliefs from other spaces. Finally, any situation becomes
an entry in the agent’s agenda, guaranteeing that it will be
dealt with by the agent.

Conuersation Plans. An agent’s possible behaviors in a
given situation are described by one or more conversation
plans. To choose one of them, the agent evaluates specific
conditions in the context of the given situation. We bor-
row the idea of conversation plans from [l], as descriptions
of both how an agent acts locally and interacts with other
agents by means of communicative actions. A conversation
plan consists of states (with distinguished initial and final
states) and rule governed transitions together with a control
mechanism and a local data base that maintains the state
of the conversation. The execution state of a conversation
plan is maintained in actual conversations.

For example, the conversation plan in figure 9 shows how

65

LeEend: <received messoge>l<sent message>

Figure 9: The Customer-conversation

(doP-conversation-rule ‘hda-1
:current-state ‘start
:roceivod
) (request : from (customer ?c)

:content ((assistance PBX setup) ??I)
:noxt-state ‘request-received
:such-that ‘(help-desk-attendant-available)
:tranemit ‘(accept :to ?c

: conversation ?convn)
:do ‘(update-var ?conv ‘?customer ?c))

Figure 10: Conversation rule

the Customer interacts with the help-desk-attendant when
requesting assistance. After making the request for assis-
tance, the customer-conversationgoes to state requested
where it waits for the help-desk-attendant to either accept
or rcjccl, If the help-desk-attendant accepts to provide as-
sistance, the interaction enters an iterative phase in which
the Customer asks questions and the help-desk-attendant
responds, This cycle can end only when the tistomer de-
cides to terminate it, In each non-final state conversation
rulolg specify how the agent interprets incoming messages,
how it updates its status and how it responds with outgoing
messages. The language in which messages are expressed is
a liberal form of KQML [9], but any communicative action
language is usable. Figure 10 shows an example of conversa-
tion rule that a help-desk-attendant would use to respond
to a request for assistance.

To see how conversation plans are used to specify agents’
behavior in given situations, the conversation plan in figure
11 shows a generic behavior involving both interaction and
local reasoning that an agent would use in a situation when
it is requested to satisfy a set of obligations and interdictions
from another agent. This plan shows how an agent receives
a act of obligations and interdictions that another agent re-
questcs it to satisfy, performs deontic propagation (going
to state deontic-propagation-done) and, if no requested
constraints are violated, plans and schedules the required
actions (going to state act-net-done). Then it executes the
planned/scheduled actions in rule execute-actions. If no
execution failure occurs, the plan ends in state execution-ok,
otherwise it ends in execution-failed. If during deontic
propagation the agent determines that it can not satisfy
some of the requested constraints, or if actions can not be
scheduled or planned, the violated constraints may be sent
baclc to the sender for revision.

The Action ,!?xecutiue executes scheduled actions accord-
ing to the specified time windows. The time windows pro-
duced by scheduling satisfy the ordering conditions imposed

send scheduling
execution-ok
A

done execute-actions

Figure 11: Conversation plan doing deontic propagation,
scheduling and action execution

by sequences and parallel compositions (e.g. two consecutive
elements of a sequence have time windows that do not allow
overlapping, while two elements of a parallel compositions
have time windows that may overlap). For this reason, the
Executive only needs to pick up atomic actions and choices
for execution, making sure time windows are obeyed. When
a component action of an obliged sequence is about to be
executed, the Executive propagates the component action
as obliged and, after executing it, propagates the remaining
subsequence as obliged (cf. theorem 4, section 2). This may
have as effect new obliged or forbidden actions, in which
case we have to reschedule the remaining actions. Similarly,
after a component action of a forbidden sequence has been
executed, the remaining subsequence is propagated as for-
bidden (cf. theorem 1, section 2), with the same possible
consequences. This shows how much intertwined deontic
propagation, scheduling and execution actually are.

To execute an action, either a one-shot method is in-
voclced, or a full conversation plan is initiated. In particular,
conversation plans for choices may initiate exchanges with
other agents and more complex decision making to deter-
mine which alternative to execute (if several are permitted).
The architecture allows conversation plans to be suspended
in any state, waiting for conditions or events to happen and
be resumed when the waited for events or conditions have
happened. Conversation plans are always executed incre-
mentally, in a multi-threaded fashion in that each time only
at most one state transition is executed, after which the
next action is tackled. The Executive is f?rst invocked inside
conversation plans tackling situations, as shown in figure 11.

Control Architecture. Each agent operates in a loop
where: (1) Events are sensed, like the arrival of messages
expressing requests from other agents. (2) Applicable sit-
uations are activated updating the agent’s beliefs, possibly
creating new propositional spaces. (3) Agent selects an entry
from the agenda. This is either a new situation, for which a
plan is retrieved and initiated, or one that is under process-
ing, in which case its execution continues incrementally, as
shown above.

4 Coordination by Exchanging Deontic Constraints

A ubiquitous way in which an agent A can work together
with au agent B to achieve some goals in an organization
they are both part of is to have A and B request various
things from each other and execute each other’s requests. A
straightforward way for A (say) to request something from B
is by formulating the request as a set of things A either wants
B to do or wants B to refrain from doing. This list of do-s and
don’t-s can be described as a set of obligations and interdic-
tions A wants B to satisfy. The roles of the agents must be
such that they are entitled by the laws of the organization

66

to make these requests. Suppose B receives a message from
A contnining such a set of obligations and interdictions. By
propagating these locally, together with its own obligations
nnd interdictions and with other obligations and interdic-
tions it is committed to, B will determine which of them it
can satisfy and which it can’t. Both sets are then revealed
to A, perhaps with some explanations for the reasons for
fnilure attached, A may now revise its request in various
ways, It may drop constraints, it may add constraints, or
it may raise or lower costs (e.g. to make B violate other
constraints), The revised set of constrains is sent back to B,
which will repeat the same cycle. The process may end with
both agents agreeing on a set of constraints that A still wants
nnd B con satisfy, or may terminate before any agreement
is reached, (Many refinements of this mechanism exist, as
shown next),

To illustrate the use of this approach, we consider the
feature interaction problem, a general service creation prob-
lcm in the telecommunications industry [!4, on which we
are working with industrial partners. We assume A and
R arc ogcnts responsible for establishing voice connections
amongst their users. The creation and administration of
connections can use various levels of functionahty, or fea-
turo~, that provide different services to subscribers or the
telephone administration.

Here are a few examples for the features that are usu-
nlly available (modern telecommunication services may have
many hundreds of such features): (1) Incoming Call Screen-
ing: the colee will refuse all calls from callers in an incoming
cnll screening list. (2) Call Forward: the calee will forward
the incoming call to another number. (3) RecolE if the calee
is busy, the caller will be calIed back Iater when the calee
becomes available, (4) Outgoing Co11 Screening: the caller
does not allow to be connected to some specified directory
numbers,

The feature interaction problem is that often combina-
tions of features interact in undesired ways, affecting the
intended functionality of the provided services. For exam-
ple, several combinations of the above features may interact
in nn undesired fashion, Incoming Co11 Screeningand Recall
may conflict if Recall is done without checking that the num-
ber belongs to the incoming call screening list - we shouldn’t
call baclc numbers that are not accepted in the first place.
Similnrly, Call J’orword and Outgoing Co11 Screening may
conflict if a caller is forwarded to a number that it does not
wish to bc connected to,

The dcontic propagation framework can be used to solve
such interactions in a principled manner. When agent A
wishca to connect to agent B, it sends to B a set of constraints
thnt specify A’s relevant features that B must consider. For
example, if A has Outgoing Co11 Screening, it will send to B a
list of interdictions about the numbers that it doesn’t want
to be connected to. If B has Co11 Forword, A’s interdictions
will bc used to forbid forwarding to A’s undesired numbers.

For illustration, figure 12 shows the inferences performed
by a cake B when receiving a call from A. A has Outgoing Co11
Screeningfor number #l, and B has Incoming Co11 Screening
with A in its incoming call screening list (meaning B does
not want to talk to A directly). The set of constraints that
A sends to B is ((obliged accept-call :from A :cost 5)
(forbidden forward :from A :to #I :cost 9)).

In response to this message, a situation becomes applica-
ble within B that posts an obligation for B to execute Process
Incoming Call, A generic plan that can be used in this sit-
uation (shown in figure 11) performs deontic propagation,
schedules and then executes the action network. Incoming

Figure 12: Deontic propagation applied to feature interac-
tion.

Call Screening is scheduled first and executed by retriev-
ing and activating a plan for it. The plan places an inter-
diction for Accept Call and Recall in the current context,
because A is on the black list. Deontic propagation activated
again by the plan infers that Forward Call is obliged. As
this is a choice whose first subgoal Fru#i (forward to #l) is
forbidden by the caller, deontic propagation also infers that
the second subgoal, Fru#2 (forward to #2) is obliged. That
leaves Fru#2 as the only obliged subgoal in the action net-
work. Its execution completes the execution of the action
network. In conclusion, we have obtained the desired behav-
ior: B does not accept the calI and does not set a callback to
A if busy. B forwards the call to its second number, because
the iirst is not acceptable to A.

Many other useful negotiation strategies based on this
framework can be conceived.

1. Suppose first that A has Outgoing Call Screening to
both #l and #2. In this case A sends to B interdic-
tions for both numbers. Deontic propagation will re-
veal that B can not forward the call (theorem 2) as
both alternatives of the choice are now forbidden. B
will then reply with a meesage in which it states that
the interdictions on both #l and #2 can not be sat-
isfied. A is then free to choose: either it drops one of
these or it drops the entire calI. Alternatively, if A has
enough authority it may increase the cost of obliging
B to accept the call, in order to force B to override its
own interdiction of talking to A directly. In this case B
would have to accept the call and, if busy, commit to
recalling.

2. Assume now that A does not want B to know that it
does not want to be forwarded to #l. In this case,
A will not send the corresponding interdiction. B will
have to choose between forwarding to #l and #2. By
modifying the protocol, we can have B inform A that
it can forward the calI to either #l or #2. If there
are only two alternatives (Iike in this case), A may call
the desired one directly, without asking B to forward
the calI, and thus making sure B has no idea where
the caIl went. If there are more than 2 alternatives, A
can explicitely request to be forwarded to one of them,
making it uncertain for B which number was avoided.
In the former case, A may pay for the call itself, while
in the latter B normally pays. Also, in this case it is
B who discloses more information to A regarding its
forwarding possibilities.

67

3, Finally, we can have A send together with its con-
straints some utility value for each of the constraint,
thus informing B about its preferences about which
constraints should be satisfied first. For example, there
may be a utility of 0.8 for forwarding to #2 and only
0,2 for forwarding to #l (we have assumed that A
knows where its call may be forwarded, which is not
necessarily the case). B may then try to satisfy those
constraints that maximize A’s total utility. In this case
A does not have enough authority to force B to take a
glvcn action, but relics on B’s goodwill to satisfy A’s
request as much as possible. One conclusion we draw
from these examples is that the space of coordination
patterns that can be described and executed with this
framework is very large and more work is needed to
explore and exploit it.

6 Coordinating Teamwork in the Supply Chain

The second application deals with work coordination in‘the
supply chain of global enterprises. The supply chain of a
modern enterprise is a globally extended network of suppli-
crs, factories, warehouses, distribution centers and retailers
through which raw materials are acquired, transformed into
products, delivered to customers, serviced and enhanced.
The key to the efhcient operation of such a system is the
tight coordination among components. But the dynamics of
the enterprise and of the world market make this difficult:
customers change or cancel orders, materials do not arrive
on time, production facilities fail, workers are ill, etc. caus-
ing deviations from plan. Our goal is to achieve coordinated
behavior in dynamic systems of this kind by applying our
agcnl coordination technology.

We have built several demonstration systems addressing
aupply chain issues, In this his section we briefly review one
of them, focused on modeling team formation, team moni-
toring and team modification. The supply chain in this case
consists of a Customer agent, a Logistics agent coordinat-
ing the joint effort and several plants and transportation
agents that participate in the joint work. One typical round
of interactions in this setup starts with the Customer sending
nn RFQ (request for quotation, in which an inquiry is made
AbOUt the cost of an order) to Logistics. To answer it,
Logistics sets up an appropriate run of its (local) schedul-
ing software that decomposes the order into parts doable by
the production units in the network and also provides an
estimation of whether the order can be executed given the
current workload. If the result is positive, Logistics tries
Lo obtain tentative agreements from the other production
units for executing their part. In this interaction, units are
obliged to respond. If the tentative team can be formed,
the Customer is informed that it can place an order. If this
happens, Logistics starts another round of interactions in
which it asks units to commit to their part of the order.
When a unit agrees, it acquires an obligation to execute its
part, If everybody agrees, Logistics becomes obliged to
the Customer for execution and the Customer to Logistics
for paying. Then, Logistics starts coordinating the actual
work by kicking off execution and monitoring its state. Units
become obliged to Logistics for informing about break-
downs or other events so that Logistics can try to replace
a unit that can not finish successfully. If breakdowns occur
and replacements can not satisfy the initial conditions of the
order, Logistics tries to negotiate an alternative contract
with the Cuetomer, e.g. by relaxing some conditions.

We usually run the system with 5-8 agents and about

40-60 actual obligations and conversations each. The speci-
fication has about 10-20 generic obligations and conversation
plans each with about 200 rules and utility functions. The
scheduling software is an external process used by agents
through an API. All this takes less than 3500 lines of code
to describe in our language. We remark the conciseness of
the representation given the complexity of the interactions
and the fact that the size of this code does not depend on the
number of agents and actual obligations and conversations,
showing the flexibility and adaptability of the representa-
tion.

6 Conclusions, Related and Future Work

We believe we have demonstrated the feasibility of agents
that can represent social constraints in the form of obliga-
tions and interdictions and that can efficiently reason about
them to find courses of action that either do not violate them
or violate them in a ‘necessary’ way as imposed by the par-
ticipating agents authorities or priorities. We have shown
how a representation of obligation founded on dynamic de-
ontic logic and a constraint propagation inference method
for it can be integrated in a practically useful agent develop
ment language that covers the spectrum from the definition
of organizations, roles, agents, obligations, goals, conversa-
tions, to inferring and executing actual, coordinated agent
behaviors in applications. One consequence of the approach
is that it allows agents to be ‘talked to’ by giving them a list
of obligations and interdictions and then trusting the agent
to figure out how to actually fulfil them, including which of
them to break if necessary! In particular, agents can talk to
each other in this way, leading to a clean approach to ne-
gotiation which we have illustrated in the context of service
provisioning in telecommunications.

Social constraints have been addressed to some extent
previously. [18] d escribes a theory of coordination within
social structures built from roles among which permissions
and responsibilities are defined. [15] study the general util-
ity of social laws. [S] stresses the importance of obligations
in organizations but does not advance operational architec-
tures. AOP [14] defines obligations locally, but does not
really exploit them socially. [ll] argues for the necessity of
artificial agents with normative positions in today’s Internet
world. [4] uses norms for enhancing the decision making ca-
pability of agents, but not for enhancing coordination and
negotiation. Finally, [2] schetches an architecture for using
obligations in coordination, but without the basic deontic
constraint propagation process described here and without
specifying how deontic conflicts can be addressed using vio-
lation costs.

Up to now, our focus has been on prototyping our ideas
into systems that can be quickly evaluated and “falsified”
in applications. Evaluations based on several supply chain
systems (of which we have reviewed one) as weIl as on service
provisioning systems for telecommunications have shown that
the coordination language enabled us to quickIy prototype
the system and build running versions demonstrating the
required behavior. Often, an initial (incomplete) version of
the system has been built in a few days, enabling us to im-
mediately demonstrate its functionality. Moreover, we have
found the approach explainable to and usable by industrial
and other engineers interested in their own domain. For ex-
ample, our latest supply chain system consisting of about
40 agents modeling a realistic enterprise that has several
plants, distribution centers and transportation facilities has
been developed by an industrial engineer without prior pro-

68

gramming experience. In spite of that, a prototype able to
simulate the supply chain on a loo-150 weeks horizon dur-
ing which thousands of plan executions took place has been
built in about 3 months,

As future work, on the application side, we are currently
exploring the space of negotiation strategies based on the
dcontic constraint exchange approach. In telecommunica-
tions for example, we arc using the flexibility allowed by the
system in describing such strategies to customize the ser-
vices provided (e.g. if a caller does not want calees to know
that it does not want to be forwarded to a certain number,
we will modify the service to behave as required). Also, we
are extending the application of the approach to global sup
ply chain management addressing the management of many
horizontal and vertical levels of interaction among agents
with mnny different rights and obligations. On the sys-
tcm development side, WC are working on the direct inte-
gration of time in the dcontic propagation process, allowing
to infer obligations and interdictions for specific time inter-
vals, rather than assuming that all obligations apply to the
entire horizon, Another extension that would strenghten
the system is using first principles planners e.g. like [7, 171
to construct sequences of actions for achieving goals. The
agent may initially have incomplete sequences (containing
for example only the initial and final action aa required by
UCPOP [17], or an abstract one, as allowed by O-PLAN [7])
that the agent’s planner would refine into a complete plan,
maybe also looking at which actions are permitted from a
social laws point of view. This would lead to a more com-
plete architecture that integrates social laws reasoning with
classical planning and scheduling.

7 Acknowlcdgmcnts

This research is supported, in part, by the Manufacturing
Research Corporation of Ontario, Natural Science and En-
gineering Research Council, Digital Equipment Corp., Mi-
tel Corp., Micro Electronics and Computer Research Corp.,
Spar Aerospace, Carnegie Group and Quintus Corp.

Rcfercnccs

Barbuceanu, M. and Fox, M. S. 1997. Integrating Com-
municative Action, Conversations and Decision The-
ory to Coordinate Agents. Proceedings of Automomous
&cnts’9? 47-58, Marina Del Rey, February 1997.

Barbuceanu, M. 1977. Coordinating Agents by Role
Based Social Constraints and Conversation Plans. Pro-
ceedings of AAA1’97,16-21, Providence, RI.

Beck, C. et al, Texture-Based Heuristics for Scheduling
Revisited, Proceeding8 of AAAI-97,241-248, July 1997,
Providence RI.

Boman, M. 1997, Norms as Constraints on Real-Time
Autonomous Agent Action. In Multi-Agent Rutional-
itu (Proceedings of MAAMAW’97), Boman and Van de
Weldc (cds) Springer Verlag.

Cameron, E.J., N.D. Griffeth, Y.J. Lin, M.E. Niion,
WX, Schnure, and H, Velthuijsen. A Feature Inter-
action Benchmark for for IN and Beyond. In L.G.
Bouma and H. Velthuijsen, editors, Feature Interactions
in Telecommunication Systems, l-23, Amsterdam, May
1996, 10s Press.

69

[61

PI

PI

PI

PO1

P4

WI

P31

CasteIfrauchi, C. 1995. Commitments: From Individual
Intentions to Groups and Organizations. Proceedings of
ICMAS-95, AAAI Press, 41-48.

Currie, K and Tate, A. O-Plan: The Open Planning Ar-
chitecture. Artificial Intehigence 52(1):49-86, November
1991.

Levesque, H, Cohen, P.R. and Nunes, J. On Acting
Together. Proceedings of AAAI’SO, Menlo Park, CA.

Finin, T. et al. 1992. Specification of the KQML Agent
Communication Language. The DARPA Knowledge
Sharing Initiative, External Interfaces Working Group.

Jennings, N. 1995. Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems Using Joint
Intentions. Artificial Intelligence 75.

Krogh, K. 1996. The Rights of Agents. In M.
Wooldridge,J.P. MulIer and M. Tambe (eds) InteIIi-
gent Agents II, Agent Theories, Architectures and Lan-
guages. Lecture Notes in AIiUS7,1-16, Springer Verlag.

McAllester, D. 1980. An Outlook on Truth Mainte-
nance. Memo 551, MIT AI Laboratory.

Meyer, J. J. Ch. 1988. A Dierent Approach to Deontic
Logic: Deontic Logic Viewed as a Variant of Dynamic
Logic. Notre Dame J. of Formal Logic 29(l) 109-136.

[14] Shoham, Y. 1993. Agent-Oriented Programming. Arti-
ficial Intelligence 60, 51-92.

[15] Shoham, Y. and Tennenholtz, M. 1995. On Social Laws
for ArtiiciaI Agent Societies: Off-line Design. Artificial
Intelligence 73 231-252.

[16] Tambe, M. 1997. Agent Architectures for Flexible,
Practical Teamwork. Proceedings of AAAI’97, Provi-
dence, RI, 22-28.

[17] Weld, D.S. An Introduction to Least Commitment
Planning. AI M agazine, Summer/FalI 1994.

[18] Werner, E. 1989. Cooperating Agents: A Unified The-
ory of Communication and Social Structure. In L.
Gasser and M.N. Huhns (eds), Distributed Artificial In-
telligence Volf13-36, Pitman.

