
 1

Self-Organization in Multi Agent Systems: a Middleware
Approach

Marco Mamei
Università di Modena e Reggio Emilia
Via Allegri 13, Reggio Emilia ITALY

mamei.marco@unimo.it

Franco Zambonelli
Università di Modena e Reggio Emilia
Via Allegri 13, Reggio Emilia ITALY

franco.zambonelli@unimo.it

ABSTRACT
Self-organization is built upon two main building blocks: adaptive
and uncoupled interaction mechanisms and context-awareness.
Here we show how the middleware TOTA (Tuples On The Air)
supports self-organization by providing effective abstractions for
the above two building-blocks. TOTA relies on spatially
distributed tuples for both supporting adaptive and uncoupled
interactions between agents, and context-awareness. Agents can
inject these tuples in the network, to make available some kind of
contextual information and to interact with other agents. Tuples
are propagated by the middleware, on the basis of application
specific patterns, defining sorts of “computational fields”, and
their intended shape is maintained despite network dynamics,
such as topological reconfigurations. Agents can locally “sense”
these fields and can rely on them for both acquiring contextual
information and carrying on distributed self-organizing
coordination activities. Several application examples in different
scenarios show the effectiveness of our approach.

Keywords
Self-Organization, Agents, Coordination, Context Awareness,
Middleware.

1. INTRODUCTION
IT scenarios, at all levels, are witnessing a radical change: from
systems constituted by components fixedly and strictly coupled at
design time, to systems based on autonomous, uncoupled and
transiently interacting components [ZamP02].
In computer science, application have always been built by
adopting programming paradigms rooted on strictly coupled, not-
autonomous components. Following this approach, components
are coupled at design time by fixed interaction patterns. Although
simple, this approach turned out to be really brittle and fragile, not
being able to cope with reconfiguration and faults. Only in recent
years, the research on software agents has fostered new
programming paradigms based on autonomous components (i.e.
components with a separated thread of execution and control)
interacting to realize an application [BelPR01, CabLZ02,
PicMR01].
This shift of paradigm is well motivated by the robustness,
scalability and flexibility of these systems: if a component breaks
down, the others can re-organize their interaction patterns to
account for such a failure, if new components are added to the
system, they can discover who is around and start to interact with
them. The key element leading to such robust, scalable and
flexible behaviors is self-organization. Autonomous components
must be able to self-organize their activities’ patterns to achieve
goals, that possibly exceed their capabilities as singles, despite -

and possibly taking advantage - of environment dynamics and
unexpected situations [ParBS02, SerR02, ZamM02]. Nature, for
example, “adopts” these ideas at all scales (e.g. in social insects
like ants, and in cells like in the immune system) [Bar97, Bar02,
BonDT99].
The first signs of these concepts can be found in modern
distributed computing where the inherent dynamism of networks
(e.g. delays and links unavailability) forces distributed
applications’ components to autonomously adapt and self-
organize their behavior to such dynamism. On the one hand,
Internet applications, traditionally built following a client-server
approach, are gradually replaced by their peer-to-peer (P2P)
counterpart. By investing on peers autonomy, P2P applications
can self-organize their activities to achieve unprecedented levels
of robustness and flexibility (e.g. peers can dynamically discover
communication partners and autonomously engage, also third-
party, interaction patterns). On the other hand, components’
autonomy and self-organization is at the basis of ubiquitous and
pervasive computing, where intrinsic mobile components are
connected in wireless, amorphous networks. In such a dynamic
scenario, in fact, agents have to constantly rearrange and self-
organize their activities to take in account the ever changing
environment.
Unfortunately, we still do not know how to program and manage
these kind of autonomous self-organizing systems. The main
conceptual difficulty is that we have direct engineered control
only on agents’ local activities, while the application task is often
expressed at the global scale [Bar02, BonDT99]. Bridging the gap
between local and global activities is not nearly easy, but it is
although possible: distributed algorithms for autonomous sensor
networks have been proposed and successfully verified, routing
protocols is MANET (in which devices coordinate to let packets
flow from sources to destinations) have been already widely used.
The problem is still that the above successful approaches are ad-
hoc to a specific application domain and it is very difficult to
generalize them to other scenarios. There is a great need for
general, widely applicable engineering methodologies,
middleware and APIs to embed, support and control self-
organization in multiagent systems [Abe00, SerD02, KepC03,
ZamP02]. From our point of view, self-organization is a sort of
distributed coordination and its main building blocks are those
constituting the core of agents’ autonomy: (i) adaptive and
uncoupled interaction mechanisms and (ii) context-awareness.
With regard to the first point, environment dynamism and
transiently connected components call for flexible, adaptive and
uncoupled interactions. Moreover, by its own nature, coordination
requires context-awareness. In fact, an agent can coordinate with
other agents only if it is somehow aware of “what is around”, i.e.,
its context. However, when agents are embedded in a possibly

 2

unknown, open and dynamic environment (as it is in the case of
most pervasive computing scenarios), they can hardly be provided
with enough a priori up-to-date contextual knowledge. Starting
from these considerations, it is fundamental to provide agents with
simple, easy to be obtained, and effective contextual information,
supporting and facilitating their coordination activities in a robust
and adaptive way.
The contribution of this paper is to show how the abstractions
promoted by a novel middleware infrastructure called TOTA
(“Tuples On The Air”), suit the need of self-organization.
Coherently with the above considerations, the key objective of
TOTA is to define a single abstraction both to: (i) promote
uncoupled and adaptive interactions; and (ii) provide agents with
simple, yet expressive, contextual information to actively support
adaptivity, by discharging application components from the duty
of dealing with network and application dynamics. To this end,
TOTA relies on spatially distributed tuples, to be injected in the
network and propagated accordingly to application-specific
patterns. On the one hand, tuple propagation patterns are
dynamically re-shaped by the TOTA middleware to implicitly
reflect network and applications dynamics, as well as to reflect the
evolution of coordination activities. On the other hand,
application agents have simply to locally “sense” tuples to acquire
contextual information, to exchange information with each other,
and to implicitly and adaptively orchestrate their coordination
activities. To take a metaphor, we can imagine that TOTA
propagates tuples in the same way as the laws of nature provides
propagating fields in the physical space: although particles do not
directly with each other and can only locally perceive such fields,
they exhibit globally orchestrated and adaptive motion patterns.
The following of this paper is organized as follows. Section 2
overviews the TOTA approach. Section 3 details the architecture
of the TOTA middleware, its main underlying algorithm and its
implementation. Section 4 describes some application examples,
showing how can TOTA be effectively applied to different
scenarios. Section 5 discusses related works. Section 6 concludes
and outlines future works.

2. TUPLES ON THE AIR: OVERVIEW
The driving objective of our approach is to address together the
two requirements introduced at the beginning of the previous
section (uncoupled and adaptive interactions and context-
awareness), by exploiting a unified and flexible mechanism to
deal with both context representation and agents’ interactions, and
thus also leading to a simpler, and lighter to be supported,
applications.
In TOTA, we propose relying on distributed tuples for both
representing contextual information and enabling uncoupled
interaction among distributed application agents. Unlike
traditional shared data space models, tuples are not associated to a
specific node (or to a specific data space) of the network. Instead,
tuples are injected in the network and can autonomously
propagate and diffuse in the network accordingly to a specified
pattern (see Figure 1). Thus, TOTA tuples form a sort of spatially
distributed data structure able to express not only messages to be
transmitted between application components but, more generally,
some contextual information on the distributed environment.

TOTA Network

TX

TX

TX
TX TX

TX
TX

TX

TX

TOTA Middleware

TX
Tuple

TOTA Virtual Space

Tuple Sources

Tuple Propagation

Application
Components

Figure 1: The General Scenario of TOTA: application
components live in an environment in which they can inject
tuples that autonomously propagate and sense tuples present
in their local neighborhood. The environment is realized by
means of a peer-to-peer network in which tuples propagates by
means of a multi-hop mechanism.

To support this idea, TOTA is composed by a peer-to-peer
network of possibly mobile nodes, each running a local version of
the TOTA middleware. Each TOTA node holds references to a
limited set of neighboring nodes. The structure of the network, as
determined by the neighborhood relations, is automatically
maintained and updated by the nodes to support dynamic changes,
whether due to nodes’ mobility or to nodes’ failures. The specific
nature of the network scenario determines how each node can
found its neighbors: e.g., in a MANET scenario, TOTA nodes are
found within the range of their wireless connection; in the Internet
they can be found via an expanding ring search (the same used in
most Internet peer-to-peer systems [Rat01]).
Upon the distributed space identified by the dynamic network of
TOTA nodes, each component is capable of locally storing tuples
and letting them diffuse through the network. Tuples are injected
in the system from a particular node, and spread hop-by-hop
accordingly to their propagation rule, eventually leaving copies of
itself at every propagation step. In fact, a TOTA tuple is defined
in terms of a “content”, and a “propagation rule”.

T=(C,P)
The content C is an ordered set of typed fields representing the
information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated in
the network. This includes determining the "scope" of the tuple
(i.e. the distance at which such tuple should be propagated and
possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of
other tuples in the system. In addition, the propagation rules can
determine how tuple’s content should change while it is
propagated. Tuples are not necessarily distributed replicas: by
assuming different values in different nodes, tuples can be
effectively used to build a distributed overlay data structures
expressing some kind of contextual and spatial information. On a

 3

different perspective, we can say that TOTA enrich a network
with a notion of space. A tuple incrementing one of its fields as it
gets propagated identifies a sort of “structure of space” defining
the network distances from the source. By relying on data
acquired by proper physical localization devices, like GPS
systems or beacon-based triangulation, tuples can provide a
structure of space based on the actual physical location of devices
and thus enabling a tuple to be propagated, say, at most for 10
meters from its source. Taking this approach to the extreme, one
could think at mapping the peers of a TOTA network in any sort
of virtual overlay space [Rat01], and propagating tuples in such
virtual space.
The spatial structures induced by tuples propagation must be
maintained coherent despite network dynamism. To this end, the
TOTA middleware supports tuples propagation actively and
adaptively: by constantly monitoring the network local topology
and the income of new tuples, the middleware automatically re-
propagates tuples as soon as appropriate conditions occur. For
instance, when new nodes get in touch with a network, TOTA
automatically checks the propagation rules of the already stored
tuples and eventually propagates the tuples to the new nodes.
Similarly, when the topology changes due to nodes’ movements,
the distributed tuple structure automatically changes to reflect the
new topology. For instance, Figures 2, 3, and 4, show how the
structure of a distributed tuple can be kept coherent by TOTA in a
MANET scenario, despite dynamic network reconfigurations.
From the application agents’ point of view, executing and
interacting basically reduces to inject tuples, perceive local tuples,
and act accordingly to some application-specific policy. Software
agents execute on a node, in which the TOTA middleware has
been installed. They can inject new tuples in the network, defining
their content and their propagation rule. They have full access to
the local content of the middleware (i.e., of the local tuple space),
and can query the local tuple space – via a pattern-matching
mechanism – to check for the local presence of specific tuples. In
addition, TOTA provides agents with a virtual global, read-only,
view of the tuple spaces of one-hop TOTA neighbors. This is
basically a virtual tuple space consisting in a union of all the
TOTA tuple spaces in the one-hop neighborhood [PicMR01].
Looking at this view an agent can see the tuples stored in its
closest neighborhood. Finally, agents can be notified of locally
occurring events (i.e., changes in tuple space content and in the
structure of the network neighborhood). In TOTA there is not any
primitive notion of distributed query. Still, it is possible for an
agent to inject a tuple in the network and have such distributed
tuple be interpreted as a query at the application-level, by having
other agents in the network react to the income of such tuple, i.e.,
by injecting a reply tuple propagating towards the enquiring node.
The overall resulting scenario – making it sharp the analogy with
the physical world anticipated in the introduction – is that of
applications whose agents: (i) can influence the TOTA space by
propagating application-specific tuples; (ii) execute by being
influenced in both their internal and coordination activities by the
locally sensed tuples; and (iii) implicitly tune their activities to
reflect network dynamics, as enabled by the automatic re-shaping
of tuples’ distributions of the TOTA middleware.

Figure 2: P31 propagates a tuple that increases its value by
one at every hop. Tuple hop-value is represented by node
darkness.

Figure 3: P37 and P38 moves closer to the source and their
tuples automatically change values to maintain the distributed
tuple coherency.

Figure 4: When the tuple source P31 moves, all tuples are
updated to take into account the new topology.

 4

3. TOTA MIDDLEWARE
3.1 Tota Architecture
As introduced in the previous section, a network of possibly
mobile nodes running each one a TOTA middleware constitutes
the scenario we consider. Each TOTA node holds references to
neighboring nodes and it can communicate directly only with
them. While in an ad-hoc network scenario it is rather easy to
identify the node’s neighborhood with the range of the wireless
link (e.g. all the nodes within 10m, for a Bluetooth wireless link),
in a wired scenario like the Internet is less trivial. We imagine
however that in such a case the term is not related to the real
reachability of a node, but rather on its addressability (a node can
communicate directly with another only if it knows other node’s
IP address). This means that at the very bottom of the TOTA
middleware there is a system to continuously detect neighboring
nodes and to store them in an appropriate list. In a MANET
scenario this system is directly connected to the wireless network
and detects in-range nodes. In a wired scenario, like the Internet,
it can start an expanding-ring search for other TOTA nodes, or it
can simply query a central repository (e.g. a known web-site) and
download a list of TOTA nodes’ IP addresses.
Each TOTA middleware is provided with a local tuple space to
store the tuples that reached that node during their propagation.
Agents can access the local tuple space via Linda-like operations
[GelC92]. Moreover, the TOTA middleware offers a virtual
global, read-only, view of the tuple spaces of one-hop TOTA
neighbors. Looking at this view an agent can see the tuples stored
in its closest neighborhood. This feature is fundamental since the
main TOTA algorithms require the knowledge of tuples present in
at least a one-hop neighborhood (see 3.3 and 5).
As stated in the previous section, each TOTA middleware is in
charge to store, propagate and keep updated the tuples’ structure.
To achieve this task TOTA needs a mean to uniquely identify
tuples in the system in order for example to know whether a
particular tuple has been already propagated in a node or not.
Tuple’s content cannot be used for this purpose, because the
content is likely to change during the propagation process. To this
end, each tuple will be marked with an id (invisible at the
application level) that will be used by TOTA during tuples’
propagation and update to trace the tuple. Tuples’ id is generated
by combining a unique number relative to each node (e.g., the
MAC address) together with a progressive counter for all the
tuples injected by the node.
With regard to the tuples’ propagation rule, in order to give full
flexibility to the model, the propagation rule can be an arbitrary
piece of code. Upon the receipt of a tuple, the middleware invoke
its propagation method in a call-back fashion. In its propagation
algorithm the tuple has full access over the TOTA API, thus it can
take decisions on the basis of the already stored tuples or on the
basis of the network local topology. Most importantly a tuple can
subscribe to events, in the same way as agents installed upon the
TOTA middleware. This is extremely important, because it allow
a tuple to remain live and able to react to changes in its
environment. This fact will be at the core of the tuples’
maintenance operations described in 3.3.
From the architecture point of view, the TOTA middleware is
constituted by four main parts (see Figure 5): (i) the TOTA API, is
the main interface between the application and the middleware. It

provides functionalities to let the application to inject new tuples
in the system, to access the local tuple space, or to place
subscriptions in the event interface. (ii) The EVENT
INTERFACE is the component in charge of asynchronously
notifying the application about subscribed events, like the income
of a new tuple or about the fact a new node has been
connected/disconnected to the node’s neighborhood. (iii) The
TOTA ENGINE is the core of TOTA: it is in charge of
maintaining the TOTA network by storing the references to
neighboring nodes and to manage tuples’ propagation by opening
communication sockets to send and receive tuples. This
component is in charge of sending tuples injected from the
application level, and to apply the propagation rule of received
tuples and to re-propagate them accordingly. Finally this
component monitors network reconfiguration and the income of
new tuples and updates and re-propagates already stored tuples to
maintain tuples’ structure coherency. (iv) The VIRTUAL TUPLE
SPACE is the component offering a virtual global view of the
tuple spaces of one-hop TOTA neighbors.

VIRTUAL TUPLE
SPACE

EVENT INTERFACE

Application Agents

TOTA ENGINE

TOTA API

Operating System

Network

LOCAL
TUPLE

NEIGHBOR
TOTA

MIDDLEWARE

Figure 5: TOTA Middleware

3.2 Implementation
From an implementation point of view, we developed a first
prototype of TOTA running on laptops and on Compaq IPAQs
equipped with 802.11b and Personal Java. IPAQ connects locally
in the MANET mode (i.e. without requiring access points)
creating the skeleton of the TOTA network. Tuples are being
propagated through multicast sockets to all the nodes in the one-
hop neighbor. The use of multicast sockets has been chosen to
improve the communication speed by avoiding 802.11b unicast
handshake. By considering the way in which tuples are
propagated, TOTA is very well suited for this kind of broadcast
communication. We think that this is a very important feature,
because it will allow, in the future, implementing TOTA also on
really simple devices (e.g. micro sensors) that cannot be provided
with sophisticate communication mechanisms [Loo01]. Other
than this communication mechanism, at the core of the TOTA
middleware there is a simple event-based engine. This component
is able to collect subscriptions of interesting events and to invoke
reactions on the subscribed agents, in a call-back fashion.

 5

Actually we own only a dozen of IPAQs and laptops on which to
run the system. Since the effective testing of TOTA would require
a larger number of devices, we have implemented an emulator to
analyze TOTA behavior in presence of hundreds of nodes. The
emulator, developed in Java, enables examining TOTA behavior
in a MANET scenario, in which nodes topology can be rearranged
dynamically either by a drag and drop user interface or by
autonomous nodes’ movements. The strength of our emulator is
that, by adopting well-defined interfaces between the emulator
and the application layers, the same code “installed” on the
emulated devices can be installed on Personal Java real devices
(e.g. Compaq IPAQs) enabled with wireless connectivity. This
allow to test application first in the emulator, then to transfer them
directly in a network of real devices. In order to rend the emulated
scenario as close as possible to the real scenario, devices’ battery
consumption and wireless network glitches have been emulated as
well. The snap-shots of Figure 2, 3, and 4 are actually rendered
via the implemented emulator.

3.3 Tuples Propagation and Maintenance
As stated above, the main functionality offered by TOTA is the
mechanism to propagate distributed tuples and to maintain their
intended shape despite changes in network topology.
While tuple propagation is simple, since it basically consists in an
epidemic communication schema, in which tuples are propagated
hop-by-hop, following a breadth-first pattern, tuples maintenance
is much more complex. Maintenance operations are mainly
required upon a change in the network topology, to have the
distributed tuples reflect the new network structure. This means
that maintenance operations are possibly triggered whenever, due
to nodes’ mobility or failures, new links in the network are created
of removed. Because of scalability issues, it is fundamental that
the tuples’ maintenance operations are confined to an area
neighboring the place in which the network topology had actually
changed. This means that, if for example, a device in a MANET
breaks down (causing a change in the network topology) only
neighboring devices should change their tuples’ values. The size
of this neighborhood is not fixed and cannot be predicted a-priori,
since it depends on the network topology.

A B

1 4 5 6 7 2 3

3

1 4 5 6 7 2
3

4

C D GF E

A HG F

D

C

E B

Figure 6: The size of the update neighborhood depends on the
network topology. Here is an example with a tuple
incrementing its integer content by one, at every hop, as it is
propagated far away from its source (top) the specific
topology force update operations on the whole network
(bottom) if alternative paths can be found, updates can be
much more localized.

For example, if the source of a tuple gets disconnected from the
rest of the network, the updates must inevitably involve all the
other peers in the network (that must erase that tuple form their
repositories, see figure 6-top). However, especially for dense
networks, this is unlikely to happen, and usually there will be
alternative paths keeping up the tuple shape (see figure 6-bottom).
How can we perform such localized maintenance operations in a
fully distributed way? To fix ideas, let us consider the case of a
tuple incrementing its integer content by one, at every hop, as it is
propagated far away from its source.
Given a local instance of such a tuple X, we will call Y a X’s
supporting tuple if: Y belongs to the same distributed tuple as X, Y
is one-hop distant from X, Y value is equal to X value minus
1.With such a definition, a X’s supporting tuple is a tuple that
could have created X during its propagation.
Moreover, we will say that X is in a safe-state if it has a
supporting tuple, or if it is the source of the distributed tuple. We
will say that a tuple is not in a safe-state if the above condition
does not apply.
Each local tuple can subscribe to the income or the removal of
other tuples belonging to its same type in its one-hop virtual tuple
space. This means, for example, that the tuple depicted in figure
6-bottom, installed on node F and having value 5 will be
subscribed to the removal of tuples in its neighborhood (i.e. nodes
E and G).
Upon a removal, each tuple reacts by checking if it is still in a
safe-state. In the case a tuple is in a safe-state, the tuple the
removal has not any effect - see later -. In the case a tuple is not
in a safe state, it erases itself from the local tuple space. This
eventually cause a cascading tuples’ deletion until a safe-state
tuple can be found, or the source is eventually reached, or all the
tuples in that connected sub-network are deleted (as in the case of
figure 6-top).
When a safe-state tuple observe a deletion in its neighborhood it
can fill that gap, and reacts by propagating to that node. This is
what happens in figure 6-bottom, safe-state tuple installed on
mode C and having value 3 propagates a tuple with value 4 to the
hole left by tuple deletion (node D). It is worth noting that this
mechanism is the same enforced when a new peer is connected to
the network.
Similar considerations applies with regard to tuples’ insertion:
when a tuple sense the arrival of a tuple having value lower than
its supporting tuple, it means that, because of nodes’ mobility, a
short-cut leading quicker to the source happened. Also in this case
the tuple must update its value to take into account the new
network topology.
How many information must be sent to maintain a the shape of a
distributed tuple? What is the impact of a local change in the
network topology in real scenarios? To answer these questions we
exploited the implemented TOTA emulator, being able to derive
results depicted in figure 7.
The graph shows the results of three experiments, conducted on
different networks. We considered networks having an average
density (i.e. average number of nodes directly connected to an
other node) of 4, 6 and 8. In each network, a tuple, incrementing
its content at every hop, had been propagated. Nodes in the
network move randomly, continuously changing the network

 6

topology. The number of messages sent between peers to keep the
tuple shape coherent had been counted. Messages exchanged by
peers one-hop away form the peer that caused the topology
change are added together, and so on for peers two-hop away,
three hop-away, etc. These values are depicted in figure 7.
The most important consideration we can make looking at the
graph, is that, upon a connection, a lot of update operations will
be required near the source of the topology change, while only
few operations will be required far away from it. This implies that,
even if the TOTA network and the tuples being propagated have
no artificial boundaries, the operations to keep their shape
consistent are strictly confined within a locality scope. This fact
supports the feasibility of the TOTA approach in terms of its
scalability. In fact, this means that, even in a large network with a
lot of nodes and tuples, we do not have to continuously flood the
whole network with updates, eventually generated by changes in
distant areas of the network. Updates are confined within a
locality scope from where they took place.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9
hops from topology change

m

es
sa

ge
s

se
nt

AVERAGE DENSITY ~4

AVERAGE DENSITY ~6

AVERAGE DENSITY ~8

Figure 7: Experimental results: locality scopes in tuple’s
maintenance operations emerge in a network without
predefined boundaries.

4. APPLICATION EXAMPLES
In this section, to prove the generality of our approach, we will
show how to exploit TOTA to solve several problems typical of
dynamic network scenarios, by simply implementing different
tuples’ propagation rules.

4.1 Motion Coordination
To show the capability of achieving globally coordinated
behaviors with TOTA, we focus on a specific instance of the
general problem of motion coordination. Motion coordination has
been widely studied in several research areas: robotics,
simulations, pervasive computing, multi agent systems, etc.
Among the others, a particularly interesting and successful
approach is the one that exploit the idea of potential fields to
direct the movement of the involved entities [SheS02,
MamLZ02]. As a first example, we will consider the problem of
letting a group of mobile components (e.g., users with a PDA or
robots) move maintaining a specified distance from each other. To
this end, we can take inspiration from the mechanism used by

birds to flock [BonDT99]: flocks of birds stay together,
coordinate turns, and avoid each other, by following a very simple
swarm algorithm. Their coordinated behavior can be explained by
assuming that each bird tries to maintain a specified separation
from the nearest birds and to match nearby birds’ velocity. To
implement such a coordinated behavior in TOTA, each
component can generate a tuple T=(C,P) with following
characteristics:

C= (FLOCK, nodeName,val)
P= (“val” is initialized at 2, propagate to all the nodes

decreasing by one in the first two hops, then increasing
“val” by one for all the further hops)

Thus creating a distributed data structure in which the val field
assumes the minimal value at specific distance from the source
(e.g., 2 hops). This distance expresses the intended spatial
separation between components in the flock. To coordinate
movements, components have simply to locally perceive the
generated tuples, and to follow downhill the gradient of the val
fields. The result is a globally coordinated movement in which
components maintain an almost regular grid formation by
clustering in each other val fields’ minima.
To test the above coordination mechanism we used the emulator:
the snap-shots of Figure 8 shows a MANET scenario in which a
group of four components (in black) proceeds in a flock,
maintaining a one hop distance. The other nodes in the network
remain still and just store and forward flocking tuples.
Another interesting example of motion coordination, regard the
problem of letting mobile users to meet somewhere. Here we can
imagine that each member of the meeting group injects a tuple
with the following characteristics:

C= (MEET, nodeName, val)
P= (“val” is initialized at 0, propagate to all the nodes

increasing “val” by one for all the further hops)

By relying on this tuple, we can realize different meeting policies:

1. The group of users wants to meet in the point where
member x is located. This is the simplest case and
each user can move by following downhill the tuple
having in its content x as nodeName. It is interesting
to notice that this approach works even if person x
moves after the meeting has been scheduled. The
meeting will be automatically rescheduled in the new
minimum of x’s tuple.

2. The group of users wants to meet in the point that is
between them (their “barycenter”). To this purpose
each user i can follow downhill a linear combination
of all the other MEET tuples. In this way all the
users “fall” towards each other, and they meet in the
point that is in the middle. It is interesting to notice,
that this “middle point” is evaluated dynamically and
the process takes into consideration the crowd or
unexpected situations. So if some users encounter a
crowd in their path, the meeting point is
automatically changed to one closer to these unlucky
users.

 7

Figure 8. Flocking in the TOTA Emulator. Cubes are the
nodes of a mobile ad-hoc network, with arcs connecting nodes
in range with each other. Black cubes are involved in flocking,
moving by preserving a 2 hop distance from each other.

4.2 Modular Robot Control
Another interesting application scenario, is in the control of a
modular robot [YimZD02]: a collection of simple autonomous
actuators with few degrees of freedom connected with each other.
A distributed control algorithm is executed by all the actuators
that coordinate to let the robot assume a global coherent shape or
a global coherent motion pattern (i.e. gait). Currently proposed
approaches [SheS02] adopts the biologically inspired idea of
hormones to control such a robot. Hormone signals are similar to
content based messages, but have also the following unique
properties: they propagate through the network without specific
destinations, their content can be modified during propagation and
they may trigger different actions for different receivers. The
analogies between hormones and TOTA tuples are evident and, in
fact, we were able to easily implement a similar control algorithm
on top of TOTA. The algorithm has been tested on the 3D
modular robot simulator available at [Polybot]. Following the
approach proposed in [SheS02], we will consider the
implementation of a caterpillar gait on a chain-typed modular
robot, composed by actuators having a single motorized degree of
freedom (see figure 10). Each robot node (i.e. actuator) will be
provided with a TOTA middleware, and with an agent driving its
motor. In particular the head agent, the tail agent and the body
agents will drive the head module, the tail module and the body
modules respectively.
The head agent starts the movement by injecting a caterpillar-
tuple. The tail agent injects the gait-tuple, upon the receipt of a
new caterpillar-tuple.
The gait-tuple is simply a tuple notifying that the gait has been
completed, it simply propagates from the tail to the head (i.e. it
has a broadcast propagation rule) without storing.
The caterpillar-tuple has the following structure:

C = (state, angle)
P = (propagate hop-by-hop, storing on intermediate nodes

changing the content accordingly to the table in figure 9.
If on the head node and upon the receipt of a gait-tuple,

re-apply propagation)
Each agent, upon the receipt of the caterpillar tuple, will drive the
motor of its actuator to the angle in the content of the tuple. The
coordination induced by the tuple leads the robot to the caterpillar
gait as described in figure 10.

Current state New state New angle

At the beginning A +45 deg
A B +45 deg

B C -45 deg

C D -45 deg
D A +45 deg

Figure 9. Caterpillar tuple, propagation rule.

Figure 10. Caterpillar gait, in a chain-typed modular robot,
composed of four actuators.

4.3 Ant-Based Routing on Mobile ad Hoc
Networks
Routing protocols in wireless ad-hoc networks, inspired to the
way in which ants collect food, have recently attracted the
attention of the research community [BonDT99, Poo00].
Following this inspiration, the routing protocols build a sort of
routing overlay structure (similar to ants’ pheromone trials) by
flooding the network and then exploit this overlaid structure for a
much finer routing. We will show in this section how the basic
mechanism of creating a routing overlay structure and the
associated routing mechanism (similar to the ones already
proposed in the area) can be effectively done within the TOTA
model. The basic idea of the routing algorithm we will try to
implement is the following [Poo00]: when a node X wants to send
a message to a node Y it injects a tuple representing the message
to be sent, and a tuple used to create an overlay routing structure,
for further use.
The tuple used to create the overlay structure can be described as
follows:

C=(“structure”, nodeName, hopCount)
P=(propagate to all the nodes, increasing hopCount by one at

every hop)
The tuple used to convey the message will be:

Head, +45°

Tail -45°
-45°

+45°

Moving Direction

 8

C=(“message”, sender,receiver,message)
P=(if a structure tuple having my same receiver can be found

follow downhill its hopCount, otherwise propagate to all
the nodes)

This routing algorithm is very simple: structure tuples create an
overlay structure so that a message tuple following downhill a
structure tuple’s hopCount can reach the node that created that
particular structure. In all situations in which such information is
absent, the routing simply reduces to flooding the network.
Although its simplicity, this model captures the basic underling
model of several different MANET routing protocols [Bro98].
The basic mechanism described in this section (tuples defining a
structure to be exploited by other tuples’ propagation) is
fundamental in the TOTA approach and provides a great
flexibility. For example it allows TOTA to realize systems such as
CAN [Rat01] and Pastry [RowD01], to provide content-based
routing in the Internet peer-to-peer scenario. In these models,
peers forming an unstructured and dynamic community need to
exchange data and messages not on the basis of the IP addressing
scheme, but rather on the basis of the content of messages (e.g., “I
need the mp3 of Hey Jude, no matter who can provide it to me”).
To this end, these systems propose a communication mechanism
based on a publish-subscribe model and rely on a properly built
overlay space. A peer publishes information by sending them to a
particular point of the overlaid space, while another read such
information by looking for it in the same point of space (typically
the process involves a hash function shared between all the peers,
that maps keywords, associated to the information content, to
points in space). TOTA can realize such systems by using a first
layer of tuples defining the overlay space and then other tuples
whose propagation rules let the tuples propagate efficiently in the
overlaid space.

5. RELATED WORK
Several proposals in the last years are challenging the traditional
ideas and methodologies of software engineering and inspired to
physical, biological models are entering in the distributed
application and multi agent system research frameworks.
An area in which the problem of achieving context-awareness and
adaptive coordination has been effectively addressed (and that,
consequently, has partially influenced our proposal) is amorphous
and paintable computing [But02, Nag03]. The particles
constituting an amorphous computer have the basic capabilities of
propagating sorts of computational fields in the network, and to
sense and react to such fields. In particular, particles can transfer
an activity state towards directions described by fields’ gradients,
so as to make coordinated patterns of activities (to be used for,
e.g. self-assembly) emerge in the system independently of the
specific structure of the network (which is, by definition,
amorphous). Similarly with TOTA, such an approach enables, via
the single abstraction of fields, to both diffuse contextual
information and to organize adaptive global coordination patterns.
The main difference between TOTA and this approach is the
application domain: TOTA is not only addressed to amorphous
networks of nano- or micro-devices, but it aims also to address
networks of mobile devices like cellular phones, PDA and
laptops. Moreover, because of this difference, one of the TOTA
main concerns, that is totally neglected in amorphous computer, is
the need to constantly manage distributed tuples’ values so as to
maintain their intended shape despite network reconfigurations.

Anthill [BabM02] is a framework built to support design and
development of adaptive peer-to-peer applications, that exploits
an analogy with biological adaptive systems [BonDT99,
ParBS02]. Anthill consists of a dynamic network of peer nodes,
each one provided with a local tuple space (“nest”), in which
distributed mobile components (“ants”) can travel and can
indirectly interact and cooperate with each other by leaving and
retrieving tuples in the distributed tuple spaces. The key objective
of anthill is to build robust and adaptive networks of peer-to-peer
services (e.g., file sharing) by exploiting the capabilities of ants to
re-shape their activity patterns accordingly to the changes in the
network structure. Although we definitely find the idea interesting
and promising, a more general flexible approach would be needed
to support – other than adaptive resource sharing – adaptive
coordination in distributed applications.
The popular videogame “The Sims” [Sims] exploits sorts of
computational fields, called "happiness landscapes" and spread in
the virtual city in which characters live, to drive the movements of
non-player characters. In particular, non-player characters
autonomously move in the virtual Sims city with the goal of
increasing their happiness by climbing the gradients of specific
computational fields. For instance, if a character is hungry, it
perceives and follows a happiness landscape whose peaks
correspond to places where food can be found, i.e., a fridge. After
having eaten, a new landscape will be followed by the character
depending on its needs. Although sharing the same inspiration,
“Sims’ happiness fields” are static and generated only by the
environment. In TOTA, instead, tuples are dynamic and can
change over time, and agents themselves are able to inject tuples
to promote a stronger self-organization perspective.
The MMASS formal model for multi-agent coordination,
described in [BanMS02], represents the environment as a multi-
layered graph in which agents can spread abstract fields
representing different kinds of stimuli through the nodes of this
graph. The agents’ behavior is then influenced by the stimuli they
perceive in their location. In fact agents can associate reactions to
these stimuli, like in an event-based model, with the add-on of the
location-dependency that is associated to events and reactions.
The main difference between MMASS and TOTA the application
domain: MMASS is mainly devoted to simulation of artificial
societies and social phenomena, thus its main implementation is
based on cellular automata, TOTA is mainly interested in
distributed (pervasive) computing and, accordingly, its
implementation is based on real devices forming wireless
networks.
The L2imbo model, proposed in [Dav98], is based on the notion
of distributed tuple spaces augmented with processes (Bridging
Agents) in charge of moving tuples form one space to another.
Bridging agent can also change the content of the tuple being
moved for example to provide format conversion between tuple
spaces. The main differences between L2imbo and TOTA are that
in L2imbo, tuples are conceived as “separate” entities and their
propagation is mainly performed to let them being accessible from
multiple tuple spaces. In TOTA, tuples form distributed data
structure and their “meaning” is in the whole data structure rather
than in a single tuple. Because of this conceptual difference,
tuples’ propagation is defined for every single tuple in TOTA,
while is defined for the whole tuple space in L2imbo.

 9

6. CONCLUSIONS AND FUTURE WORKS
Tuples On The Air (TOTA) promotes programming distributed
applications by relying on distributed data structures, spread over
a network as sorts of electromagnetic fields, and to be used by
application agents both to extract contextual information and to
coordinate with each other in an effective way. As we have tried
to show in this paper, TOTA tuples support coordination and self-
organization, by providing a mechanism to both enable agents
interactions and to represent contextual information in a very
effective way.
Despite the fact there are a lot of examples we had been able to
realize with TOTA, we still do not have a general engineering
methodology or primitive tuples’ types on which to build and
generalize other kind of applications. However this is not our
specific limit, but it is a current general limitation: a general
methodology for dealing with bottom up approaches (like the one
promoted by TOTA) is still unknown. However, we think that
such methodology could be found in the future and for sure, our
final goal would be to develop a complete engineering procedure
for this kind of model. In pursuing this goal, deployment of
applications will definitely help identifying current shortcomings
and directions of improvement. In particular our future work will
be based on applying the TOTA model, in the development of
new applications for sensor networks with a particular interest in
those algorithms exploiting ideas taken from manifold geometry
[ZamM02]. From a more pragmatic perspective, several issues are
still to be solved for our first prototype implementation to
definitely fulfill its promises. First, we must compulsory integrate
proper access control model to rule accesses to distributed tuples
and their updates. Second, much more performance evaluations
are needed to test the limits of usability and the scalability of
TOTA by quantifying the TOTA delays in updating the tuples’
distributed structures in response to dynamic changes.

7. REFERENCES
[Abe00] H. Abelson, D. Allen, D. Coore, C. Hanson, G.

Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman
and R. Weiss, “Amorphous Computing”,
Communications of the ACM, 43(5), May 2000.

[BabM02] O. Babaoglu, H. Meling, A. Montresor, “Anthill: A
Framework for the Development of Agent-Based
Peer-to-Peer Systems”, in Proceedings of the 22th
International Conference on Distributed Computing
Systems (ICDCS '02), Vienna, Austria, July 2002.

[BanMS02] S. Bandini, S. Manzoni, C. Simone, “Space
Abstractions for Situated Multiagent Systems”, 1st
International Joint Conference on Autonomous Agents
and Multiagent Systems, Bologna (I), ACM Press,
pp. 1183-1190, July 2002.

[Bar97] Y. Bar-Yam. Dynamics of Complex systems.
Addison-Wesley, 1997.

[Bar02] L. Barabasi, “Linked”, Perseus Press, 2002.
[BelPR01] F. Bellifemine, A. Poggi, G. Rimassa, “JADE - A

FIPA2000 Compliant Agent Development
Environment”, 5th International Conference on
Autonomous Agents (Agents 2001), pp. 216-217,
Montreal, Canada, May 2001.

[BonDT99] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm
Intelligence”, Oxford University Press, 1999.

[Bro98] J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, “A
Perfomance Comparison of Multi-Hop Wireless Ad
Hoc Network Routing Protocols”, ACM/IEEE
Conference on Mobile Computing and Networking,
Dallas (TX), Oct. 1998.

[But02] W. Butera, “Programming a Paintable Computer”,
PhD Thesis, MIT Media Lab, Feb. 2002.

[CabLZ02] G. Cabri, L. Leonardi, F. Zambonelli, “Engineering
Mobile Agent Applications via Context-Dependent
Coordination”, IEEE Transactions on Software
Engineering, 28(11):1040:1058, Nov. 2002.

[Dav98] N. Davies, et al, “L2imbo: A distributed systems
platform for mobile computing”, ACM Mobile
Networks and Applications, 3(2):143-156, Aug.,
1998.

[GelC92] D. Gelernter, N.Carriero "Coordination Languages
and Their Significance", Communication of the ACM,
35(2):96-107, Feb. 1992.

[KepC03] J. Kephart, D. M. Chess, "The Vision of Autonomic
Computing", IEEE Computer, 36(1):41-50, Jan. 2003.

[Loo01] D. Loomis, “The TINI Specification and Developer's
Guide”, http://www.ibutton.com/TINI/book.html

[MamLZ02] M. Mamei, L. Leonardi, M. Mahan, F. Zambonelli,
“Coordinating Mobility in a Ubiquitous Computing
Scenario with Co-Fields”, Workshop on Ubiquitous
Agents on Embedded, Wearable, and Mobile Devices,
AAMAS 2002, Bologna, Italy, July 2002.

[Nag03] R. Nagpal, A. Kondacs, C. Chang, “Programming
Methodology for Biologically-Inspired Self-
Assembling Systems”, in the AAAI Spring
Symposium on Computational Synthesis: From Basic
Building Blocks to High Level Functionality, March
2003

[ParBS02] V. Parunak, S. Bruekner, J. Sauter, "ERIM’s
Approach to Fine-Grained Agents", NASA/JPL
Workshop on Radical Agent Concepts, Greenbelt
(MD), Jan. 2002.

[PicMR01] G. P. Picco, A. L. Murphy, G. C. Roman, “LIME: a
Middleware for Logical and Physical Mobility”, In
Proceedings of the 21st International Conference on
Distributed Computing Systems, IEEE CS Press, July
2001.

[Polybot] http://www2.parc.com/spl/projects/modrobots/
 simulations/index.html
[Poo00] R. Poor, “Gradient Routing in Ad Hoc Networks”,

http://www.media.mit.edu/pia/Research/ESP/texts/poo
rieeepaper.pdf.

[Rat01] S. Ratsanamy,, P. Francis, M. Handley, R. Karp, "A
Scalable Content-Addressable Network", ACM
SIGCOMM Conference 2001, San Diego (CA), ACM
Press, Aug. 2001.

[RomJH02] G.C. Roman, C. Julien, Q. Huang, “Network
Abstractions for Context-Aware Mobile Computing”,
24th International Conference on Software
Engineering, Orlando (FL), ACM Press, May 2002.

 10

[RowD01] A. Rowstron, P. Druschel, “Pastry: Scalable,
Decentralized Object Location and Routing for Large-
Scale Peer-to-Peer Systems”, 18th IFIP/ACM
Conference on Distributed Systems Platforms,
Heidelberg (D), Nov. 2001.

[SerD02] D. Servat, A. Drogoul, “Combining amorphous
computing and reactive agent-based systems: a
paradigm for pervasive intelligence?”, AAMAS,
Bologna (I), July, 2002.

[SerR02] G. Di Marzo Serugendo, A. Romanovsky, “Designing
Fault-Tolerant Mobile Systems”, Proceedings of the
International Workshop on scientific engineering of
Distributed Java applications (FIDJI'02), Keynote
Paper, volume 2604, LNCS, pp. 185-201, Springer-
Verlag, 2002

[SheS02] W. Shen, B. Salemi, P. Will, “Hormone-Inspired
Adaptive Communication and Distributed Control for
CONRO Self-Reconfigurable Robots”, IEEE
Transactions on Robotics and Automation 18(5):1-12,
Oct. 2002.

[Sims] http://thesims.ea.com
[YimZD02]M. Yim, Y. Zhang, D. Duff, “Modular Robots”, IEEE

Spectrum Magazine, February 2002.
[ZamM02] F. Zambonelli, M. Mamei, “The Cloak of Invisibility:

Challenges and Applications”, IEEE Pervasive
Computing, 1(4):62-70, Oct.-Dec. 2002.

[ZamP02] F. Zambonelli, V. Parunak, “From Design to
Intention: Signs of a Revolution”, 1st Intl. ACM
Conference on Autonomous Agents and Multiagent
Systems”, Bologna (I), July 2002.

