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ABSTRACT 
Self-organization is built upon two main building blocks: adaptive 
and uncoupled interaction mechanisms and context-awareness. 
Here we show how the middleware TOTA (Tuples On The Air) 
supports self-organization by providing effective abstractions for 
the above two building-blocks. TOTA relies on spatially 
distributed tuples for both supporting adaptive and uncoupled 
interactions between agents, and context-awareness. Agents can 
inject these tuples in the network, to make available some kind of 
contextual information and to interact with other agents. Tuples 
are propagated by the middleware, on the basis of application 
specific patterns, defining sorts of “computational fields”, and 
their intended shape is maintained despite network dynamics, 
such as topological reconfigurations. Agents can locally “sense” 
these fields and can rely on them for both acquiring contextual 
information and carrying on distributed self-organizing 
coordination activities. Several application examples in different 
scenarios show the effectiveness of our approach. 
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1. INTRODUCTION 
IT scenarios, at all levels, are witnessing a radical change: from 
systems constituted by components  fixedly and strictly coupled at 
design time, to systems based on autonomous, uncoupled and 
transiently interacting components [ZamP02].  
In computer science, application have always been built by 
adopting programming paradigms rooted on strictly coupled, not-
autonomous components. Following this approach, components 
are coupled at design time by fixed interaction patterns. Although 
simple, this approach turned out to be really brittle and fragile, not 
being able to cope with reconfiguration and faults. Only in recent 
years, the research on software agents has fostered new 
programming paradigms based on autonomous components (i.e.  
components with a separated thread of execution and control) 
interacting to realize an application [BelPR01, CabLZ02, 
PicMR01].  
This shift of paradigm is well motivated by the robustness, 
scalability and flexibility of these systems: if a component breaks 
down, the others can re-organize their interaction patterns to 
account for such a failure, if new components are added to the 
system, they can discover who is around and start to interact with 
them. The key element leading to such robust, scalable and 
flexible behaviors is self-organization. Autonomous components 
must be able to self-organize their activities’ patterns to achieve 
goals, that possibly exceed their capabilities as singles, despite - 

and possibly taking advantage - of environment dynamics and 
unexpected situations [ParBS02, SerR02, ZamM02]. Nature, for 
example, “adopts” these ideas at all scales (e.g. in social insects 
like ants, and in cells like in the immune system) [Bar97, Bar02, 
BonDT99].  
The first signs of these concepts can be found in modern 
distributed computing where the inherent dynamism of networks 
(e.g. delays and links unavailability) forces distributed 
applications’ components to autonomously adapt and self-
organize their behavior to such dynamism. On the one hand, 
Internet applications, traditionally built following a client-server 
approach, are gradually replaced by their peer-to-peer  (P2P) 
counterpart. By investing on peers autonomy, P2P applications 
can self-organize their activities to achieve unprecedented levels 
of robustness and flexibility (e.g.  peers can dynamically discover 
communication partners and autonomously engage, also third-
party, interaction patterns). On the other hand, components’ 
autonomy and self-organization is at the basis of ubiquitous and 
pervasive computing, where intrinsic mobile components are 
connected in wireless, amorphous networks. In such a dynamic 
scenario, in fact, agents have to constantly rearrange and self-
organize their activities to take in account the ever changing 
environment.  
Unfortunately, we still do not know how to program and manage 
these kind of autonomous self-organizing systems. The main 
conceptual difficulty is that we have direct engineered control 
only on agents’ local activities, while the application task is often 
expressed at the global scale [Bar02, BonDT99]. Bridging the gap 
between local and global activities is not nearly easy, but it is 
although possible: distributed algorithms for autonomous sensor 
networks have been proposed and successfully verified, routing 
protocols is MANET (in which devices coordinate to let packets 
flow from sources to destinations) have been already widely used. 
The problem is still that the above successful approaches are ad-
hoc to a specific application domain and it is very difficult to 
generalize them to other scenarios. There is a great need for 
general, widely applicable engineering methodologies, 
middleware and APIs to embed, support  and control self-
organization in multiagent systems [Abe00, SerD02, KepC03, 
ZamP02]. From our point of view, self-organization is a sort of 
distributed coordination and its main building blocks are those 
constituting the core of agents’ autonomy: (i) adaptive and 
uncoupled interaction mechanisms and (ii) context-awareness. 
With regard to the first point, environment dynamism and 
transiently connected components call for flexible, adaptive and  
uncoupled interactions. Moreover, by its own nature, coordination 
requires context-awareness. In fact, an agent can coordinate with 
other agents only if it is somehow aware of “what is around”, i.e., 
its context. However, when agents are embedded in a possibly 
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unknown, open and dynamic environment (as it is in the case of 
most pervasive computing scenarios), they can hardly be provided 
with enough a priori up-to-date contextual knowledge. Starting 
from these considerations, it is fundamental to provide agents with 
simple, easy to be obtained, and effective contextual information, 
supporting and facilitating their coordination activities in a robust 
and adaptive way. 
The contribution of this paper is to show how the abstractions 
promoted by a novel middleware infrastructure called TOTA 
(“Tuples On The Air”), suit the need of self-organization. 
Coherently with the above considerations, the key objective of 
TOTA is to define a single abstraction both to: (i) promote 
uncoupled and adaptive interactions; and (ii) provide agents with 
simple, yet expressive, contextual information to actively support 
adaptivity, by discharging application components from the duty 
of dealing with network and application dynamics. To this end, 
TOTA relies on spatially distributed tuples, to be injected in the 
network and propagated accordingly to application-specific 
patterns. On the one hand, tuple propagation patterns are 
dynamically re-shaped by the TOTA middleware to implicitly 
reflect network and applications dynamics, as well as to reflect the 
evolution of coordination activities. On the other hand, 
application agents have simply to locally “sense” tuples to acquire 
contextual information, to exchange information with each other, 
and to implicitly and adaptively orchestrate their coordination 
activities. To take a metaphor, we can imagine that TOTA 
propagates tuples in the same way as the laws of nature provides 
propagating fields in the physical space: although particles do not 
directly with each other and can only locally perceive such fields, 
they exhibit globally orchestrated and adaptive motion patterns.  
The following of this paper is organized as follows. Section 2 
overviews the TOTA approach. Section 3 details the architecture 
of the TOTA middleware, its main underlying algorithm and its 
implementation. Section 4 describes some application examples, 
showing how can TOTA be effectively applied to different 
scenarios. Section 5 discusses related works. Section 6 concludes 
and outlines future works.  

2. TUPLES ON THE AIR: OVERVIEW 
The driving objective of our approach is to address together the 
two requirements introduced at the beginning of the previous 
section (uncoupled and adaptive interactions and context-
awareness), by exploiting a unified and flexible mechanism to 
deal with both context representation and agents’ interactions, and 
thus also leading to a simpler, and lighter to be supported, 
applications. 
In TOTA, we propose relying on distributed tuples for both 
representing contextual information and enabling uncoupled 
interaction among distributed application agents. Unlike 
traditional shared data space models, tuples are not associated to a 
specific node (or to a specific data space) of the network. Instead, 
tuples are injected in the network and can autonomously 
propagate and diffuse in the network accordingly to a specified 
pattern (see Figure 1). Thus, TOTA tuples form a sort of spatially 
distributed data structure able to express not only messages to be 
transmitted between application components but, more generally, 
some contextual information on the distributed environment. 
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Figure 1: The General Scenario of TOTA: application 
components live in an environment in which they can inject 
tuples that autonomously propagate and sense tuples present 
in their local neighborhood. The environment is realized by 
means of a peer-to-peer network in which tuples propagates by 
means of a multi-hop mechanism. 

To support this idea, TOTA is composed by a peer-to-peer 
network of possibly mobile nodes, each running a local version of 
the TOTA middleware. Each TOTA node holds references to a 
limited set of neighboring nodes. The structure of the network, as 
determined by the neighborhood relations, is automatically 
maintained and updated by the nodes to support dynamic changes, 
whether due to nodes’ mobility or to nodes’ failures. The specific 
nature of the network scenario determines how each node can 
found its neighbors: e.g., in a MANET scenario, TOTA nodes are 
found within the range of their wireless connection; in the Internet 
they can be found via an expanding ring search (the same used in 
most Internet peer-to-peer systems [Rat01]). 
Upon the distributed space identified by the dynamic network of 
TOTA nodes, each component is capable of locally storing tuples 
and letting them diffuse through the network. Tuples are injected 
in the system from a particular node, and spread hop-by-hop 
accordingly to their propagation rule, eventually leaving copies of 
itself at every propagation step. In fact, a TOTA tuple is defined 
in terms of a “content”, and a “propagation rule”.  

T=(C,P) 
The content C is an ordered set of typed fields representing the 
information carried on by the tuple. The propagation rule P 
determines how the tuple should be distributed and propagated in 
the network. This includes determining the "scope" of the tuple 
(i.e. the distance at which such tuple should be propagated and 
possibly the spatial direction of propagation) and how such 
propagation can be affected by the presence or the absence of 
other tuples in the system. In addition, the propagation rules can 
determine how tuple’s content should change while it is 
propagated. Tuples are not necessarily distributed replicas: by 
assuming different values in different nodes, tuples can be 
effectively used to build a distributed overlay data structures 
expressing some kind of contextual and spatial information. On a 
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different perspective, we can say that TOTA enrich a network 
with a notion of space. A tuple incrementing one of its fields as it 
gets propagated identifies a sort of “structure of space” defining 
the network distances from the source. By relying on data 
acquired by proper physical localization devices, like GPS 
systems or beacon-based triangulation, tuples can provide a 
structure of space based on the actual physical location of devices 
and thus enabling a tuple to be propagated, say, at most for 10 
meters from its source. Taking this approach to the extreme, one 
could think at mapping the peers of a TOTA network in any sort 
of virtual overlay space [Rat01], and propagating tuples in such 
virtual space. 
The spatial structures induced by tuples propagation must be 
maintained coherent despite network dynamism. To this end, the 
TOTA middleware supports tuples propagation actively and 
adaptively: by constantly monitoring the network local topology 
and the income of new tuples, the middleware automatically re-
propagates tuples as soon as appropriate conditions occur. For 
instance, when new nodes get in touch with a network, TOTA 
automatically checks the propagation rules of the already stored 
tuples and eventually propagates the tuples to the new nodes. 
Similarly, when the topology changes due to nodes’ movements, 
the distributed tuple structure automatically changes to reflect the 
new topology. For instance, Figures 2, 3, and 4, show how the 
structure of a distributed tuple can be kept coherent by TOTA in a 
MANET scenario, despite dynamic network reconfigurations. 
From the application agents’ point of view, executing and 
interacting basically reduces to inject tuples, perceive local tuples, 
and act accordingly to some application-specific policy. Software 
agents execute on a node, in which the TOTA middleware has 
been installed. They can inject new tuples in the network, defining 
their content and their propagation rule. They have full access to 
the local content of the middleware (i.e., of the local tuple space), 
and can query the local tuple space – via a pattern-matching 
mechanism – to check for the local presence of specific tuples. In 
addition, TOTA provides agents with a virtual global, read-only, 
view of the tuple spaces of one-hop TOTA neighbors. This is 
basically a virtual tuple space consisting in a union of all the 
TOTA tuple spaces in the one-hop neighborhood [PicMR01]. 
Looking at this view an agent can see the tuples stored in its 
closest neighborhood. Finally, agents can be notified of locally 
occurring events (i.e., changes in tuple space content and in the 
structure of the network neighborhood). In TOTA there is not any 
primitive notion of distributed query. Still, it is possible for an 
agent to inject a tuple in the network and have such distributed 
tuple be interpreted as a query at the application-level, by having 
other agents in the network react to the income of such tuple, i.e., 
by injecting a reply tuple propagating towards the enquiring node.  
The overall resulting scenario – making it sharp the analogy with 
the physical world anticipated in the introduction – is that of 
applications whose agents: (i) can influence the TOTA space by 
propagating application-specific tuples; (ii) execute by being 
influenced in both their internal and coordination activities by the 
locally sensed tuples; and (iii) implicitly tune their activities to 
reflect network dynamics, as enabled by the automatic re-shaping 
of tuples’ distributions of the TOTA middleware. 

 

Figure 2: P31 propagates a tuple that increases its value by 
one at every hop. Tuple hop-value is represented by node 
darkness. 

 

Figure 3: P37 and P38 moves closer to the source and their 
tuples automatically change values to maintain the distributed 
tuple coherency. 

 

Figure 4: When the tuple source P31 moves, all tuples are 
updated to take into account the new topology. 
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3. TOTA MIDDLEWARE 
3.1 Tota Architecture 
As introduced in the previous section, a network of possibly 
mobile nodes running each one a TOTA middleware constitutes 
the scenario we consider. Each TOTA node holds references to 
neighboring nodes and it can communicate directly only with 
them. While in an ad-hoc network scenario it is rather easy to 
identify the node’s neighborhood with the range of the wireless 
link (e.g. all the nodes within 10m, for a Bluetooth wireless link), 
in a wired scenario like the Internet is less trivial. We imagine 
however that in such a case the term is not related to the real 
reachability of a node, but rather on its addressability (a node can 
communicate directly with another only if it knows other node’s 
IP address). This means that at the very bottom of the TOTA 
middleware there is a system to continuously detect neighboring 
nodes and to store them in an appropriate list. In a MANET 
scenario this system is directly connected to the wireless network 
and detects in-range nodes. In a wired scenario, like the Internet, 
it can start an expanding-ring search for other TOTA nodes, or it 
can simply query a central repository (e.g. a known web-site) and 
download a list of TOTA nodes’ IP addresses. 
Each TOTA middleware is provided with a local tuple space to 
store the tuples that reached that node during their propagation. 
Agents can access the local tuple space via Linda-like operations 
[GelC92]. Moreover, the TOTA middleware offers a virtual 
global, read-only, view of the tuple spaces of one-hop TOTA 
neighbors. Looking at this view an agent can see the tuples stored 
in its closest neighborhood. This feature is fundamental since the 
main TOTA algorithms require the knowledge of tuples present in 
at least a one-hop neighborhood (see 3.3 and 5). 
As stated in the previous section, each TOTA middleware is in 
charge to store, propagate and keep updated the tuples’ structure. 
To achieve this task TOTA needs a mean to uniquely identify 
tuples in the system in order for example to know whether a 
particular tuple has been already propagated in a node or not. 
Tuple’s content cannot be used for this purpose, because the 
content is likely to change during the propagation process. To this 
end, each tuple will be marked with an id (invisible at the 
application level) that will be used by TOTA during tuples’ 
propagation and update to trace the tuple. Tuples’ id is generated 
by combining a unique number relative to each node (e.g., the 
MAC address) together with a progressive counter for all the 
tuples injected by the node. 
With regard to the tuples’ propagation rule, in order to give full 
flexibility to the model, the propagation rule can be an arbitrary 
piece of code. Upon the receipt of a tuple, the middleware invoke 
its propagation method in a call-back fashion. In its propagation 
algorithm the tuple has full access over the TOTA API, thus it can 
take decisions on the basis of the already stored tuples or on the 
basis of the network local topology. Most importantly a tuple can 
subscribe to events, in the same way as agents installed upon the 
TOTA middleware. This is extremely important, because it allow 
a tuple to remain live and able to react to changes in its 
environment. This fact will be at the core of the tuples’ 
maintenance operations described in 3.3. 
From the architecture point of view, the TOTA middleware is 
constituted by four main parts (see Figure 5): (i) the TOTA API, is 
the main interface between the application and the middleware. It 

provides functionalities to let the application to inject new tuples 
in the system, to access the local tuple space, or to place 
subscriptions in the event interface. (ii) The EVENT 
INTERFACE is the component in charge of asynchronously 
notifying the application about subscribed events, like the income 
of a new tuple or about the fact a new node has been 
connected/disconnected to the node’s neighborhood. (iii) The 
TOTA ENGINE is the core of TOTA: it is in charge of 
maintaining the TOTA network by storing the references to 
neighboring nodes and to manage tuples’ propagation by opening 
communication sockets to send and receive tuples. This 
component is in charge of sending tuples injected from the 
application level, and to apply the propagation rule of received 
tuples and to re-propagate them accordingly. Finally this 
component monitors network reconfiguration and the income of 
new tuples and updates and re-propagates already stored tuples to 
maintain tuples’ structure coherency. (iv) The VIRTUAL TUPLE 
SPACE is the component offering a virtual global view of the 
tuple spaces of one-hop TOTA neighbors. 
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Figure 5: TOTA Middleware 

3.2 Implementation 
From an implementation point of view, we developed a first 
prototype of TOTA running on laptops and on Compaq IPAQs 
equipped with 802.11b and Personal Java. IPAQ connects locally 
in the MANET mode (i.e. without requiring access points) 
creating the skeleton of the TOTA network. Tuples are being 
propagated through multicast sockets to all the nodes in the one-
hop neighbor. The use of multicast sockets has been chosen to  
improve the communication speed by avoiding 802.11b unicast 
handshake. By considering the way in which tuples are 
propagated, TOTA is very well suited for this kind of broadcast 
communication. We think that this is a very important feature, 
because it will allow, in the future, implementing TOTA also on 
really simple devices (e.g. micro sensors) that cannot be provided 
with sophisticate communication mechanisms [Loo01]. Other 
than this communication mechanism, at the core of the TOTA 
middleware there is a simple event-based engine. This component 
is able to collect subscriptions of interesting events and to invoke 
reactions on the subscribed agents, in a call-back fashion. 
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Actually we own only a dozen of IPAQs and laptops on which to 
run the system. Since the effective testing of TOTA would require 
a larger number of devices, we have implemented an emulator to 
analyze TOTA behavior in presence of hundreds of nodes. The 
emulator, developed in Java, enables examining TOTA behavior 
in a MANET scenario, in which nodes topology can be rearranged 
dynamically either by a drag and drop user interface or by 
autonomous nodes’ movements. The strength of our emulator is 
that, by adopting well-defined interfaces between the  emulator 
and the application layers, the same code “installed” on the 
emulated devices can be installed on Personal Java real devices 
(e.g. Compaq IPAQs) enabled with wireless connectivity. This 
allow to test application first in the emulator, then to transfer them 
directly in a network of real devices. In order to rend the emulated 
scenario as close as possible to the real scenario, devices’ battery 
consumption and wireless network glitches have been emulated as 
well. The snap-shots of Figure 2, 3, and 4 are actually rendered 
via the implemented emulator. 

3.3 Tuples Propagation and Maintenance 
As stated above, the main functionality offered by TOTA is the 
mechanism to propagate distributed tuples and to maintain their 
intended shape despite changes in network topology. 
While tuple propagation is simple, since it basically consists in an 
epidemic communication schema, in which tuples are propagated 
hop-by-hop, following a breadth-first pattern, tuples maintenance 
is much more complex. Maintenance operations are mainly 
required upon a change in the network topology, to have the 
distributed tuples reflect the new network structure. This means 
that maintenance operations are possibly triggered whenever, due 
to nodes’ mobility or failures, new links in the network are created 
of removed. Because of scalability issues, it is fundamental that 
the tuples’ maintenance operations are confined to an area 
neighboring the place in which the network topology had actually 
changed. This means that, if for example,  a device in a MANET 
breaks down (causing a change in the network topology) only 
neighboring devices should change their tuples’ values. The size 
of this neighborhood is not fixed and cannot be predicted a-priori, 
since it depends on the network topology.  
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Figure 6: The size of the update neighborhood depends on the 
network topology. Here is an example with a tuple 
incrementing its integer content by one, at every hop, as it is 
propagated far away from its source  (top) the specific 
topology force update operations on the whole network 
(bottom) if alternative paths can be found, updates can be 
much more localized. 

For example, if the source of a tuple gets disconnected from the 
rest of the network, the updates must inevitably involve all the 
other peers in the network (that must erase that tuple form their 
repositories, see figure 6-top). However, especially for dense 
networks, this is unlikely to happen, and usually there will be 
alternative paths keeping up the tuple shape (see figure 6-bottom). 
How can we perform such localized maintenance operations in a 
fully distributed way? To fix  ideas, let us consider the case of a 
tuple incrementing its integer content by one, at every hop, as it is 
propagated far away from its source. 
Given a local instance of such a tuple X, we will call Y a X’s 
supporting tuple if: Y belongs to the same distributed tuple as X, Y 
is one-hop distant from X, Y value is equal to X value minus 
1.With such a definition, a X’s supporting tuple is a tuple that 
could have created X during its propagation. 
Moreover, we will say that X is in a safe-state if it has a 
supporting tuple, or if it is the source of the distributed tuple. We 
will say that a tuple is not in a safe-state if the above condition 
does not apply. 
Each local tuple can subscribe to the income or the removal of 
other tuples belonging to its same type in its one-hop virtual tuple 
space. This means, for example, that the tuple depicted in figure 
6-bottom, installed on node F and having value 5 will be 
subscribed to the removal of tuples in its neighborhood (i.e. nodes 
E and G).  
Upon a removal, each tuple reacts by checking if it is still in a 
safe-state. In the case a tuple is in a safe-state, the tuple the 
removal has not any effect -  see later -. In the case a tuple is not 
in a safe state, it erases itself from the local tuple space. This 
eventually cause a cascading tuples’ deletion until a safe-state 
tuple can be found, or the source is eventually reached, or all the 
tuples in that connected sub-network are deleted (as in the case of 
figure 6-top).  
When a safe-state tuple observe a deletion in its neighborhood it 
can fill that gap, and reacts by propagating to that node. This is 
what happens in figure 6-bottom, safe-state tuple installed on 
mode C and having value 3 propagates a tuple with value 4 to the 
hole left by tuple deletion (node D). It is worth noting that this 
mechanism is the same enforced when a new peer is connected to 
the network. 
Similar considerations applies with regard to tuples’ insertion: 
when a tuple sense the arrival of a tuple having value lower than 
its supporting tuple, it means that, because of nodes’ mobility, a 
short-cut leading quicker to the source happened. Also in this case 
the tuple must update its value to take into account the new 
network topology. 
How many information must be sent to maintain a the shape of a 
distributed tuple? What is the impact of a local change in the 
network topology in real scenarios? To answer these questions we 
exploited the implemented TOTA emulator, being able to derive 
results depicted in figure 7. 
The graph shows the results of three experiments, conducted on 
different networks. We considered networks having an average 
density (i.e. average number of nodes directly connected to an 
other node) of 4, 6 and 8. In each network, a tuple, incrementing 
its content at every hop, had been propagated. Nodes in the 
network move randomly, continuously changing the network 
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topology. The number of messages sent between peers to keep the 
tuple shape coherent had been counted. Messages exchanged by 
peers one-hop away form the peer that caused the topology 
change are added together, and so on for peers two-hop away, 
three hop-away, etc. These values are depicted in figure 7. 
The most important consideration we can make looking at the 
graph, is that, upon a connection, a lot of update operations will 
be required near the source of the topology change, while only 
few operations will be required far away from it. This implies that, 
even if the TOTA network and the tuples being propagated have 
no artificial boundaries, the operations to keep their shape 
consistent are strictly confined within a locality scope. This fact 
supports the feasibility of the TOTA approach in terms of its 
scalability. In fact, this means that, even in a large network with a 
lot of nodes and tuples, we do not have to continuously flood the 
whole network with updates, eventually generated by changes in 
distant areas of the network. Updates are confined within a 
locality scope from where they took place. 
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Figure 7: Experimental results: locality scopes in tuple’s 
maintenance operations emerge in a network without 
predefined boundaries. 

4. APPLICATION EXAMPLES 
In this section, to prove the generality of our approach, we will 
show how to exploit TOTA to solve several problems typical of 
dynamic network scenarios, by simply implementing different 
tuples’ propagation rules. 

4.1 Motion Coordination 
To show the capability of achieving globally coordinated 
behaviors with TOTA, we focus on a specific instance of the 
general problem of motion coordination. Motion coordination has 
been widely studied in several research areas: robotics, 
simulations, pervasive computing, multi agent systems, etc. 
Among the others, a particularly interesting and successful 
approach is the one that exploit the idea of potential fields to 
direct the movement of the involved entities [SheS02, 
MamLZ02]. As a first example, we will consider the problem of 
letting a group of mobile components (e.g., users with a PDA or 
robots) move maintaining a specified distance from each other. To 
this end, we can take inspiration from the mechanism used by 

birds to flock [BonDT99]: flocks of birds stay together, 
coordinate turns, and avoid each other, by following a very simple 
swarm algorithm. Their coordinated behavior can be explained by 
assuming that each bird tries to maintain a specified separation 
from the nearest birds and to match nearby birds’ velocity. To 
implement such a coordinated behavior in TOTA, each 
component can generate a tuple T=(C,P) with following 
characteristics: 

C=  (FLOCK, nodeName,val) 
P=  (“val” is initialized at 2, propagate to all the nodes 

decreasing by one in the first two hops, then increasing 
“val” by one for all the further hops) 

 
Thus creating a distributed data structure in which the val field 
assumes the minimal value at specific distance from the source 
(e.g., 2 hops). This distance expresses the intended spatial 
separation between components in the flock. To coordinate 
movements, components have simply to locally perceive the 
generated tuples, and to follow downhill the gradient of the val 
fields. The result is a globally coordinated movement in which 
components maintain an almost regular grid formation by 
clustering in each other val fields’ minima. 
To test the above coordination mechanism we used the emulator: 
the snap-shots of Figure 8 shows a MANET scenario in which a 
group of four components (in black) proceeds in a flock, 
maintaining a one hop distance. The other nodes in the network 
remain still and just store and forward flocking tuples. 
Another interesting example of motion coordination, regard the 
problem of letting mobile users to meet somewhere. Here we can 
imagine that each member of the meeting group injects a tuple 
with the following characteristics: 

C=  (MEET, nodeName, val) 
P=  (“val” is initialized at 0, propagate to all the nodes 

increasing “val” by one for all the further hops) 
 
By relying on this tuple, we can realize different meeting policies: 

1. The group of users wants to meet in the point where 
member x is located. This is the simplest case and 
each user can move by following downhill the tuple 
having in its content x as nodeName. It is interesting 
to notice that this approach works even if person x 
moves after the meeting has been scheduled. The 
meeting will be automatically rescheduled in the new 
minimum of x’s tuple.  

2. The group of users wants to meet in the point that is 
between them (their “barycenter”). To this purpose 
each user i can follow downhill a linear combination 
of all the other MEET tuples. In this way all the 
users “fall” towards each other, and they meet in the 
point that is in the middle. It is interesting to notice, 
that this “middle point” is evaluated dynamically and 
the process takes into consideration the crowd or 
unexpected situations. So if some users encounter a 
crowd in their path, the meeting point is 
automatically changed to one closer to these unlucky 
users. 
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Figure 8. Flocking in the TOTA Emulator. Cubes are the 
nodes of a mobile ad-hoc network, with arcs connecting nodes 
in range with each other. Black cubes are involved in flocking, 
moving by preserving a 2 hop distance  from each other. 

4.2 Modular Robot Control 
Another interesting application scenario, is in the control of a 
modular robot [YimZD02]: a collection of simple autonomous 
actuators with few degrees of freedom connected with each other. 
A distributed control algorithm is executed by all the actuators 
that coordinate to let the robot assume a global coherent shape or 
a global coherent motion pattern (i.e. gait). Currently proposed 
approaches [SheS02] adopts the biologically inspired idea of 
hormones to control such a robot. Hormone signals are similar to 
content based messages, but have also the following unique 
properties: they propagate through the network without specific 
destinations, their content can be modified during propagation and 
they may trigger different actions for different receivers. The 
analogies between hormones and TOTA tuples are evident and, in 
fact, we were able to easily implement a similar control algorithm 
on top of TOTA. The algorithm has been tested on the 3D 
modular robot simulator available at [Polybot]. Following the 
approach proposed in [SheS02], we will consider the 
implementation of a caterpillar gait on a chain-typed modular 
robot, composed by actuators having a single motorized degree of 
freedom (see figure 10). Each robot node (i.e. actuator) will be 
provided with a TOTA middleware, and with an agent driving its 
motor. In particular the head agent, the tail agent and the body 
agents will drive the head module, the tail module and the body 
modules respectively.  
The head agent starts the movement by injecting a caterpillar-
tuple. The tail agent injects the gait-tuple, upon the receipt of a 
new caterpillar-tuple. 
The gait-tuple is simply a tuple notifying that the gait has been 
completed, it simply propagates from the tail to the head (i.e. it 
has a broadcast propagation rule) without storing. 
The caterpillar-tuple has the following structure: 

C = (state, angle) 
P = (propagate hop-by-hop, storing on intermediate nodes 

changing the content accordingly to the table in figure 9. 
If on the head node and upon the receipt of a gait-tuple, 

re-apply propagation) 
Each agent, upon the receipt of the caterpillar tuple, will drive the 
motor of its actuator to the angle in the content of the tuple. The 
coordination induced by the tuple leads the robot to the caterpillar 
gait as described in figure 10. 
    

Current state New state New angle 

At the beginning A +45 deg 
A B +45 deg 

B C -45 deg 

C D -45 deg 
D A +45 deg 

Figure 9. Caterpillar tuple, propagation rule. 

 

Figure 10. Caterpillar gait, in a chain-typed modular robot, 
composed of four actuators. 

4.3 Ant-Based Routing on Mobile ad Hoc 
Networks 
Routing protocols in wireless ad-hoc networks, inspired to the 
way in which ants collect food, have recently attracted the 
attention of the research community [BonDT99, Poo00]. 
Following this inspiration, the routing protocols build a sort of 
routing overlay structure (similar to ants’ pheromone trials) by 
flooding the network and then exploit this overlaid structure for a 
much finer routing. We will show in this section how the basic 
mechanism of creating a routing overlay structure and the 
associated routing mechanism (similar to the ones already 
proposed in the area) can be effectively done within the TOTA 
model. The basic idea of the routing algorithm we will try to 
implement is the following [Poo00]: when a node X wants to send 
a message to a node Y it injects a tuple representing the message 
to be sent, and a tuple used to create an overlay routing structure, 
for further use. 
The tuple used to create the overlay structure can be described as 
follows: 

C=(“structure”, nodeName, hopCount) 
P=(propagate to all the nodes, increasing hopCount by one at 

every hop) 
The tuple used to convey the message will be: 

Head, +45°

Tail -45° 
-45° 

+45°

Moving Direction 
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C=(“message”, sender,receiver,message) 
P=(if a structure tuple having my same receiver can be found 

follow downhill its hopCount, otherwise propagate to all 
the nodes ) 

This routing algorithm is very simple: structure tuples create an 
overlay structure so that a message tuple following downhill a 
structure tuple’s hopCount can reach the node that created that 
particular structure. In all situations in which such information is 
absent, the routing simply reduces to flooding the network. 
Although its simplicity, this model captures the basic underling 
model of several different MANET routing protocols [Bro98]. 
The basic mechanism described in this section (tuples defining a 
structure to be exploited by other tuples’ propagation) is 
fundamental in the TOTA approach and provides a great 
flexibility. For example it allows TOTA to realize systems such as 
CAN [Rat01] and Pastry [RowD01], to provide content-based 
routing in the Internet peer-to-peer scenario. In these models, 
peers forming an unstructured and dynamic community need to 
exchange data and messages not on the basis of the IP addressing 
scheme, but rather on the basis of the content of messages (e.g., “I 
need the mp3 of Hey Jude, no matter who can provide it to me”). 
To this end, these systems propose a communication mechanism 
based on a publish-subscribe model and rely on a properly built 
overlay space. A peer publishes information by sending them to a 
particular point of the overlaid space, while another read such 
information by looking for it in the same point of space (typically 
the process involves a hash function shared between all the peers, 
that maps keywords, associated to the information content, to 
points in space). TOTA can realize such systems by using a first 
layer of tuples defining the overlay space and then other tuples 
whose propagation rules let the tuples propagate efficiently in the 
overlaid space. 

5. RELATED WORK 
Several proposals in the last years are challenging the traditional 
ideas and methodologies of software engineering and inspired to 
physical, biological models are entering in the distributed 
application and multi agent system research frameworks. 
An area in which the problem of achieving context-awareness and 
adaptive coordination has been effectively addressed (and that, 
consequently, has partially influenced our proposal) is amorphous 
and paintable computing [But02, Nag03]. The particles 
constituting an amorphous computer have the basic capabilities of 
propagating sorts of computational fields in the network, and to 
sense and react to such fields. In particular, particles can transfer 
an activity state towards directions described by fields’ gradients, 
so as to make coordinated patterns of activities (to be used for, 
e.g. self-assembly) emerge in the system independently of the 
specific structure of the network (which is, by definition, 
amorphous). Similarly with TOTA, such an approach enables, via 
the single abstraction of fields, to both diffuse contextual 
information and to organize adaptive global coordination patterns. 
The main difference between TOTA and this approach is the 
application domain: TOTA is not only addressed to amorphous 
networks of nano- or micro-devices, but it aims also to address 
networks of mobile devices like cellular phones, PDA and 
laptops. Moreover, because of this difference, one of the TOTA 
main concerns, that is totally neglected in amorphous computer, is 
the need to constantly manage distributed tuples’ values so as to 
maintain their intended shape despite network reconfigurations.      

Anthill [BabM02] is a framework built to support design and 
development of adaptive peer-to-peer applications, that exploits 
an analogy with biological adaptive systems [BonDT99, 
ParBS02]. Anthill consists of a dynamic network of peer nodes, 
each one provided with a local tuple space (“nest”), in which 
distributed mobile components (“ants”) can travel and can 
indirectly interact and cooperate with each other by leaving and 
retrieving tuples in the distributed tuple spaces. The key objective 
of anthill is to build robust and adaptive networks of peer-to-peer 
services (e.g., file sharing) by exploiting the capabilities of ants to 
re-shape their activity patterns accordingly to the changes in the 
network structure. Although we definitely find the idea interesting 
and promising, a more general flexible approach would be needed 
to support – other than adaptive resource sharing – adaptive 
coordination in distributed applications. 
The popular videogame “The Sims” [Sims] exploits sorts of 
computational fields, called "happiness landscapes" and spread in 
the virtual city in which characters live, to drive the movements of 
non-player characters. In particular, non-player characters 
autonomously move in the virtual Sims city with the goal of 
increasing their happiness by climbing the gradients of specific 
computational fields. For instance, if a character is hungry, it 
perceives and follows a happiness landscape whose peaks 
correspond to places where food can be found, i.e., a fridge. After 
having eaten, a new landscape will be followed by the character 
depending on its needs. Although sharing the same inspiration, 
“Sims’ happiness fields” are static and generated only by the 
environment. In TOTA, instead, tuples are dynamic and can 
change over time, and agents themselves are able to inject tuples 
to promote a stronger self-organization perspective.  
The MMASS formal model for multi-agent coordination, 
described in [BanMS02], represents the environment as a multi-
layered graph in which agents can spread abstract fields 
representing different kinds of stimuli through the nodes of this 
graph. The agents’ behavior is then influenced by the stimuli they 
perceive in their location. In fact agents can associate reactions to 
these stimuli, like in an event-based model, with the add-on of the 
location-dependency that is associated to events and reactions. 
The main difference between MMASS and TOTA the application 
domain: MMASS is mainly devoted to simulation of artificial 
societies and social phenomena, thus its main implementation is 
based on cellular automata, TOTA is mainly interested in 
distributed (pervasive) computing and, accordingly, its 
implementation is based on real devices forming wireless 
networks. 
The L2imbo model, proposed in [Dav98], is based on the notion 
of distributed tuple spaces augmented with processes (Bridging 
Agents) in charge of moving tuples form one space to another. 
Bridging agent can also change the content of the tuple being 
moved for example to provide format conversion between tuple 
spaces. The main differences between L2imbo and TOTA are that 
in L2imbo, tuples are conceived as “separate” entities and their 
propagation is mainly performed to let them being accessible from 
multiple tuple spaces. In TOTA, tuples form distributed data 
structure and their “meaning” is in the whole data structure rather 
than in a single tuple. Because of this conceptual difference, 
tuples’ propagation is defined for every single tuple in TOTA, 
while is defined for the whole tuple space in L2imbo. 
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6. CONCLUSIONS AND FUTURE WORKS 
Tuples On The Air (TOTA) promotes programming distributed 
applications by relying on distributed data structures, spread over 
a network as sorts of electromagnetic fields, and to be used by 
application agents both to extract contextual information and to 
coordinate with each other in an effective way. As we have tried 
to show in this paper, TOTA tuples support coordination and self-
organization, by providing a mechanism  to both enable agents 
interactions and to represent contextual information in a very 
effective way. 
Despite the fact there are a lot of examples we had been able to 
realize with TOTA, we still do not have a general engineering 
methodology or primitive tuples’ types on which to build and 
generalize other kind of applications. However this is not our 
specific limit, but it is a current general limitation: a general 
methodology for dealing with bottom up approaches (like the one 
promoted by TOTA) is still unknown. However, we think that 
such methodology could be found in the future and for sure, our 
final goal would be to develop a complete engineering procedure 
for this kind of model. In pursuing this goal, deployment of 
applications will definitely help identifying current shortcomings 
and directions of improvement. In particular our future work will 
be based on applying the TOTA model, in the development of 
new applications for sensor networks with a particular interest in 
those algorithms exploiting ideas taken from manifold geometry 
[ZamM02]. From a more pragmatic perspective, several issues are 
still to be solved for our first prototype implementation to 
definitely fulfill its promises. First, we must compulsory integrate 
proper access control model to rule accesses to distributed tuples 
and their updates. Second, much more performance evaluations 
are needed to test the limits of usability and the scalability of 
TOTA by quantifying the TOTA delays in updating the tuples’ 
distributed structures in response to dynamic changes. 
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