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ABSTRACT
This paper develops a model for exceptions and an approach for
incorporating them in commitment protocols among autonomous
agents. Modeling and handling exceptions is critical for success-
ful applications of multiagent systems. Protocols help build mul-
tiagent systems, but traditional representations (such as finite state
machines or Petri nets) inadequately model complex interactions
and exceptions therein. Emerging commitment-based representa-
tions are promising, because they declaratively reflect the seman-
tics of an interaction. However, current approaches lack a strong
treatment of exceptions.

This paper treats both expected and unexpected exceptions. A
commitment protocol is modeled as a set of computations, each
representing an allowed interaction and showing the evolving com-
mitments of the participants. Exceptions are modeled via prefer-
ence structures induced on these sets of computations. The pref-
erence structures statically show how expected exceptions are han-
dled whereas the structures must be enhanced dynamically to han-
dle unexpected exceptions. Our approach includes operators for
composing protocols and exception handlers, whereby appropriate
exception handlers can be dynamically introduced into a protocol
as needed.

The main contributions of this paper are (1) a framework for
modeling and handling exceptions intelligently in commitment pro-
tocols and (2) a demonstration of the benefits of commitment pro-
tocols over traditional formalisms in handling exceptions.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial IntelligenceDistributed
Artificial Intelligence[Multiagent Systems]; D.2 [Software Engi-
neering]:

General Terms
Reliability
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1. INTRODUCTION
Open business processes such as those conducted among inde-

pendent business partners (or interactions between autonomous ag-
ents in general) face challenges quite different from those faced by
processes in closed systems. First, open systems require flexible
processes that can adapt as the environment evolves. Second, flex-
ible processes require complex models to capture interactions that
are rich in semantics. Such models prove notoriously intractable
for human process designers. Further, verifying the compliance
of participants with such models is difficult since what would be
considered a valid detour from the normal enactment of a process
in one situation may be considered non-compliant behavior in an-
other.

Simply put, the key features of open systems lead to the possi-
bility of exceptions. Traditional ways to model processes become
intolerably complex in the face of exceptions. Traditional ways to
enact processes simply fail in the face of exceptions or throw the
entire reasoning burden on humans.

There has been an increasing recognition of the importance of
agent-based, semantically rich approaches for modelling processes
in open systems. However, existing approaches prove to be lim-
ited in that they do not provide a principled means for modeling
exceptions ahead of time or handling exceptions that have not been
explicitly modeled ahead of time. The basic insight that all agree
upon is the use of a suitable rule-based mechanism and sometimes
of organizational structure, but there are key aspects of the rules and
the organizations that are not considered by current approaches.

Conventionally, processes are understood in a monolithic man-
ner. However, an emerging body of work understands processes
in terms ofprotocols. A protocol is a specification of an inter-
action between autonomous agents. Protocols provide a natural
abstraction to model and handle exceptions in a reusable manner.
This abstraction centers around the concept of commitment pro-
tocols, which are a promising approach for modeling interactions
among autonomous agents, such as are involved in business pro-
cesses. This paper is about design-time (modeling) and runtime
(handling) abstractions for exceptions.

Running Example.Consider a process used to book a hotel
room. It consists of two roles, a customer and a hotel. The normal
execution of the process begins with the customer asking the hotel
for a vacancy and price check for a room for a certain date. The
hotel provides the prices for rooms available, after which the cus-
tomer asks the hotel to book the room. The hotel confirms that the
room has been reserved, and the customer pays for it. The room
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s1s0 1. checkVacancy(c,h,x) 5. pay(c,h,x)s32. vacancy(h, c, x) s4 s5s2 3. book(c,h,x) 4. confirm(h,c,x)

6. noVacancy(h,c,x) s6

Figure 1: The room reservation process using traditional systems

reservation process is similar to the room reservation workflow ex-
ample used by Casatiet al. [2], but is more general in that there
is a confirmation step before a room is reserved for the customer.
Figure 1 summarizes this process.

Exceptions.Informally, exceptions are abnormal conditions that
arise during the execution of a process. The importance of excep-
tions stems from the simple fact that they are an essential feature
of real-life processes. Businesses, for example, entertain excep-
tional requests from customers in the interest of better customer
service. Conversely, exceptions that occur in a process may lead
to poor user satisfaction. Therefore, businesses must accommodate
exceptions in their underlying systems and their interactions with
other businesses. For concreteness, let us review a classification of
exceptions proposed by Eder and Liebhart [5]:

• Basic failures, which are system-level failures such as net-
work failures.

• Application failures, such as database transaction failures.

• Expected exceptions, which are deviations from the normal
flow that occur infrequently but often enough to be incorpo-
rated into the process model.

• Unexpected exceptions, which are not modeled and hence re-
quire a change in the design of the process when they are
discovered.

An alternate classification of exceptions distinguishes among sys-
tem level exceptions, programming language exceptions, and prag-
matic exceptions. Among these, pragmatic exceptions are the most
acute and the most difficult to handle. We concentrate on expected
and unexpected exceptions that are high-level (pragmatic) excep-
tions.

As explained above, we are concerned with protocols, which can
be used to compose processes. It is therefore natural that exceptions
be reflected in protocols. An exception requires special processing
so that participants of the protocol can minimize the losses they
might incur due to the exception. For expected exceptions, process
automation efforts yield diminishing returns as increasing effort is
expended to encode deviations from the normal execution of the
process. For unexpected exceptions, automated processes have to
interrupt human operators to rectify the process enactment

Opportunities are akin to exceptions but viewed more positively.
From the perspective of modeling and enactment, opportunities are
analogous to exceptions, so we treat them as conceptually similar.
For example, the customer in the room reservation process might
consider delegating the payment for the room to another agent an
opportunity whereas the hotel, which is expecting to receive the
payment from the customer, might consider this an exception.

Challenges.The major challenges to exception handling in flex-
ible processes include the following.

• Handling exceptions requires reasoning about domain knowl-
edge. The risks taken by the participants in a protocol are not
the same across domains. For example, a delayed payment
might be acceptable to the hotel in the room reservation pro-
cess, whereas a delayed shipment of life-saving drugs might
not be acceptable in a drug-purchase process. Therefore, ex-
ceptions cannot be handled in the same manner across differ-
ent domains and situations. That is, an abstraction for fac-
toring out domain-independent relationships between partic-
ipants is required.

• Handling exceptions requires changing the process model.
Traditional process frameworks such as workflows cannot
handle unexpected exceptions since the process model can-
not be changed at runtime. That is, an abstraction for reason-
ing about pragmatic exceptions is required.

Commitment Protocols.Commitment protocols have been pro-
posed as a general mechanism for capturing the semantic aspects
of interactions among autonomous agents. In this respect, comm-
itment protocols can yield superior flexibility and a more sophis-
ticated notion of compliance than traditional formalisms such as
finite state machines and Petri nets. Mallyaet al. [12] show how
commitment protocols can be composed. Desaiet al.[4] show how
such protocols can be applied to business processes. In their work,
a protocol specifies the public interactions of the participants, leav-
ing room for their privatepoliciesto dictate specifics, e.g., pricing
and payment or delivery deadlines. In other words, private policies
together with public protocol specifications form a process. This
paper extends the above works.

As noted above, exceptions in processes need to be handled in
a domain-specific manner. However, a significant portion of the
structure of a process can be extracted based on the applicable pro-
tocols. Since the protocols that compose a process reflect the main
goals of the process participants, they provide a natural basis for
modeling and handling exceptions. Refined, context-specific ver-
sions of protocols can be used to model expected exceptions and
agent policies can be used to apply dynamic handlers for unfore-
seen exceptions. In other words, using protocols to compose pro-
cesses simplifies exception handling because protocols provide the
bounds for the scope of an exception.

Contributions.We propose an approach that gives semantically
richer abstractions for processes based on the concept of commit-
ments. We show how these abstractions enable effective exception
modeling and handling while allowing flexibility in execution. The
main contributions of this paper are

• A framework for modeling exceptions generically across do-
mains using commitment protocols.

• A demonstration of the benefits of commitment protocols
over traditional formalisms in handling unforeseen excep-
tions by changing the process model at runtime.
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Organization.The rest of this paper is organized as follows.
Section 2 describes the technical framework that we employ, be-
ginning with commitments in Section 2.1 and operations on com-
mitments in Section 2.2. Sections 2.3 and 2.4 formalize runs and
protocols, respectively. Section 3 develops our theory of excep-
tions. Exception modeling is described in Section 3.1 and runtime
exception handling in Section 3.2. Section 4 concludes the paper
with a summary of our contributions in light of related research and
describes some avenues of further research.

2. TECHNICAL FRAMEWORK
Commitment protocols have been in development for some years

now. In practice, commitment protocols are specified declaratively,
for example, using the OWL-P language proposed by Desaiet al.[4].
The specification identifies roles that participate in the protocol, the
messages that are exchanged (with the meanings of the messages
in terms of commitments that are created), and a set of rules that
constrain the set of runs of the protocol by defining ordering, data
flow, and other constraints. For a formal treatment, however, we
represent protocols as transition systems similar in spirit to com-
mitment machines [18]. These protocols generate computations or
runs, which are sequences ofstatesthat a valid protocol computa-
tion (execution) goes through. States are labeled bypropositions
that hold true. Propositions represent facts about the universe of
discourse of the protocol such as commitments that are active and
messages that have been sent. State changes are caused bymes-
sagesthat the participants send to each other. Consider the room
reservation process. The steps taken in a normal execution of this
process were described in Section 1. Table 1 is a snippet of the
specification of this protocol. Thepolicy(x,y) term checks ifx
wishes to send the messagey, andstart is a special term indicating
the start state. The derivation of local flows for each role and their
binding with the policies of each participant is described by Desai
et al. [4]. Figure 2 shows this protocol as a set of runs. Each run
begins at the start states0 and ends at a thick circle, which repre-
sents a terminating state. Arrows with shaded text show exceptions
and filled circles are exception states.

2.1 Commitments
A commitmentC(x, y, p) denotes that the agentx is responsi-

ble to the agenty for bringing about the conditionp. Herex is
called thedebtor, y thecreditor, andp theconditionof the comm-
itment. The condition is expressed in a suitable formal language.
Commitments can also beconditional, denoted byCC(x, y, p, q),
meaning thatx is committed toy to bring aboutp if q holds. For
example, the commitmentCC(h, c, confirm(h, c, x), pay(c, h, x))
denotes the commitment by the hotel to the customer to confirm a
room booking if the customer pays for the room.

2.2 Commitment Operations
Commitments are created, satisfied, and transformed in certain

ways. The following operations are conventionally defined for com-
mitments.

1. CREATE(x, C) establishes the commitmentC. This can only
be performed byC’s debtorx.

2. CANCEL(x, C) cancels the commitmentC. This can only be
performed byC’s debtorx. Generally, cancellation is com-
pensated by making another commitment.

3. RELEASE(y, C) releasesC’s debtorx from commitmentC.
This only can be performed by the creditory.

Role 1: Customer,c
Role 2: Hotel,h

Rule 1: start⇒ policy(c, checkVacancy) && policy(h, vacancy)
Rule 2: vacancy⇒ policy(c, book)
. . .

Message 1:checkVacancy(c, h, x)
c asksh if there is a vacancy for a certain room for certain dates,
encoded byx.
This message does not create any commitments.
Message 2:vacancy(h, c, x)
h informsc that the room-date-price combinationx is available.
Now, h is committed to confirming the room reservation ifc
pays the price quoted.
This message creates the commitment
CC(h, c, confirm(h, c, x), pay(c, h, x)).
Message 3:book(c, h, x)
c asksh to book the room for the given dates. By sending this
message,c commits to payingh if the room is confirmed.
This message creates the commitment
CC(c, h, pay(c, h, x), confirm(h, c, x)).
Message 4:confirm(h, c, x)
h confirms that the room has been booked.h is now commit-
ted toc to allow the use of the room as indicated earlier in the
vacancy dates.
This message creates the commitmentC(h, c, use(x)).
Message 5:pay(c, h, x)
c pays the amount specified inx to h.
This message does not create any commitments. Ifc is commit-
ted toh to pay forx, this message fulfills that commitment.
Message 6:timeout(h, c, pay)
h detects thatc has not sent thepay(c, h, x) message within the
specified deadline.
This message does not create any commitments; it is an indica-
tion of the breach of any commitment thatc might have made
to h to pay forx.
Message 7:cancel(h, c, confirm)
h cancels its commitment toc to allow the use of the room.
This message cancels the commitmentC(h, c, use(x)).
. . .

Table 1: Room reservation protocol in OWL-P

4. ASSIGN(y, z, C) replacesy with z asC’s creditor.

5. DELEGATE(x, z, C) replacesx with z as theC’s debtor.

6. DISCHARGE(x, C) C’s debtorx fulfills the commitment.

A commitment is said to beactiveif it has been created, but not yet
been operated upon by adischarge, delegate, assign, cancel, or re-
lease. A commitment issatisfiedwhen its condition becomes true.
A conditional commitment such asCC(c, h, pay(c, h, x), confirm
(h, c, x)) becomes an unconditional commitmentCC(c, h, pay(c,
h, x)) when its conditionconfirm(h, c, x) holds. A commitment is
breachedwhen it is not possible that the commitment will be sat-
isfied. Realistic settings assign deadlines to commitments to detect
their breach or satisfaction [13]. Conditional commitments can also
be satisfied without a transformation into an unconditional comm-
itment. For example,CC(c, h, pay(c, h, x), confirm (h, c, x)) is
satisfied whenpay(c, h, x) is true, regardless ofconfirm(h, c, x).
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24. cancel(pay)

15. noVacancy(h,c,x)

s1s0 1. checkVacancy(c,h,x)

s11

11. timeout(book)

s9

6. noVacancy(h,c,x)

s6

5. pay(c,h,x)

12. book(c,h,x)

20. cancel(confirm)

s23

22. timeout(confirm)

s3

17. timeout(book)

s17

11. vacancy(h, c, x)

13.pay(c,h,x)

s21

23. timeout(pay)

12. timeout(noVacancy)

s10

2. vacancy(h, c, x)

s13

s4 s5

14.confirm(h,c,x)

s2 3. book(c,h,x)

s20s18
18. cancel(book)

s24

16. noVacancy(h,c,x) s16

4. confirm(h,c,x)

19. noVacancy(h,c,x)

Figure 2: Room reservation protocol. Filled circles are exceptions; thick circles are terminating states

Commitment Life Cycle.Because commitment protocols are
declarative, they are more flexible than state-based specifications.
During enactment of such protocols, commitment operations allow
the participants to choose from multiple paths available. For ex-
ample, a commitment might be discharged after it is created, or
it might be delegated before it is discharged. For this reason, it
is instructive to see how commitments can be modified. Figure 3
shows the life cycle of a commitment, based on prior work by the
authors [13], which gives a semantics to the commitment life cy-
cle using a variant of Computational Tree Logic (CTL). In the fig-
ure, propositions are used to capture facts about commitments and
commitment operations. States are represented by circles and some
of the propositions that label a state are written in adjoining grey
rectangles. Transitions between states occur on commitment oper-
ations. Note that in practice, a commitment operation might not be

Figure 3: The commitment life-cycle. States are labeled by
propositions. To avoid clutter, only pertinent propositions are
shown.

atomic, but might involve a series of message exchanges all within
the scope of a transaction. For instance, the delegation of a commit-
ment involves three agents, the creditor and the debtor of the comm-
itment being delegated, and the new debtor. A commitment-based
execution framework might require that all three parties agree if
the delegate operation is to succeed. Such reasoning is described in
more detail by Venkataraman and Singh [16].

As shown in Figure 3, a commitment is created before any other
operation is performed on it. Before it is created, a commitment is
not active. Once created, the commitment stays active until some
operation is performed on it. Propositions record operations on

commitments. Operations on active commitments are persistent,
i.e., once an active commitment is discharged, cancelled, released,
assigned, or delegated that operation is recorded by a proposition
and that commitment cannot be operated upon again. This scheme
assumes that commitments have unique identifiers. A commitment
that is discharged is said to besatisfied. A commitment that is
violated is said to bebreached. To avoid clutter, the figure does
not show the persistence of propositions in the state labels. Also,
violation is not a commitment operation. Commitment violation
can be detected in many ways, including through the expiration of
the deadline of a commitment.

2.3 Runs
A run τ is a sequence of states〈s0 . . . s|τ |〉, for which [τ ]0 rep-

resents the first states0. We consider only nonempty runs, i.e., a
run must contain an initial state. Likewise,[τ ]> represents the last
state of a run, defined only for finite runs. The operator≺τ orders
states temporally with respect to a runτ , so thatsi ≺τ sj implies
thatsi occurs beforesj in the runτ .

State Similarity.A state-similarity functionf is a mapping from
a state to a set of states, i.e.,f : S 7→ 2S. A statesi is simi-
lar to a statesj under the state-similarity functionf if and only if
sj ∈ f(si). State-similarity under the state-similarity functionf is
denoted by the operator[f ]〉. That is,si[f ]〉sj ⇐⇒ sj ∈ f(si).
Since states are labeled by propositions, state-similarity functions
help us reason about protocols via propositions that denote com-
mitments.

Considerσ, a state-similarity function, defined asσ(si) = {sj |sj

can be reached by finite number ofdelegate(·,·,·) actions fromsi}.
σ treats a statesi as being similar to a statesj if in the two states
all the participants of the protocol have the same commitments be-
ing made towards them, regardless of which participant makes it.
In practical settings,σ can be used to indicate, for example, that a
commitment to pay can be delegated to a bank while still honoring
the protocol.

Subsumption of Runs.Let [[f ]〉 denote asubsumptionoperator
over runs. The operator[[f ]〉 is an order-preserving mapping from
one run to another, and depends on the state-similarity functionf .
A run τj subsumesa runτi under the state-similarity functionf if
and only if, for every statesi that occurs inτi, there occurs a state
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sj in τj that is similar underf , andsj has the same temporal order
relative to other states inτj assi does with statesτi. Formally,
τj [[f ]〉τi if and only if ∀si ∈ τi, ∃sj ∈ τj such thatsj ∈ f(si) and
∀s′i ∈ τi, ∃s′j ∈ τj such thats′j ∈ f(s′i) ⇒ (si ¹τi s′i ⇒ sj ¹τj

s′j). Longer runs subsume shorter ones, provided they have similar
states and in the same order.

2.4 Protocols
Formally, a protocol is modelled as a tuple,〈A, S, S0, ∆,F,R〉,

whereA is a set of messages,S is a set of statesS0 is the set of start
states,S0 ⊆ S, ∆ is a set of transitions,∆ ⊆ S× A× S, F is a set
of final states,F ⊆ S andR is a set of roles in the protocol. This
tuple is derived from a protocol specification such as that shown in
Table 1.

∆ contains transitions of the form〈si, a, sj〉, wheresi, sj ∈ S
represent the source and the destination of the transition,a ∈ A is
the message that triggers the transition. Such a transition advances
a run fromsi to sj based ona. A run can be generated from a pro-
tocol by the successive concatenation of transitions beginning from
the initial state of the protocol. The concatenation of a transition to
a run appends the destination of transition to the run if the source
of the transition matches the last state of the run. The set of runs
generated by a protocol is denoted by[[P ]].

Every protocolP is considered to belong to aframewith enough
propositions in it to label all states that can occur in the runs gen-
erated by[[P ]]. Frames serve as a common ontology for the propo-
sitions used by different protocols and demarcate the universe of
discourse of a protocol. In this paper, we assume that ontologies
match wherever required.

Protocol Subsumption.A protocol Pj subsumesa protocol
Pi under the state-similarity functionf if and only if, for every
run τi that Pi can generate,Pj can generate a runτj that is sub-
sumed byτi underf . Formally,Pj [[f ]〉Pi if and only if∀τi ∈ [[Pi]],
∃τj ∈ [[Pj ]], τi[[f ]〉τj . In other words, ifPj is a protocol that al-
lows numerous runs andPi is a protocol that allows only a few
runs,Pj subsumesPi as long as each ofPj ’s runs is subsumed by
one ofPi’s runs. Since long runs subsume shorter ones, protocols
that specify a few short runs subsume protocols that specify a large
number of short runs. This follows from our intuition that fewer
constraints make for more flexible protocols.

Protocol Algebra.We use the protocol algebra developed by
Mallya et al., consisting of two operators (mergeandchoice), and
an ordering relationship (subsumption, as defined above). For brevity,
we only describe only the components that are used in this paper.
The merge operator, denoted by⊗f , splices two protocols under
a state-similarity functionf so that refined protocols can be cre-
ated from existing ones. A merge of two protocols is a meshing
of the runs of the protocols. Formally,P ⊗f Q = R such that
[[R]] = {r | ∀rp ∈ [[P ]] , ∀rq ∈ [[Q]] , r[[f ]〉rp andr[[f ]〉rq}. The
merge operator refines the protocols being merged, i.e., each of the
protocols being merged subsume the merged protocol. Merge is
idempotent, commutative and associative.

3. EXCEPTION HANDLING
We propose an approach to exception handling based on com-

mitments that exist between the participants. Our approach has the
following features:

• For expected exceptions, we define a preference structure
over runs, i.e., a notion that some runs are more desirable
than others, which can be used to model expected exceptions.

This structure and its application is described in Section 3.1.

• For unexpected exceptions, we introduce protocol splicing
using the merge operator to handle unexpected exceptions
in business processes. Essentially, exception handlers are
formalized as sets of runs, formally on par with protocols.
Where appropriate, these handlers are spliced into protocols,
as explained in Section 3.2.

In the room reservation example, the challenges to exception han-
dling that we outlined earlier manifest themselves as follows.

1. Domain-independent reasoning. The normal process dictates
confirmation of the hotel room before payment. A customer
who sends in the payment before the confirmation is in vio-
lation of the protocol under such a model, even though prac-
tical processes should allow for it, since the essence of the
process (reserving a room) is not violated.

2. Unforeseen exceptions. The hotel might be forced to revoke
the confirmation for the room because of a fire that destroys
the room. In traditional process enactment mechanisms such
as workflow engines, such exceptions cannot be handled be-
cause they require a change in the workflow model. Realis-
tically, the customer should be compensated by some means
such as a refund or an offer for an alternative room or hotel.

3.1 Expected Exceptions
A protocol allows multiple runs, which is what gives its partic-

ipants flexibility in enacting the protocol. We propose that each
protocol specify a hierarchy of preferred runs. The preference rela-
tion between runs need not be complete. That is, given two runs of
a protocol, the protocol might not state whether one of those runs
is more or less preferred than the other. Such preferences prove
valuable in reasoning about why a particular state is an exception
state. For example, the process model shown in Figure 1 can be
enhanced by stating that run with nonoVacancy(h, c, ·) states is
preferred over the other.

Preferences between runs can be used to define exceptions based
on the social environment in which the protocol is enacted. Given
a protocolP and set of runsr1 generated by it, which are preferred
over a set of runsr2, also generated byP , one can define all runs
in r2 to be exceptions. WhenP is used in another context, the
preference structure can be changed, to define new exceptions for
the same protocol.

Consider the room reservation protocol. The protocol might
specify that runs in which the hotel does not recant itsvacancy(h, c,
x) message (by sending anoVacancy(h, c, x) message) are pre-
ferred over runs that do, and the latter set of runs signal an excep-
tion. This protocol will consider the runs〈s0s1s2s3s16〉, 〈s0s1s6〉,
and〈s0s1s2s6〉 as exception-causing runs (see Figure 2). The same
protocol without such a preference structure and exception defini-
tion, would allow the the runs listed above and thus be better for the
hotel. Notice that commitments enable the reasoning thats16 is a
valid state, i.e., the hotel can send thenoVacancy(h, c, x) message
even after it receives thebook(c, h, x) message, since no uncondi-
tional commitments exist ats3.

Run preferences may be based on different metrics. For example,
short runs might be preferred over longer ones and runs that do not
involve the delegation or cancellation of a particular commitment
may be preferred over runs that do.

Usage.We envision that published protocol specifications (such
as OWL-P) will contain several different preference structures and
exception definitions of the kind explained above. Participants of a
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protocol negotiate the particular preference structure and exception
definitions that they wish to use for a particular enactment of a pro-
tocol. The study of such negotiation schemes is beyond the scope
of this paper and an interesting direction for our research.

Benefits.The benefit of inducing a preference structure over runs
are

1. A preference structure relates an exception to the protocol as
a whole rather than modeling an exception as a trigger for
specific exception handler code.

2. Participants can reason about what kind of preference struc-
tures and related exception definitions they want to enter-
tain. For example, customers might like to choose a room
reservation protocol with a preference structure that terms
thenoVacancy(h, c, x) sent after avacancy(h, c, x) message
an exception.

3. Preference structures decouple the specification of a proto-
col from the environment in which it is enacted. A situation
that is normal in a protocol might be deemed an exception
in the same protocol when it is being executed in a different
context. For example, the room reservation protocol allows
the hotel to send avacancy(h, c, x) message to the customer
to start the protocol. Starting the protocol in this manner is
equivalent to the hotel advertising the availability of a room.
In some situations, however, such an unsolicited advertise-
ment might be deemed illegal, as in the case of spam.

3.2 Unexpected Exceptions
Unexpected exceptions are detected at runtime but are not part of

the process model in traditional systems. In a commitment proto-
col, however, a model is a declarative specification of the meanings
of messages, which, combined with the semantics of commitment
operations, drives the protocol. This section shows how our pro-
tocol algebra can be used to combine exception handlers with pro-
tocols at runtime so that new situations can be handled when they
arise.

Splicing Protocols.Protocols can besplicedusing the merge
operator, with additional constraints. For example, if a complicated
payment protocol (where a payer transfers funds to a payee via a
bank) were available, that payment protocol could be spliced into
the room reservation protocol between statess4 ands5 or between
statess3 ands13. The new protocol thus obtained would be are-
finementof the room reservation protocol, since it dictates a finer
grained protocol to its participants than the plain room reservation
protocol. This concept of protocol splicing and refinement has been
developed by Mallya and Singh [12].

We treat exception handlers as sets of runs, just as we treat pro-
tocols. This enables handlers to be spliced into protocols. As an
example, consider the exception states24 in Figure 2. This excep-
tion is caused by the customer cancelling its commitment to pay
for the room after the hotel has confirmed it. Normally, this would
be a violation of a commitment. The customer might wish to can-
cel the commitment to pay because of financial hardship. Consider
now an exception handler as shown in Figure 4, at the top. This
handler can be spliced into the room reservation protocol after ap-
propriately binding the rolea to customer, roleb to hotel, and role
d to the customer’s bank. Splicing the handler enables the customer
keep the hotel room while not having to pay the hotel. Statess100

ands102 of the exception handler correspond to statess4 ands5 of

the room reservation protocol, respectively. The splicing is shown
in Figure 4, in the middle.

The same handler can also be used to delegate commitments
when the need arises to cancel them. For example, this handler
can be used by the hotel to delegate the reservation of a room to an-
other hotel in case of fire. In this case, the handler would be spliced
at states5 of the room reservation protocol, with the rolea corre-
sponding to the hotel, roleb to the customer, and roled to another
hotel which can provide the room in lieu of the former hotel. State
s100 now corresponds tos5 and statess101 ands102 are added to
the protocol, as shown at the bottom of Figure 4.

3.3 Preferences and Splicing: Tradeoffs
Splicing exception handlers during execution and inducing a pref-

erence structure over runs during the design of a protocol are both
means to handle exceptions. Using one method over the other in-
volves some tradeoffs as we describe next.

Splicing exception handlers at runtime requires a library of han-
dlers and a search through this library. This search can be compu-
tationally demanding. However, a protocol designer can choose to
handle all exceptions at runtime. The advantage of this approach
is that the designer’s job is simplified, since she uses an existing
library of handlers developed by someone else. Since the handlers
are not designed and developed by the protocol designers, this ap-
proach is applied to unexpected exceptions, meaning the exceptions
are not anticipated by the protocol designer. On the other hand, in-
ducing a preference structure over the runs of a protocol requires
the protocol designer to have a good understanding of the protocol
and the possible exception conditions that may arise. This makes
for considerable design-time effort and extensive domain specific
knowledge. However, design-time preference specification is com-
putationally faster and speeds up execution of an interaction proto-
col.

Advantages.Both splicing and preference specification are novel
methods for exception handling, and address drawbacks of tradi-
tional process models. Process models such as those used for web
service interactions, namely the Business Process Execution Lan-
guage (BPEL) [1] and the Web Services Choreography Descrip-
tion Language (WS-CDL) [9] do not capture the consequences of
autonomy of their participants, since they do not have a notion of
commitments. For example, the room reservation process cannot
be specified independently of the exceptions that occur during the
process. There is also no construct to specify that a certain set of
exceptions is less desirable than another set of exceptions. Since
web services aim to ease interactions between autonomous compo-
nents, our approach applies naturally to service-oriented architec-
tures. Another advantage of our approach is the treatment of pro-
tocols as first-class entities. Such a global protocol view enables
protocol reuse in contrast with local views of processes generated
using OWL-S (OWL for Services) [14], which is an ontology for
semantic markup of services that aids automatic composition of
services to create processes.

4. DISCUSSION AND FUTURE WORK
Exceptions are numerous in real-life systems since the universe

of discourse of a business process has ill-defined boundaries. Real-
world processes need pragmatic exception handling, i.e., reasoning
about meaning in context. We have proposed a methodology that
utilizes commitments among participants to handle exceptions in a
protocol. Our approach induces a preference structure over the pos-
sible execution sequences of a protocol, which helps decouple real-
world preferences from protocol specifications. We have shown
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s100 100. delegate(a, d, C) s101

Exception handler. C = C(a, b, p ), Role 1: a, Role 2: d

101. discharge(d, C) s102

5. pay(c,h,x)s4 s5 100. delegate(h, h1, confirm(h,c,x)) s101 101. discharge(h1, c, confirm(h1, c, x)) s102

Handling the hotel’s cancellation of confirm by delegating it to another hotel h1. a= h, d= h1, C=C(h,c,use(x))

s4 s5100. delegate(c, bank, C(c, h, pay(c,h,x))) s101 101. discharge(bank, C(bank, h, pay(bank, h, x)))

Handling customer’s cancellation of payment by delegating it to a bank.  a= c, d= bank, C=C(c,h,pay(c,h,x))

Figure 4: An exception handler and its usage by splicing

how this approach can be used to model exceptions. Further, we
have also demonstrated how an algebra of protocols can be em-
ployed to handle exceptions that are not originally in the process
model. With this approach, we have demonstrated how commit-
ment protocols used in specific contexts can create agile processes.
These contributions are a significant step forward from the closed,
rigid process models provided by traditional formalisms.

Next, we discuss literature relevant to our work and chart out
interesting directions that we intend to pursue.

4.1 Related Literature
Exception handling has been studied for programming languages,

multiagent systems, and workflows, among others.

Programming.Miller and Tripathi [15] identify four different
reasons for exceptions in object-oriented systems:errors, which
are illegal conditions, validdeviations, notificationsthat invalidate
certain assumptions, andidioms, which are legal conditions that are
rare, such an end-of-file encounter. They study errors in detail and
deviations and notifications to a limited extent whereas our research
deals mainly with deviations, notifications, and idioms.

Multiagent Systems.Klein et al.[11] study exception handling
in multiagent systems in detail. We agree with their premise that
open systems require fundamentally different exception handling
techniques than those required by closed systems. Kleinet al. de-
velop an architectural framework for multiagent systems that uses a
directory of agents to keep track of the agent population so that sit-
uations such as the death of an agent can be handled with minimal
resource wastage. In another work, Klein [10] develops a library
of generic exception handlers and proposes the use of specialized
agents that handle exceptions. This work could be combined with
our approach to enable the specialized agents to reason about ex-
ceptions.

Fornara and Colombetti [6] propose an alternative life-cycle for
commitments which differs from ours in having a commitment pro-
posal state before the commitment is created. They describe the
construction of interaction protocols using commitments. Yolum [19]
motivates definitions of correctness and consistency of commit-
ment protocols, thus formalizing commitment protocol design. Our
work used in conjunction with the above would strengthen a com-
mitment protocol model since we propose runtime exception han-
dling mechanism whereas Yolum develops a design time verifica-
tion framework.

Workflows.Kamath and Ramamritham [8] develop a rich work-
flow model that enables theopportunisticrollback of tasks that
failed, so that the effect of the failure is contained. Their work
represents a significant improvement over traditional workflow en-
gines. Chiuet al. [3] describe several exception resolution tech-
niques in ADOME-WFMS, a workflow system. They identify tasks
in the workflow as critical, optional, replaceable, or repeatable. Ex-
ceptions are handled by modifying task assignments, or skipping a
task. Casatiet al. [2] develop a library of exception patterns for
workflow systems.

Finally, Wegner [17] argues that interaction-oriented program-
ming models the openness of the real-world better than an algo-
rithmic approach. The interaction-centric view, which we have
adopted, will help develop powerful abstractions for multiagent
systems.

4.2 Research Directions
Some important research paths remain to be explored to develop

a complete theory of exception handling in commitment protocols.
As a first step, the development of a language for specifying sets

of runs would enable the specification of a preference lattice over
sets of runs of a protocol.

The introduction of spheres of commitment (SoComs) [7] into
protocol specifications and a methodology to assign agents to So-
Coms will help us develop a theory for limiting the range of prop-
agation of the effects of exceptions. For example, when protocols
are merged, an exception in the merged protocol can be handled
within the SoCom formed by the roles defined by the protocols that
were merged.

The incorporation of transactions, whose boundaries are derived
from the commitments that exist in a protocol would ease the au-
tomation of exception handling, i.e., the choosing of an exception
handler.

The development and incorporation of patterns of exceptions that
commonly occur would enhance the protocol library that designers
can use to compose robust protocols.
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