
Coordination and Composition in Multi-Agent Systems

Mehdi Dastani
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

mehdi@cs.uu.nl

Farhad Arbab
CWI

P.O. Box 94079
1090 GB Amsterdam

The Netherlands

farhad@cwi.nl

Frank de Boer
CWI

P.O. Box 94079
1090 GB Amsterdam

The Netherlands

F.S.de.Boer@cwi.nl

ABSTRACT
In this paper we describe a channel-based exogenous coor-
dination language, called Reo, and discuss its application to
multi-agent systems. Reo supports a specific notion of com-
positionality for multi-agent systems that enables the com-
position and coordination of both individual agents as well
as multi-agent systems. Accordingly, a multi-agent system
consists of a set of individual and/or multi-agent systems
whose collective behavior is coordinated by a Reo expres-
sion. This coordination language can be used to specify and
implement the organization of multi-agent systems and their
dynamic reconfiguration during system run.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Muliagent
systems, Coherence and coordination

General Terms
Theory, Languages

Keywords
Coordination, Composition, Multi-Agent Systems

1. INTRODUCTION
Multi-agent systems represent an advance in abstraction

which can be used by software developers to naturally model
and construct systems for complex applications such as so-
cial simulations, manufacturing applications, electronic auc-
tions, e-institutions, and business-to-business applications.
These applications are understood and analyzed as multi-
agent systems consisting of autonomous agents whose inter-
actions are coordinated through an organizational structure
[10].

The organizational structure of a multi-agent system spec-
ifies the coordinated behavior of individual agents and de-
termines the overall behavior of the multi-agent system [5,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

6, 8]. These organizational structures are usually described
in terms of a variety of social and organizational concepts
such as norm, trust, power, delegation of tasks, responsibil-
ities, permissions, access to resources, and communication.
The organization of multi-agent systems can optimize the
activities of agents, manage and secure the information flow
among agents, and guarantee certain outcomes as the result
of agents’ interactions.

Existing multi-agent approaches focus on the organization
of individual agents [5, 6, 10]. On the other hand, appli-
cations like incident management, electronic markets, and
e-governments involve the organization of different multi-
agent systems. More specifically, incident management in-
volves coordination of several multi-agent systems such as
police, fire, and ambulance departments. Each of these
multi-agent systems in turn consists of its own organiza-
tional structure that coordinates the behavior of its con-
stituting individual agents or multi-agent systems. For in-
stance, a police department consists of subdepartments such
as the detectives department and the administration depart-
ment. At the lowest level, the organization of multi-agent
systems coordinate the behavior of individual agents.

This hierarchical perspective gives rise to a new model of
the organizational structure of multi-agent systems that pro-
vides a separation of concerns between the autonomous be-
havior of multi-agent systems and the coordination of their
mutual interactions. The main challenge addressed in this
paper is to exploit this separation of concerns in the con-
struction of multi-agent systems through composition of co-
ordinated multi-agent systems. The most significant benefit
of this approach is that multi-agent systems can be com-
posed to form a more complex multi-agent system through
composition of their coordination mechanisms.

We aim at the compositional construction of coordination
models for multi-agent systems that reflect their organiza-
tional structures. Moreover, we investigate some properties
of the composition operators which are in this case specific
coordination mechanisms. In order to achieve this aim, we
adopt an exogenous channel-based compositional coordina-
tion language, called Reo, to manage the interaction of in-
dividual agents and multi-agent systems [2]. This approach
proposes a notion of compositionality for multi-agent sys-
tems that is essential for any computational methodology.
Moreover, we give some examples to show that Reo coor-
dination models can be interpreted in terms of social and
organizational concepts.

In section 2, we discuss coordination and composition of
multi-agent systems and define a specific notion of compo-

439

sitionality for multi-agent systems. In section 3, we briefly
present the channel-based exogenous coordination language
Reo, its syntax and semantics, and discuss its application to
multi-agent systems. In section 4, we discuss the Reo-based
composition of multi-agent systems and present some pre-
liminary results. Finally, in section 5 we conclude the paper
with final remarks and future work.

2. ORGANIZATION AND COORDINATION
IN MULTI-AGENT SYSTEMS

In this paper, multi-agent systems are considered as con-
sisting of individual agents/multi-agent systems and an or-
ganization structure that coordinates their behaviors. An
organization structure determines the dependencies and in-
teractions among constituting agents/multi-agent systems
and is responsible for the global properties of the system.
As argued in [5], the coordination of agents can be looked
at from either the viewpoint of agents (subjective view) or
the viewpoint of the external observer who is not involved in
the multi-agent system (objective view). Although we focus
on the objective view on coordination in this paper, we be-
lieve that optimal coordination in multi-agent systems can
be achieved through a balanced combination of subjective
and objective views [5].

Furthermore, we consider an organization structure as a
coordination artifact. A motivation for the application of a
coordination language to multi-agent systems is to achieve
compositionality and to make the class of multi-agent sys-
tems closed under composition (i.e. coordination) operators.
In [5] (page 277), it is stated:

... a purely subjective approach to coordination
in the engineering of agent systems would en-
dorse a mere reductionistic view, coming to say
that agent systems are compositional, and their
behaviour is nothing more than the sum of the
individual’s behaviour – an easily defeasible ar-
gument, indeed.

This may suggest that a non-purely subjective coordination
approach means that multi-agent systems are not composi-
tional. We disagree with this suggestion and reformulate the
compositionality of multi-agent systems as follows: the be-
havior of multi-agent systems is nothing more than the sum
of the behaviors of its individual agents plus its coordination
mechanism.

In addition to the compositionality principle, other ad-
vantages of the objective approach to coordination are the
encapsulation of system-level properties and the separation
of concerns principle. These principles improve and sim-
plify the development of multi-agent systems considerably
[5]. The encapsulation of properties means that system-
level properties can be specified and verified in terms of
properties of the coordination artifacts (and not as prop-
erties of individual agents). For example, one can specify
and verify that a coordination artifact does not allow the
interception of specific information exchanged among some
agents. The separation of concerns principle means that the
organizational concepts should no longer be modelled (or im-
plemented) indirectly in terms of individual agent concepts.
For example, the requirement that agents in an E-market
should register before making proposals are system-level re-
quirements which can be modelled (or implemented) directly

in terms of social and organizational concepts (such as norm,
permission, responsibility, and rights) rather than indirectly
in terms of individual agent concepts (such as beliefs, goals,
and plans).

In order to introduce an objective approach to coordina-
tion and composition of multi-agent systems, we assume a
coordination language the expressions of which specify the
coordination of individual agents or multi-agent systems.
The expressions of this language are assumed to be compo-
sitional under coordination operators such that multi-agent
systems can be composed to form more complex multi-agent
systems through composition of their coordination mecha-
nisms. This idea of composition of multi-agent systems is
illustrated in Figure 1. In this figure, the sets a1, . . . , an

and b1, . . . , bm of individual agents are composed by the co-
ordination models C1 and C2, respectively. These compo-
sitions result multi-agent systems mas1 and mas2, respec-
tively. Moreover, multi-agent systems mas1 and mas2 are
in turn composed by the coordination model C3 forming the
third multi-agent system denoted by mas3. As suggested in
this figure, the coordination of mas1 and mas2 is through
the composition of their coordination mechanisms, i.e., c3
composes C1 and C2.

Agents

Multi-agent

a1 b1an bm

C1 C2

C3

mas1 mas2

mas3

Figure 1: The compositionality of multi-agent sys-

tems.

In order to formally describe this idea of compositionality
of multi-agent systems, we assume a coordination language
C, which will be explained in details in the next section.
The following simple inductive definition forms then the core
of our notion of compositionality and provides the class of
multi-agent systems closed under the coordination expres-
sions.

Definition 1 (multi-agent systems). Let Agents be
a set of individual agents and C be a coordination language.
The class of multi-agents systems MAS is defined as follows:

• If A = {a1, . . . , an} ⊆ Agents, n ≥ 1 and cA ∈ C is a
coordination expression that specifies the interactions
of agents in A, then cA(a1, . . . , an) ∈MAS

• If M = {m1, . . . , mk} ⊆MAS, k ≥ 1 and cM ∈ C is a
coordination expression that specifies the interactions
of multi-agent systems in M , then cM (m1, . . . , mk) ∈
MAS

The expression cM (m1, . . . , mk) should be read as “the multi-
agent system consisting of multi-agent systems m1, . . . , mk

coordinated by the coordination expression cM”. Note that
according to this definition a multi-agent system may con-
sist of one single agent and the coordination expression can
be such that it does not constrain the behavior of the agent.
It is important to observe that that this inductive definition
requires some kind of compositionality of the underlying co-
ordination language.

440

3. REO: A COORDINATION LANGUAGE
Reo is a channel-based exogenous coordination model that

allows objective and dynamic coordination of agents and
multi-agent systems [1, 2, 3]. In Reo, complex coordinators,
called connectors or networks, are compositionally built out
of simpler ones. The simplest connectors in Reo are a set
of channels with well-defined behavior supplied by users [2].
The emphasis in Reo is on connectors, their behavior, and
their composition, not on the agents that connect, commu-
nicate, and cooperate through them. The behavior of every
connector in Reo imposes a specific coordination pattern on
the agents that perform normal I/O operations through I/O
interfaces of that connector, without the knowledge of those
agents.

C3

C1 C2

Figure 2: Connectors and component composition

Reo’s notion of agents and connectors is depicted in Fig-
ure 2, where agents are represented as boxes, channels as ar-
rows, and connectors are delineated by dashed lines. Each
connector in Reo is, in turn, constructed compositionally
out of simpler connectors, which are ultimately composed
out of primitive channels.

For instance, the connector in Figure 2 may in fact be
a flow-regulator which represents a system composed out
of two writer agents (C1 and C3), plus a reader agent (C2).
Every agent performs its I/O operations following its own
timing and logic, independently of the others. None of these
agents is aware of the existence of the others, the specific
connector used to glue it with the rest, or even of its own role
in the composite system. Nevertheless, the protocol imposed
by our flow-regulator glue code (see [2] and [3]) ensures that
a data item passes from C1 to C2 only whenever C3 writes
a data item (whose actual value is ignored): the “tokens”
written by C3, thus, serve as cues to regulate the flow of
data items from C1 to C2. The behavior of the connector, in
turn, is independent of the agents it connects: without their
knowledge, it imposes a coordination pattern among C1, C2,
and C3 that regulates the precise timing and/or the volume
of the data items that pass from C1 to C2, according to the
timing and/or the volume of tokens produced by C3.

Reo defines a number of operations for agents to (dy-
namically) compose, connect to, and perform I/O through
connectors. Atomic connectors are channels. A channel is
a primitive communication medium with exactly two ends,
each with its own unique identity. There are two types of
channel ends: source end through which data enters and sink
end through which data leaves a channel. A channel must
support a certain set of primitive operations, such as I/O,
on its ends; beyond that, Reo places no restriction on the
behavior of a channel. This allows an open-ended set of dif-
ferent channel types to be used simultaneously together in
Reo, each with its own policy for synchronization, buffering,
ordering, computation, data retention/loss, etc.

A connector is a set of channel ends organized in a graph
of nodes and edges such that 1) zero or more channel ends
coincide on every node, 2) every channel end coincides on
exactly one node, 3) there is an edge between two (not nec-

essarily distinct) nodes iff there is a channel one end of which
coincides on each of those nodes. A node is an important
concept in Reo. Not to be confused with a location or an
agent, a node is a logical construct representing the funda-
mental topological property of coincidence of a set of chan-
nel ends, which has specific implications on the flow of data
among and through those channel ends.

a c d eb

Figure 3: Sink, Source, and Mixed nodes

The set of channel ends coincident on a node A is disjointly
partitioned into the sets Src(A) and Snk(A), denoting the
sets of source and sink channel ends that coincide on A,
respectively. A node A is called a source node if Src(A) 6=
∅ ∧ Snk(A) = ∅. Analogously, A is called a sink node if
Src(A) = ∅ ∧ Snk(A) 6= ∅. A node A is called a mixed
node if Src(A) 6= ∅ ∧ Snk(A) 6= ∅. Figures 3.a and 3.b
show sink nodes with, respectively, two and three coincident
channel ends. Figures 3.c and 3.d show source nodes and
Figure 3.e shows a mixed node where three sink and two
source channel ends coincide. In the following, we use

�

x to
denote the unique node on which the channel end x coincides
and use [N] to denote the set of all channel ends coincident
on node N (note that x ∈ [

�

x]).
Reo provides operations that enable agents to connect to

and perform I/O on source and sink nodes only; agents can-
not connect to, read from, or write to mixed nodes. This
implies that the sink and source nodes define the I/O inter-
faces of Reo network. At most one agent can be connected
to a (source or sink) node at a time. A component can write
data items to a source node e that it is connected to through
write(t,e,v) operation, where t is an optional time-out pa-
rameter, e is a channel end on which the agent performs the
write operation, and v is the value written to every channel
end x ∈ [

�

e]. The write operation succeeds only if all (source)
channel ends coincident on the node accept the data item,
in which case the data item is transparently written to every
source end coincident on the node. A source node, thus, acts
as a replicator.

An agent can obtain data items from a sink node that it
is connected to through destructive take (take(t,e,v,pat))
and non-destructive read (read(t,e,v,pat)) operations. In
these operations, t, e, and v are similar parameters as in the
write operation except that v is also optional and pat is the
optional parameter that indicates the pattern with which
the data item to be assigned to v should match. A take
operation succeeds only if at least one of the (sink) channel-
ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data
items, one is selected nondeterministically. A sink node,
thus, acts as a nondeterministic merger.

A mixed node is a self-contained “pumping station” that
combines the behavior of a sink node (merger) and a source
node (replicator) in an atomic iteration of an endless loop:
in every iteration a mixed node nondeterministically selects
and takes a suitable data item offered by one of its coincident
sink channel ends and replicates it into all of its coincident
source channel ends. A data item is suitable for selection in
an iteration, only if it can be accepted by all source channel

441

ends that coincide on the mixed node. A mixed node, thus,
acts as a merger followed by a replicator.

It follows that every channel represents a (simple) con-
nector with two nodes. More complex connectors are con-
structed in Reo out of simpler ones using its join opera-
tion. Joining two nodes destroys both nodes and produces a
new node on which all of their coincident channel ends coin-
cide. This single operation allows construction of arbitrarily
complex connectors involving any combination of channels
picked from an open-ended assortment of user-defined chan-
nel types. The semantics of a connector is defined as a com-
position of the semantics of its (1) constituent channels, and
(2) nodes. The semantics of a channel is defined by the user
who provides it. Reo defines the semantics of its three types
of nodes, as mentioned above. In addition to the join op-
eration, Reo proposes the split(e,quoin) operation which
produces a new node N and splits the set of channel ends in
[

�

e] between the old
�

e and N , according to the set of edges
specified in quoin. Using this operation together with the
join operation, the topology and structure of Reo networks
can be changed dynamically. This is an essential character-
istic of Reo which enables the dynamic reconfiguration of
organization is multi-agent systems.

3.1 Coordination by Connectors
The simplest channels used in connectors are synchronous

(Sync) channels, represented as simple solid arrows. A Sync

channel has a source and a sink end, and no buffer. It ac-
cepts a data item through its source end iff it can simulta-
neously dispense it through its sink. A lossy synchronous
(LossySync) channel is similar to a Sync channel, except
that it always accepts all data items through its source end.
If it is possible for it to simultaneously dispense the data
item through its sink (e.g., there is a take operation pending
on its sink) the channel transfers the data item; otherwise
the data item is lost. LossySync channels are depicted as
dashed arrows. An asynchronous channel can have a buffer
with the bounded capacity x (FIFOx). These channels are
denoted by an arrow with the small box in the middle of the
arrow representing their buffers. Such a channel accepts a
data item through its source end and offers them through
its sink end in the same order.

An example of the more exotic channels permitted in Reo
is the synchronous drain channel (SyncDrain), whose visual
symbol is like a Sync channel, but with two source ends. Be-
cause it has no sink end, no data value can ever be obtained
from this channel. It accepts a data item through one of its
ends iff a data item is also available for it to simultaneously
accept through its other end as well. All data accepted by
this channel are lost. A close kin of SyncDrain is the asyn-
chronous drain (AsyncDrain) channel: it has two source ends
through which it accepts and loses data items, but never si-
multaneously. SyncSpout and AsyncSpout are duals to the
drain channel types as they have two sink ends [2].

The basic channels, also called simple Reo connectors, in-
troduced above can be combined to make more complex
Reo connectors. These Reo connectors can be used in many
applications with organizational structures. In such appli-
cations, Reo connectors can be interpreted in terms of so-
cial and organizational concepts such as norms, permissions,
delegation of tasks and information flow. For example, in
auctions a permission mechanism is required that allows the
administrator to control the bids of agents and permit only

their valid bids. In Figure 4, a REO connector is illustrated
that models such a permission mechanism. According to
this Reo connector, the administrator should give the per-
mission to pass the valid bids from the buyers to the auction-
eer. Note that this REO connector models only one simple
aspect of auctions. A more comprehensive model of auction
by Reo connectors is presented in [11].

B1 B2 Auc Adm

Figure 4: A REO network for the bid permission part

of the auction.

3.2 Abstract Behavior Types (ABT)
An ABT defines an abstract behavior as a relation among

the observable input/output that occur through a set of
“contact points” without specifying any detail about: (1)
the operations that may be used to implement such behav-
ior; or (2) the data types those operations may manipulate
for the realization of that behavior.

There are several different ways to formalize the concept
of ABT. The formalization presented in [1] defines an ABT
as a relation (on a set of timed-data-streams which will be
defined below). This formalization emphasizes the relational
aspect of the ABT model explicitly and abstracts away any
hint of an underlying operational semantics of its implemen-
tation. This helps to focus on behavior specifications and
their composition, rather than on operations that may be
used to implement entities that exhibit such behavior and
their interactions.

Timed-data-streams were introduced to define a coalge-
braic semantics for Reo [3, 9]. A stream (over A) is an
infinite sequence of elements of some set A. The set of all
streams over A is denoted as Aω. Streams in DS = Dω

over a set of (uninterpreted) data items D are called data
streams and are typically denoted as α, β, γ, etc. Zero-
based indices are used to denote the individual elements of
a stream, e.g., α(0), α(1), α(2), ... denote the first, second,
third, etc., elements of the stream α. We use the infix “dot”
as the stream constructor: x.α denotes a stream whose first
element is x and whose successive elements are the elements
of the stream α.

The well-known operations of head and tail on streams
are called initial value and derivative: the initial value of
a stream α (i.e., its head) is α(0), and its (first) derivative
(i.e., its tail) is denoted as α′. The kth derivative of α is

denoted as α(k) and is the stream that results from taking
the first derivative of α and repeating this operation on the
resulting stream for a total of k times. Relational operators
on streams apply pairwise to their respective elements, e.g.,
α ≥ β means α(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥ β(2),

Constrained streams in TS = IRω
+ over positive real num-

bers representing moments in time are called time streams
and are typically denoted as a, b, c, etc. To qualify as a
time stream, a stream of real numbers a must be (1) strictly
increasing, i.e., the constraint a < a′ must hold; and (2)
progressive, i.e., for every N ≥ 0 there must exist an index
n ≥ 0 such that a(n) > N .

442

A Timed Data Stream is a twin pair of streams 〈α, a〉
in TDS = DS × TS consisting of a data stream α ∈ DS

and a time stream a ∈ TS, with the interpretation that
for all i ≥ 0, the input/output of data item α(i) occurs at
“time moment” a(i). Two timed data streams 〈α, a〉 and
〈β, b〉 are equal if their respective elements are equal, i.e.
〈α, a〉 = 〈β, b〉 ≡ α = β ∧ a = b.

Formalization of ABT in terms of timed data streams pro-
vides a simple yet powerful framework for the formal seman-
tics of Reo. Timed data streams are used to model the flows
of data through channel ends. A channel itself is just a
(binary) relation between the two timed data streams as-
sociated with its two ends. A more complex connector is
simply an n-ary relation among n timed data streams, each
representing the flow of data through one of the n nodes of
the connector.

The simplest channel, Sync, is defined as the relation:
〈α, a〉 Sync 〈β, b〉 ≡ α = β ∧ a = b

This equation states that every data item that goes into
a Sync channel comes out in the exact same order. The
equation states that the arrival and the departure times of
each data item are the same: there is no buffer in the channel
for a data item to linger on for any length of time.

A FIFO channel is defined as the relation:
〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b

As in a synchronous channel, every data item that goes
in, comes out of a FIFO channel in exactly the same order
(α = β). However, the departure time of each data item is
necessarily after its arrival time (a < b): every data item
must necessarily spend some non-zero length of time in the
buffer of a FIFO channel.

A FIFO1 channel is very similar to a FIFO:
〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a′

Not only the departure time of every data item is neces-
sarily after its arrival time (α < β), but since the channel
can contain no more than 1 element, the arrival time of the
next data item, , must be after the departure time of its
preceding element (a < b < a′ ≡ a(i) < b(i) < a(i + 1)).

A FIFO1(D) represents an asynchronous channel with the
bounded capacity of 1 filled to contain the data item D as
its initial value. The behavior of a FIFO1(D) channel is very
similar to that of a FIFO1:
〈α, a〉 FIFO1(D) 〈β, b〉 ≡ β = D.α ∧ b < a < b′

This channel produces an output data stream β = D.α

consisting of the initial data item D followed by the input
data stream α of the ABT, and (2) for i ≥ 0 performs its ith

input operation some time between its ith and i+1st output
operations (b < a < b′).

A SyncDrain channel merely relates the timing of the op-
erations on its two ends:

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b

The replication that takes place at Reo nodes can be de-
fined in terms of the ternary relation Rpl:

Rpl(〈α, a〉; 〈β, b〉, 〈γ, c〉) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a

The semicolon delimiter separates “input” and “output”
arguments of the relation. The relation Rpl represents the
replication of the single “input” timed data stream 〈α, a〉
into two “output” timed data streams 〈β, b〉 and 〈γ, c〉.

The nondeterministic merge that happens at Reo nodes
is defined in terms of the ternary relation Mrg:

Mrg(〈α, a〉, 〈β, b〉; 〈γ, c〉) ≡
− α(0) = γ(0) ∧ a(0) = c(0) ∧Mrg(〈α′, a′〉, 〈β, b〉; 〈γ′, c′〉)

if a(0) < b(0)
− ∃t : a(0) < t < min(a(1), b(1)) ∧ ∃r, s ∈ {a(0), t} ∧ r 6= s∧

Mrg(〈α, r.a′〉, 〈β, s.b′〉; 〈γ, c〉) if a(0) = b(0)
− β(0) = γ(0) ∧ b(0) = c(0) ∧Mrg(〈α, a〉, 〈β′, b′〉; 〈γ′, c′〉)

if a(0) > b(0)
An ABT is thus a relation over timed data streams. Every

timed data stream involved in an ABT is tagged either as its
input or its output. The notation R(I1, . . . , Im; O1, . . . , On)
is used to denote the ABT relation R defined on input timed
data streams I1, . . . , Im, also called input portals, and out-
put timed data streams O1, . . . , On, also called output por-
tals. Note that such an ABT is used to specify the semantics
of a Reo connector with m source nodes corresponding to
the input portals I1, . . . , Im and n sink nodes corresponding
to the output portals O1, . . . , On.

Because an ABT is a relation, two ABTs can be composed
to yield another ABT through a relational composition sim-
ilar to the join operation in relational databases. This yields
a simple, yet powerful formalism for specification of complex
behavior as a composition of simpler ones. Composition of
simple interaction primitives into non-trivial behavior, such
as the Reo networks in the above examples, can be expressed
as ABT composition [1]. Two ABTs A and B can be com-
posed over a common timed data stream s if one is the pro-
ducer of s (tag s as output) and the other is the consumer
of s (tag s as input). This can be generalized to the com-
position of two ABTs over one or more timed data streams
s1, . . . , sk if each ABT plays the role of the producer or the
consumer of one of timed data streams si for 1 ≤ i ≤ k.
For example, consider the ABTs A = 〈〈α, a〉, 〈β, b〉; 〈γ, c〉〉
and B = 〈〈δ, d〉; 〈β, b〉〉. These two ABTs can be composed
over the common timed data streams 〈β, b〉 resulting the
composed ABT C = 〈〈α, a〉, 〈δ, d〉; 〈γ, c〉〉. Note that 〈β, b〉
tagged as an input stream in the ABT A is connected to
〈β, b〉 tagged as an output stream in the ABT B.

4. REO-BASED COMPOSITION OF MULTI-
AGENT SYSTEMS

In definition 1, the compositionality of multi-agent sys-
tems is defined in terms of a coordination language the ex-
pressions of which are considered as composition operators.
In this section, we make this definition more concrete by
taking Reo as the actual coordination language. Moreover,
we assume that individual agents interact with a Reo net-
work by performing Reo operations such as read, write, and
take. Note that in the case of cognitive agents the values
that are read/taken from or written to the Reo channels
can be logical formulae including belief or goal formulae,
and plan expressions. In this paper, we abstract from the
exact nature of these values and focus on the coordination
and composition of multi-agent systems.

A multi-agent system can thus consist of a Reo network
that coordinates a non-empty set of individual agents or
multi-agent systems. The basic case of multi-agent systems
consists of a non-empty set of individual agents coordinated
by a Reo network which can be as simple as one channel.
However, the challenge is the composition of a set of multi-
agent systems, which requires the composition of their con-
stituting Reo networks in such a way that the composed Reo
network coordinates the sets of agents that are involved in
the constituent multi-agent systems. In principle, Reo net-

443

works can be composed through source, sink, and mixed
nodes. The composition of Reo networks through mixed
nodes is, however, semantically undefined. The reason is
that the composition of ABT’s is defined only in terms of
input and output timed data streams which correspond to
the source and sink nodes of Reo networks, respectively.

The composition of a set of multi-agent systems is thus
established only through source and sink nodes (I/O inter-
faces) of their Reo networks. However, in closed multi-agent
systems1, where agents cannot be added to or removed from
the system, the source and sink nodes of the corresponding
Reo networks are supposed to be used by the existing agents
to perform I/O operations. For closed multi-agent systems
there is no sense in having a Reo network with source or sink
nodes that are not used by agents. After all a Reo network
is supposed to coordinate the behavior of agents through
I/O interfaces used by the agents.

In order to compose two closed multi-agent systems, we
propose a certain composition procedure which indicates
that some agents need to be disconnected from the (source
or sink) nodes of each corresponding Reo network in order
to allow their composition through the source or sink nodes.
The disconnected agents should then be re-connected to the
composed Reo networks in a certain way as described in
the rest of this section. Note that the disconnected agents
cannot be re-connected to the nodes through which the com-
position is established since Reo does not allow to connect
more than one agent to a (source or sink) node at a time.
Moreover, agents cannot be connected to the nodes that are
resulted by joining one source and one sink node since the
resulting node is a mixed node to which no agent can be
connected (see previous section).

The composition of two multi-agent systems can be estab-
lished either directly by joining source or sink nodes of their
Reo networks from which agents are disconnected, as illus-
trated in Figure 5-A, or indirectly through a Reo network
with source and sink nodes that are joined with the sink
and source nodes of the Reo networks of the multi-agent
systems from which agents are disconnected, as illustrated
in Figure 5-B. The reconnection of the disconnected agents
to the composed Reo network (resulting from either a di-
rect or an indirect join of the nodes) is accomplished by the
following procedure which is illustrated in Figure 6.

mas1 mas2 mas1 mas2

Reo

A B

Figure 5: Direct and indirect composition through

Reo connectors.

Procedure 1. Consider the nodes N1 and N2 from multi-
agent systems mas1 and mas2 to which agents A1 and A2

are connected, respectively. If the composition requires di-
rect join of the nodes N1 and N2 into node N (left column
of Figure 6), then agents A1 and A2 are disconnected from
N1 and N2 to allow their join according to Figure 5-A. Sub-
sequently, agents A1 and A2 are connected to the node N

of the composed Reo network as follows. If N1 (or N2) is a
source node, then a synchronous channel and a source node

1We do not study open multi-agent systems in this paper.

N ′

1 (or N ′

2) are created such that the source end of the chan-
nel coincides on N ′

1 (or N ′

2) and its sink coincides on N .
The agent A1 (or A2) is then connected to N ′

1 (or N ′

2). If
the node N1 (or N2) is a sink node, then a similar procedure
is followed except that a sink node N ′

1 (or N ′

2) is created and
the direction of the created channels is the other way around,
i.e. it source is at N and its sink is at N ′

1 (or N ′

2). If the
composition requires an indirect join of the nodes through a
Reo network (right column of Figure 6), then similar opera-
tions should take place twice.

Composition Through
Reo Connectors

mas1 mas2 mas1 mas2Reo

A2 A1 A2A1

Composition Without
Reo Connectors

mas1 mas2 mas1 mas2Reo

A2 A1 A2A1

mas1 mas2 mas1 mas2Reo

A2 A1 A2A1

mas1 A1
N1

mas2A2
N2

N

N

N

Figure 6: Possible compositions of multi-agent sys-

tems.

In the following, we show some properties of the multi-
agent systems that are composed according to procedure
1. We first show that a Reo network R with a source (or
sink) node N has the same behavior as another Reo network
R′ which is identical to R except that it has an additional
source (or sink) node N ′ and a synchronous channel ch such
that the sink (or source) end of ch coincides on N and its
source (or sink) coincides on N ′. In fact, in R′ the (source
or sink) node N ′ replaces the (source or sink) node N . The
Reo networks R and R′ are illustrated in Figure 7.

N N’
N

N N’
N

R R’

ch

ch

Figure 7: Equivalent multi-agent systems.

Theorem 1. The Reo networks R and R′, illustrated in
Figure 7, have the same behavior, i.e. they have the same
semantics.

Proof. Let node N from R be a source node and let
the source of the channels ch1, . . . , chn be connected to N .
This implies that the behavior of N can be described as
the following replicator: Rpl(〈α, a〉; 〈β1, b1〉, . . . , 〈βn, bn〉) ≡
α = βi ∧ a = bi ∀i 1 ≤ i ≤ n where 〈α, a〉 is the
input stream of node N and 〈βi, bi〉 are input stream of
ch1, . . . , chn. Now suppose that 〈α, a〉 is the input of the
node N ′ in R′. Since this node is connected to N by a
Sync channel, the input of the node N is determined by this

444

channel as follows: 〈α, a〉 Sync 〈α′, a′〉 ≡ α = α′ ∧ a = a′.
The behavior of N is determined by a replicator as follows:
Rpl(〈α′, a′〉 ; 〈β1, b1〉, . . . , 〈βn, bn〉) ≡ α′ = βi ∧ a′ =
bi ∀i 1 ≤ i ≤ n. Since α = α′ ∧ a = a′, the behavior of
N in R′ is defined as α = βi ∧ a = bi ∀i 1 ≤ i ≤ n which
is the same as the behavior of N in R. Finally, since, R

and R′ are identical for all other nodes, we conclude that R

and R′ have the same behavior. We have assumed that N

is a source node. If the node N is a sink node, the proof
is similar except that the behavior of N is determined by a
merger.

In order to study the suggested notion of compositionality
for multi-agent systems, we may investigate the properties
of the composition operators. According to definition 1,
the coordination expressions (in this case Reo networks) are
the composition operators such that the properties of the
composition operators are the properties of the coordination
expressions. Since the coordination expressions affect the
interaction between agents or multi-agent systems, we may
investigate the preservation of certain interactions between
agents or multi-agent systems under specific compositions
(or coordination mechanisms).

A

A B

Figure 8: The neutral multi-agent system.

An interesting case to investigate is the preservation of in-
teractions between agents or multi-agent systems when they
are composed with a neutral multi-agent system masN ac-
cording to the composition operation as described in pro-
cedure 1. In the sequel, we call this composition operation
proc1. A neutral multi-agent system is defined as an agent
that is connected to the sink of one synchronous channel and
performs continuously a take operation. This is illustrated
in Figure 8-A (as illustrated in 8-B, the neutral multi-agent
system can also be modelled by a Reo network without any
agent). The idea is that the suggested composition of a
multi-agent system mas with a neutral multi-agent system
does not affect the interaction between agents from mas. In
order to define this property in a formal way, we consider
the interaction between agents in game theoretic sense in
terms of game outcomes and game equilibria [7].

Definition 2 (interaction preserving property).
Let mas be a multi-agent system, masN be the neutral multi-
agent system, and proc1 be the composition operation as
described in procedure 1. Let Agents be the set of agents,
A = {a1, . . . , an} ⊆ Agents be the subset of agents that are
involved in multi-agent system mas, and Stri be the set of
strategies (actions) of agent ai. If (strl

1, . . . , str
k
n) is an out-

come in mas, then it is also an outcome in proc1(mas,masN)
and proc1(masN , mas), where str

j
i ∈ Stri for all agents ai.

Moreover, if (strl
1, . . . , str

k
n) is an Nash equilibrium, then

it remains a Nash equilibrium in proc1(mas,masN) and
proc1(masN , mas).

In the following, we assume that the preferences of agents
on the outcomes of their interactions remains the same under
the composition operations. Moreover, we assume that the
action selection functions of agents (that determine possible

interactions) are defined only in terms of agents’ preferences
and agents’ information. Based on theorem 1, we show that
the composition of multi-agent systems as described in pro-
cedure 1 satisfies the properties specified in definition 2.

Theorem 2. The proc1 composition of multi-agent sys-
tems with a neutral multi-agent system and based on the di-
rect join of source and sink nodes (as described in procedure
1 and illustrated by the left column of Figure 6) satisfies the
property specified in definition 2.

Proof. Because of the space limitation, we present only
a sketch of the proof. The left column of Figure 6 enumer-
ates all possible compositions of two multi-agent systems.
Suppose that the multi-agent system mas2 is the neutral
multi-agent system. Then, the behavior of the node N in
the composed multi-agent system is determined only by the
data streams from agents involved in the multi-agent sys-
tem mas1 which includes agent A1. This implies that the
interactions between the agents in the composed multi-agent
system is determined only by the multi-agent system mas1

in which agent A1 is disconnected from N and connected
to N ′ which in turn is connected to N by the synchronous
channel. Theorem 1 states that this multi-agent system has
the same behavior as mas1 which means that the agent in-
teractions in the composed multi-agent system is identical
to the interactions in mas1.

Note that there is no guarantee to preserve the interaction
in a multi-agent system when the multi-agent system is com-
posed with a non-neutral multi-agent system and through a
direct join of the nodes as explained in procedure 1. This is
due to the possibility of the uncontrolled flow of information
from one multi-agent system to another. This may influ-
ence the behavior of the constituting agents and therefore
affecting their interactions. The situation is different for the
compositions of non-neutral multi-agent systems through in-
direct join of node and by means of specific Reo networks.

Theorem 3. Let mas1 and mas2 be two non-neutral multi-
agent systems. The proc1 composition of mas1 and mas2 by
means of a SyncDrain channel (as described in procedure 1)
satisfies the property specified in definition 2.

Proof. Following the proc1 composition operation as de-
scribed by procedure 1 and illustrated in the right column
of Figure 6, the result consists of two modified multi-agent
systems, which have the same behavior as mas1 and mas2

according to theorem 1. Moreover, the modified multi-agent
systems are connected to each other at nodes N1 and N2

through a SyncDrain channel. According to the semantics
of the channels, a SyncDrain relates only the timing of the
operations on its two ends. Thus, no information flows be-
tween the modified multi-agent systems which implies that
the interactions between agents in the modified multi-agent
systems are preserved.

It should be noted that the composition and coordina-
tion of multi-agent systems is usually expected to change
the behavior of the constituting multi-agent systems. For
example, a coordination expression that composes multi-
agent systems may be used to model a normative systems
that will constrain the interaction of the constituting agents.
Reo provides expressive and effective means to specify co-
ordination mechanisms that model a variety of social and

445

organizational structures such as power structures, informa-
tion flow, and delegation of goals or tasks. For example,
the Reo network illustrated in Figure 4 models a permission
structure, i.e. agent admin permits the communication be-
tween agents B1 and B2 on the one hand and agent Auc on
the other hand.

5. CONCLUSION AND FUTURE WORK
We believe that multi-agent systems will be accepted as

a computational model and software development method-
ology only if they can satisfy the principle of compositional-
ity in an effective and satisfactory manner. A key problem
related to the compositionality principle in multi-agent sys-
tems is the existence of two different computational entities.
The first entity is an individual agent and the second is
a multi-agent system. So, the question is how the notion
of compositionality should be defined with respect to these
two different computational entities. In other words, should
the concepts of individual agents, multi-agent systems, or
both be defined compositionally? The general agreement
is that multi-agent systems are composed out of individual
agents. However, this definition does not indicate whether
individual agents and multi-agent systems are compositional
entities. One of the existing approaches which has focused
on the notion of compositionality in multi-agent systems is
DESIRE [4]. The problem with this approach is that the
computational models of individual agents and multi-agent
systems are identical. This implies that DESIRE does not
respect the principle of separation of concerns to distinguish
individual agents from multi-agent systems. According to
this view, a multi-agent system is modeled as an individual
agent to which mental attitude and decision procedure can
be assigned.

In this paper, we have provided a compositional defini-
tion of multi-agent system which is closed under coordina-
tion operations. In fact, multi-agent systems are defined
in terms of individual agents and their organizational struc-
ture. Moreover, given a set of multi-agent systems, they can
be composed to form a more complex multi-agent system by
composing their organizational structures. In order to model
the organizational structure of multi-agent systems, we have
proposed to apply Reo. A significant advantage of Reo is
the possibility of dynamic reconfiguration of organizational
structures of multi-agent systems. Space limitation does not
allow us to explore this aspect of Reo in this paper, which we
leave for future research. We also have shown that the use
of Reo and exogenous coordination is compatible with the
intentionality that sets agents apart from normal processes,
objects, or components.

It should be clear that Reo allows to specify interaction
protocols directly. This is in contrast with other process
algebras, like pi-calculus, that allows the specification of
processes, not protocols. Reo allows the specification of pro-
tocols without specifying the processes or agents that partic-
ipate in these protocols. This is the significance of exogenous
coordination: a protocol can be imposed on a set of actors
from outside the actors. Using Reo it is possible to formally
specify, verify, and reason about the collaboration that hap-
pens in multi-agent systems since protocols are considered as
Reo networks, independently of the agents. Finally, further
research is needed to model specific social and organizational
concepts as Reo networks and investigate their compositions
to construct complex social organizations.

6. REFERENCES
[1] F. Arbab. Abstract behavior types: A foundation

model for components and their composition. In F.S.
de Boer, M.M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Formal Methods for Components
and Objects, volume LNCS 2852, Springer-Verlag,
pages 33–70. 2003.

[2] F. Arbab. Reo: A channel-based coordination model
for component composition. Mathematical Structures
in Computer Science, 14(3):329–366, 2004.

[3] F. Arbab and J.J.M.M. Rutten. A coinductive
calculus of component connectors. In D. Pattinson,
M. Wirsing, and R. Hennicker, editors, Recent Trends
in Algebraic Development Techniques, Proceedings of
16th International Workshop on Algebraic
Development Techniques (WADT 2002), pages 35–56.
LNCS 2755, Springer-Verlag, 2003.

[4] F.M.T. Brazier, C.M. Jonker, and J. Treur.
Compositional design and reuse of a generic agent
model. Applied Artificial Intelligence Journal,
14:491–538, 2000.

[5] A. Omicini, S. Ossowski, and A. Ricci. Coordination
infrastructures in the engineering of multiagent
systems. In Federico Bergenti, Marie-Pierre Gleizes,
and Franco Zambonelli, editors, Methodologies and
Software Engineering for Agent Systems: The
Agent-Oriented Software Engineering Handbook,
chapter 14, pages 273–296. Kluwer Academic
Publishers, 2004.

[6] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini. Coordination artifacts:
Environment-based coordination for intelligent agents.
In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors, 3rd international Joint Conference
on Autonomous Agents and Multiagent Systems
(AAMAS 2004), volume 1, pages 286–293, New York,
USA, 2004. ACM.

[7] Martin J. Osborne and Ariel Rubenstein. A Course in
Game Theory. The MIT Press, Cambridge,
Massachusetts, 1994.

[8] A. Ricci, M. Viroli, and A. Omicini. Role-Based
Access Control in MAS using Agent Coordination
Contexts. In V. Dignum, D. Corkill, C. Jonker, and
F. Dignum, editors, 1st International Workshop
“Agent Organizations: Theory and Practice”
(AOTP’04), pages 15–22. AAAI Press, 2004.

[9] J.J.M.M. Rutten. Elements of stream calculus (an
extensive exercise in coinduction). In S. Brookes and
M. Mislove, editors, Proc. of 17th Conf. on
Mathematical Foundations of Programming Semantics,
Electronic Notes in Theoretical Computer Science,
volume 45, pages 23–26. 2001.

[10] F. Zambonelli, N. Jennings, and M. Wooldridge.
Organizational abstractions in the analysis and design
of multi-agent systems. In First International
Workshop on Agent-Oriented Software Engineering at
ICSE. 2000.

[11] Z. Zlatev, N. Diakov, and S. Pokraev. Construction of
negotiation protocols for e-commerce applications.
ACM SIGecom Exchanges, 5(2):12–22, 2004.

446

