

A Comparative Evaluation of Agent Location Mechanisms

in Large Scale MAS

David Ben-Ami

Technion - Israel Institute of Technology
Haifa 32000, ISRAEL

davb@tx.technion.ac.il

Onn Shehory
IBM Haifa Research Lab
Haifa 31905, ISRAEL
onn@il.ibm.com

ABSTRACT
Agents in open multi-agent systems (MAS) need means for
locating other agents with which they may collaborate. To address
this need, several agent location mechanisms were suggested.
Two major approaches dominate agent location mechanisms: a
centralized approach using middle agents, and a distributed, peer-
to-peer approach. Agent designers, when designing agents to be
part of open MAS, should consider these approaches, to provide
the agents with appropriate agent location capabilities. However,
selecting an agent location approach, let alone a specific solution,
is a nontrivial task. In this study we address this difficulty. We
perform a systematic comparative evaluation of agent location
approaches. We measure the performance of these approaches
subject to various MAS configurations. We draw conclusions
regarding the conditions in which each approach is preferable.
Prior evaluations fall short in addressing realistic MAS settings.
In particular, our evaluation is the first to examine scalability of
agent location mechanisms in terms of both system size
(thousands of agents) and network distribution (over multiple
hosts). We present advantages and shortcomings of the examined
approaches.

Categories and Subject Descriptors
I.2.1 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Management, Measurement, Performance, Design.

Keywords
Multi Agent Systems; Location Mechanisms; Peer to Peer;
Distributed; Evaluation; Simulation.

1. INTRODUCTION
Agents in open MAS may need to perform tasks for which they

do not have the required capabilities or capacities. They may
however be able to delegate their tasks to other agents to be
performed by them. To do that, agents need to either hold contact
information of the other agents, or be able to acquire such
information. In open MAS, holding up-to-date contact
information of other agents is impractical. Hence, a major
problem in open MAS is the agent location problem.

Solutions to the agent location problem follow two major
approaches: a centralized approach using middle agents, and a
distributed, peer-to-peer approach. Agent designers, when
designing agents to be part of open MAS, should consider these
approaches, to provide the agents with appropriate agent location
capabilities. However, selecting an agent location approach, let
alone a specific solution, is a nontrivial task.

The majority of agent location mechanisms (e.g., [4,6,11,19])
adopt the centralized approach. However, centralized mechanisms
in large-scale, distributed MAS introduce problems. Most
prominently, central middle agents are potential single points of
failure, which can compromise the overall fault-tolerance of the
system. Some solutions attempt to overcome those problems via
distribution. In [9], a distributed matchmaking solution is
presented, where multiple matchmakers with partial information
each are coordinated using a special protocol. Another approach
[13] takes advantage of the fact that each agent already knows
about its own capabilities and uses a peer-to-peer (recursive)
search for locating an agent with the needed capability. The
distributed solutions introduce communication and coordination
overheads.

Given the limitations each solution approach introduces, one
needs means to decide which approach is more appropriate for
specific MAS. An attempt to evaluate these approaches was
introduced in [2]. That work however does not address well
realistic MAS settings. In particular, the size of MAS examined is
small to medium, and distribution over a network is not examined.
In contrast, in this work we evaluate and compare centralized and
distributed location mechanisms in large scale MAS (consisting of
thousands of agents) distributed over a real multi-host network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

339

We derive system characteristics in which each mechanism
performs better. We show that although both location approaches
provide agents with references they seek, they differ in speed and
quality of the results provided. We further prove that the
centralized mechanism works better for smaller, lightly loaded
systems, and that the distributed mechanism performs better for
larger, highly loaded systems.

Our results were arrived at via experiments performed on a
MAS deployed on a multi-host network. We have implemented
both centralized and distributed agent location mechanisms,
evaluated them, and compared their performance and robustness
under various configurations. Our methodology and results are
presented in this paper.

2. AGENT LOCATION APPROACHES
The most common location mechanisms are central directory

services in the form of middle agents of different sorts (e.g.
facilitators, matchmaker and registry agents). The problems with
the centralized solutions are the potential limitations on scalability
and fault tolerance of the system. In a large-scale system with
heterogeneous agent capabilities the workload on the middle-
agent that handles the location requests for the whole system can
increase rapidly and degrade the overall performance of the
system and of individual agents. Moreover, the middle agent that
supplies the directory services becomes one of the system failure
points and/or communication bottlenecks. Failures in the middle
agent can be critical and paralyze the entire system. These
potential performance and fault-tolerance drawbacks call for
alternative location mechanisms in open MAS that offer
scalability and fault-tolerance while preserving the inherent
accuracy of the centralized mechanisms.

Different approaches were suggested to overcome the above
mentioned problems. These solutions distribute the information
about agents’ capabilities among other system elements.
Distributed matchmaking [8] suggests coordination among
multiple matchmakers, each holding only part of the contact
information of the MAS. A variation of this approach might take
advantage of deployment of agents on different hosts or network
segments. The system designer assigns each host or segment of
the system with a local matchmaker that provides service to
agents in its vicinity (its segment). The local matchmaker can
consult its peers or a central matchmaker whenever it cannot
provide an answer to a local query. This type of solution reduces
communication traffic and confines it to network segments (in
which communication is fast). It further reduces message queue
sizes, thus improving scalability and fault tolerance. This
approach is applicable mainly in systems that have a hierarchical
topology, in which information sharing can be confined to local
segments. In systems with very large segments the problems of
scalability are only marginally relieved by this approach (because
the large segments become overloaded systems which have local
bottlenecks). Another case in which this approach is not useful is
systems with many cross-links between segments, in which case
the overhead of coordinating among local matchmakers might be
greater than the benefit from their distribution.

 A peer-to-peer approach [10] takes advantage of the fact that
each agent already knows about its own capabilities and those of a
few peers, and uses peer-to-peer (recursive) search for locating
agents with the needed capability. An agent broadcasts a query

for reference to its neighbors, and an agent that receives such a
request either offers its services to the original caller or broadcasts
the request to its own neighbors. This approach relies on each
agent indeed holding a neighbor list of its peers and adhering to
the location protocol. The communication among agents in this
approach is essential and the overall communication traffic
overhead may be large. It also requires a connection model among
the agents that will ensure a high number of correct answers
(good hit ratio for queries) and in the same time control
communication overhead so that the network is not overwhelmed
by the messages of the location protocol.

3. SIMULATION DESCRIPTION AND
RESULTS
3.1 Simulation Testbed Description

To examine location mechanisms, we developed a simulation
testbed that enables the definition of multiple different MAS
configurations and the deployment of agents on multiple hosts.
The testbed was developed in Java 2, using RMI for inter-agent
communication. Using the simulator, we have thoroughly tested
both the distributed and the centralized agent location
mechanisms in a wide set of configurations. We have specifically
measured the following metrics:

�RefTime – The average time for an agent to find another agent
with the sought capabilities (that is – to receive a reference to
a relevant other agent). We also measure the average time for
an agent's delegated tasks to complete (denoted as DoneTime).

�HitRate – The average rate of task accomplishment, the ratio
between the number of tasks that were successfully processed
by an agent and the total number of tasks assigned to it.

�MsgCount – The average number of both outgoing and
incoming messages (generated as a result of the use of the
location mechanism) per agent.

In our simulation, a MAS is implemented as a group of agent

threads. A set of capabilities, referred to as system capabilities, is
allocated to agents in the system. Each agent is allocated a
private, randomly generated, subset of system capabilities referred
to as local capabilities, and a set of randomly generated tasks
(each task requires one capability for its execution). A central
location mechanism is implemented as an independent
matchmaker thread.

The agents are identical in their logic but they differ in their
capabilities and tasks. When seeking other agents to perform a
task it cannot perform by itself, an agent may use one of the two
location mechanisms: centralized or distributed, to locate a
reference for a relevant agent.

The distributed location mechanism relies upon an agent
connection graph. This graph is determined at system setup
according to a connection model. Note that a connection between
two agents A, B does not refer to the existence of a
communication line between the two. Rather, it refers to the fact
that A knows of B or its address a-priori. Thus, the so-called
connection graph is fully expressed by the neighbor lists held by
the individual agents. In our tests of the distributed location
mechanism, we used 2 principal connection models:

�Grid connection - connecting each agent to its neighbors in a
grid of agents. This model is typical to designed, close

340

systems, where agents are known in advance to the designer.
This model is very convenient for analysis.

�Random connection – connecting each agent to k randomly
selected agents in the system. This model is typical to
emergent, open systems, where agents build their contact list
upon interaction with others.

The important parameters in this respect are the size of the

neighbor list of each agent (out-rank of the connection graph) and
the search horizon parameter. The latter is determined by the
Max_TTL parameter. TTL, (Time To Live) determines the number
of hops a query travels from its originator. The time complexity
of the distributed discovery algorithm in ordered graphs is
O(logN) (using the emergent small world actual connectivity
graph among agents [20]).

In the distributed mechanism, agents attempt to execute their
tasks, while attending to incoming messages from their peers. A
uniform delay between tasks (which may also be set to 0) enables
us to control the average workload on the system

3.2 Simulation Structure and Algorithms
This section provides a description of the structures, activities

and protocols of simulation entities.

3.2.1 The algorithm of the agent thread.
Initially, an agent is allocated a set of capabilities and a set of

tasks randomly. The agent then successively tries to find a
reference to service provider agents that can perform a task it
cannot perform by itself. Upon receiving references to other
relevant agents, the agent selects one of the references – a service
provider agent – and delegates the task to it. A task is considered
done after the requester agent receives an acknowledgement from
the service provider agent.

An agent that received a request for a reference either offers its
services to the original requester, if it can perform the task, or
broadcasts this request to its neighbors (provided that the request's
TTL has not expired). An agent that is requested to perform a task
on behalf of another agent does so and, upon completion, sends an
acknowledgement to the requesting agent.

3.2.2 The algorithm of the matchmaker thread.

In the case of a central location mechanism, each agent sends
its list of local capabilities to the matchmaker thread. Using these
inputs, the matchmaker constructs and holds, for each system
capability, a list of agents that provide it. To reduce
complexity, these lists are not exhaustive. Instead of including all
the agents that provide a specific capability in a capability
provision list, only N½ service providers – N being the number of
agents in the system – are included in each list. Upon receiving a
request for reference, the matchmaker selects (based on a
predefined randomized selection policy) one service provider
from the relevant capability provision list and sends a reference to
the requester. The combination of square-root list sizes with
random selection from the lists has experimentally shown to
minimize the workload of execution on the service provider
agents.

The size of the capability provision list was determined
heuristically based on experiments which showed that long lists
(close to N) proved to overload the matchmaker setup phase, and
constant sizes have affected agent performance negatively. Yet
we have no proof of optimality for square-root list sizes.

3.2.3 The algorithm of the monitor thread.

The monitor thread periodically queries all of the agents for
their progress rate; the agents return their counter of done tasks.
When all agents have finished their tasks, or the system is no
longer progressing, or a global timeout was reached, the monitor
thread stops all agents and closes log files.

3.2.4 Controlling system workload.

The rate at which agents request references depends on the
time it takes them to complete tasks; since in a simulated system
this time is negligible (there is no execution logic of the tasks), we
introduced artificial delays to prevent unrealistic overloads. A
constant delay between tasks, denoted by InterTaskDelay, was
added to the agent's execution algorithm. This delay reduces the
request rate and thus the workload on the location mechanism and
on the service provider agents. By varying the value of
InterTaskDelay, we controlled the system’s workload.

3.3 Experimental Results
Several sets of experiments were conducted on randomly

generated simulated MAS. Each set of experiments was repeated
5 times and results are the average of these 5 iterations. Each
agent was allocated 50 tasks. Averaging over tasks was performed
as well.

The first phase of experiments was conducted on a medium
size (up to 200 agents) single host system (all the threads
competed for resources on a single host). The second phase,
conducted on a large scale (up to 1500 agents) multiple host
system (consisting up to 15 hosts, each running a segment of the
system), will be described later in this paper.

The parameters that were set in our experiments, their notations
and units are described below:

1. System scale, denoted by N or NumAgents, is the
number of the agents in the system.

2. System workload is inversely proportional to the
delay between tasks. Therefore, we express it via this
delay, denoted by InterTaskDealy, measured in
milliseconds.

3. Connection model, may be either an ordered grid
(with 2 or 4 neighbors) or random (2, 3 or 4 neighbors).

4. Search horizon, denoted by Max_TTL, is the
maximal number of hops per message in the distributed
location mechanism.

5. Capability distribution (CD) is the percentage of
local capabilities out of the system capabilities allocated
to each agent.

In the first phase of the simulation we were specifically

interested in examining the effects of system workload, system
scale, capability distribution, connection model and search
horizon. We have thus conducted 4 sets of experiments in which

341

these parameters were examined. The experiments were
performed such that, when testing (and varying the value of) a
specific parameter, other parameter values were kept constant.
The specific settings of these experiments’ sets and their results
are described below.

3.3.1 Effect of system scale (set 1).

 For this set of experiments, we have constructed
configurations with 9, 16, 25, 49, 64, 100, 121, 144 and 196
agents (grids were square, for convenience). The other parameters
were set as follows: the workload was set to high (0 delay
between tasks); the connection model was a grid connection with
2 neighbors and Max_TTL = 5; the CD was set to 30%. In these
experiments we measured the response time (RefTime) for the
distributed location mechanism, denoted by DrefTime, and for the
centralized location mechanism denoted by CRefTime. The results
are presented in Figure 1.

Figure 1. The response times of the distributed location
mechanism are shorter than the response times of the central
location mechanism.

We have further measured MsgCount, the average number of
messages passing through an agent. The results appear in Figure
2, where DMsgs refers to the average message count for the
distributed location mechanism, and CMsgs refers to the average
message count for the centralized location mechanism.

As appears in Figure 1, the response times of the centralized
location mechanism are significantly higher than those of the
distributed location mechanism. Note however that the variance
of the response time (not presented in the figure) is greater for the
distributed location mechanism than it is for the centralized
mechanism. The message count (Figure 2) is significantly higher
for the distributed mechanism, however it is almost independent
of the system scale. These results suggest that, in terms of
responsiveness, the distributed location mechanism is more
efficient than the centralized mechanism in systems with high
workload, regardless of system size. Although this advantage of
the distributed mechanism results in a communication overhead,
this overhead is independent on system scale, therefore it does not
affect scalability.

Figure 2. The average message count per agent is higher for
the distributed location mechanism than it is for the
centralized location mechanism.

3.3.2 Effect of system workload (set 2).
For this set of experiments, we varied workloads (by varying

interTaskDelay), keeping other parameters constant. Recall that
lower delays mean higher workloads. The delays checked were 0,
100, 200, 300, 400, 500, 750 and 1000 milliseconds. Other
parameters were set as follows: system scale was set to two sizes,
49 and 100 agents; the connection model was a grid with 2
neighbors and Max_TTL=5; the CD was set to 30%. We measured
DRefTime and CRefTime. The results are presented in Figure 3.

Note that for both system sizes, 49 and 100, at some point –
we denote this point as the phase transition point – the response
time of the centralized location mechanism becomes better (i.e.
shorter) than the response time of the distributed mechanism.
Phase transitions occur when the system’s workload goes below
some threshold.

Figure 3 shows that, as workload decreases, the response time
of the centralized mechanism improves. Below some workload
threshold, the centralized mechanism is better than the distributed
mechanism. This workload threshold is lower as system scale
increases. On the other hand, for high workloads – the distributed
mechanism is significantly better than the centralized one, and
this advantage is more prominent for larger systems.

Figure 3. The response time improves as workload decreases
(and delay increases). The improvement in the centralized
case is sharper than it is in the distributed case. Phase
transition occurs at ~150 ms and ~400 ms, 49 and 100 agents,
respectively.

342

3.3.3 Effect of capability distribution (set 3).
For the third set of experiments, we have constructed

configurations with CDs of 10%, 20%, 30%, 40%, 50%, 60% and
70%, keeping other parameters constant. Recall that CD refers to
the ratio between the number of local capabilities and system
capabilities. The other parameters were set as follows: scale was
set to 49 agents; workload was set to high (setting delay to 0); the
connection model was a grid with 2 neighbors and Max_TTL=4.
We measured the HitRate (i.e. the average rate of accomplished
tasks). The results appear in Figure 4, where DHitRate and
CHitRate denote the hit rates of the distributed and the centralized
mechanisms, respectively.

For brevity, response time and message count measurements
for this set are not presented, however they were not surprising.
Higher CD values result in shorter response times and lower
message counts. A high hit rate for a centralized mechanism is not
a surprise either. However, interestingly, the distributed
mechanism achieved close to 100% hit rate for CDs above 20%;
even for a 10% distribution it achieved a 75-80% hit rate (Figure
4). For CDs of 20% or less, the results of the centralized
mechanism are better than those of the centralized one. This
however depends on the connection model and does not scale up
in larger systems and random connection models (Figure 5).

Figure 4. For small systems, hit rates are very high for both
mechanisms.

Figure 5. Hit rates with the distributed location mechanism
deteriorate in large-scale systems.

A set of experiments with large-scale systems (with a random
connection model) measured the average HitRate. As appears in
Figure 5, there is a clear degradation in the hit rate as system scale
increases. From this we can conclude that for larger system
scales, one might consider changes in the location search strategy
such as increasing search horizon or adding more contacts to the
connection model. These changes will trade off communication
overload for service quality.

3.3.4 Effect of the connection model (set 4).
For the fourth set of experiments, we have constructed

configurations with 5 different connection models and search
horizon (Max_TTL) values, keeping other parameters constant.
The connection models we checked were grid2, grid4, random2,
random3 and random4. Here, the number attached to the name of
the model refers to the size of the agent's contact list or number of
neighbors for each agent. The value of Max_TTL was varied from
2 to 6. Other parameters were set as follows: system scale was set
to 49 agents; workload was set to high; the CD was set to 30%.

In these experiments we measured the response times only for

the distributed location mechanism, as the connection model is
irrelevant in the case of a centralized location mechanism. The
results of these measurements are presented in Figure 6.

Figure 6. Response times of the random connection model are
consistently higher than those of the grid models.

The outrank of the connection graph is the most important
factor in affecting the growth rate of the message count. An
outrank of 2 neighbors provides satisfactory results for most TTL
values, while maintaining low overhead of messages.

The results of this experiment set suggest that the distributed
location mechanism performs more efficiently with an ordered
connection model than it does with a random model, although the
communication overhead is higher in this former case. From
multiple experiments we conducted, we learned that one should
use small sizes of contact lists (2-3) to prevent exponential growth
in the communication overhead in the distributed model. Even a
contact list of size 4 must have a limited search horizon to prevent
high communication overhead.

343

3.4 Multiple Hosts Experiments
In this section we describe the second phase of experiments,

conducted on a large scale (up to 1500 agents) multi-host system,
consisting of 10-15 hosts (some of the hosts were located in
different LAN segments). This phase of experiments examines the
results obtained in the previous phase in a larger, more realistic
environment. We balanced the number of agents on each host by
grouping them in system segments, although their contacts were
deliberately chosen to be from other system segments.

3.4.1 Effect of system scale in multiple host MAS.
In this set of experiments, we varied system scale, keeping

other parameters constant. The scales we checked were 200, 300,
400, 500, 700, 1000 and 1500. The agents were organized in
segments of 100 agents, each segment deployed on a different
host. The other parameters were set as follows: system workload
was set to high; the connection model was a random model with 2
neighbors from another segment and Max_TTL = 4; the CD was
set to 30%.

Multiple host - Response Times
 Distributed in Large Systems

0

50000

100000

150000

200000

250000

300000

200 460 720 980 1240 1500

Number of Agents

R
ef

Ti
m

e
(m

se
c)

Center
Distrib

In these experiments we measured the response time (RefTime)
for the distributed location mechanism, denoted by DrefTime, and
for the centralized location mechanism denoted by CRefTime.
The results of these measurements are presented in Figure 7. Note
that beyond 500 agents, the message queues of the centralized
location mechanism were extremely overloaded, and the
simulation stagnated. Under the same conditions, the distributed
mechanism functioned properly with 1500 agents, at reasonable
response times. Larger scales were not examined because of
limited memory resources: we could not run more than a 100
agents on each host, and we had only 15 hosts available.

As appears in Figure 7, the response times of the centralized
location mechanism are significantly higher than those of the
distributed location mechanism, and the centralized mechanism
stagnates for medium to large systems. Even for smaller systems,
the centralized mechanism exhibits a steep increase in response
time. This indicates that this mechanism is very sensitive to scale.
The system's scale affects the distributed location mechanism too,
however this effect is moderate, which implies that the
mechanism is scalable beyond the sizes examined here.

Figure 7. The central location mechanism exhibits consistently
higher response times than the distributed location
mechanism does in multiple host systems.

3.4.2 Effect of connection model in multiple host
MAS.

In this set of experiments we also studied the behavior of
response times and message count vs. different connection models
and search horizons in a large-scale system (1000 agents deployed
on 10 hosts). We used a random connection model (with 3
variations: 2, 3 and 4 contacts per agent) and allowed a range of
search horizons. Note that implementing a grid connection model
in a large system distributed across multiple hosts is cumbersome,
and therefore we do not examine such a configuration. The results
of the response times is not presented here for brevity however
the message count results appear in Figure 8.

MsgCount vs. Search Horizon
(Multihost - 1000 agent system)

0
100000
200000
300000
400000

2 3 4 5 6

Search Horizon (MAX_TTL)
A

ve
ra

ge

M
sg

C
ou

nt Rand2
Rand3
Rand4

Figure 8. Random connection models achieve exponential
message counts in large-scale multihost systems (The search
horizon and outrank cause steep increase in communication
overhead).

As seen in Figure 8, increasing the search horizon results in a

exponential increase in message counts; this phenomenon occurs
in all of the variations of the connection model checked. Thus,
achieving better hit rates comes at the expense of a steep rise in
communication overload. The effect of the outrank of the
connection model on the response time is relatively minor,
whereas it has a prominent effect on communication traffic.

In summary, the experiments presented in this paper
systematically compare agent location mechanisms. The results
provide valuable insights on performance and accuracy tradeoffs
when such mechanisms are implemented in open large-scale
MAS.

4. RELATED WORK
The MAS research community has performed several studies

on agent location mechanisms. That research introduced
mechanisms which are mostly centralized [4, 6, 11, 19]. While
Decker et al. [4] introduce middle agents for web-based MAS and
Wong and Sycara [19] describe different types of middle agents
in MAS, Kuokka and Harada [11] suggest the use of a
matchmaker mechanism and discuss its structure and merits,
while recognizing that it might not scale well. Jha et al. [9]
introduced a distribution of matchmakers and proposed a formal
analysis of an algorithm for coordination among them. A fully
distributed location mechanism was described in [13] and was
analyzed theoretically. In [2], the authors evaluate location
mechanisms, however they do so for fairly small systems, and
without network distribution.

344

Similar ideas of distributed resource discovery in the Internet
suggested, and new network models such as small-world [18] and
scale-free networks [1], in line with our results, suggest that
scalability of agent location mechanisms can be improved by
using proper connection models among the agents and by
eliminating central bottlenecks.

In a wider context, the theme of service location (or service
discovery in different terminology) in distributed systems and
networks was widely studied and many different mechanisms and
protocols were suggested in that context. Many of the distributed
models were inspired by ideas and successes of new
communication models such as the emerging peer-to-peer [3, 16]
and GRID [8,14,15] technologies.

These studies try to bring distribution of location and discovery
mechanisms into GRID and agent systems and show the potential
merits of these methods. Our study adds an experimental
evidence to the potential benefits of these mechanisms in large-
scale systems. We have seen relatively few studies ([8,17]) that
emphasize simulation with similar conclusions, however these
have focused on a specific framework and did not compare
systematically the performance of distributed and centralized
location mechanisms for large-scale MAS as we do.

Iamnitchi et al. [8] survey the resource discovery alternatives in
very large scale systems (GRID) and recommend (without
providing results for centralized mechanisms) introducing peer-to-
peer discovery methods over centralized ones for improved
scalability and fault-tolerance. Smithson and Moreau [14] and
Srinivasan et al. [15] argue for a similar move in MAS for
obtaining similar objectives. Vitaglione et al. [17] studied the
effect of using agent-to-agent methods in the JADE agent
framework. Gibbins and Hall [7] studied query routing services in
MAS and arrived at conclusions similar to ours regarding the
possibilities of fully distributed discovery, although they analyzed
the problem theoretically and did not backup it up with
experimental data.

Koubarakis [10] surveys the potential advantages of
synergizing the benefits of peer-to-peer methods and ideas into
MAS research and suggests a solution that involves distributed
caches (called also DHT – Distributed Hash Tables) and super-
peer solutions adopted in MAS context. A similar work is
 described in more detail by Dimakopoulos and Pitoura [5].
Their solution arrives at results better than our approach
provides, however it requires a more complicated protocol to be
embedded in each agent. Our work tried to keep the evaluated
mechanisms as simple as possible, to isolate
the effects of distribution on scalability. In addition to showing
the advantages of distributed mechanisms, the results
reported in [5] demonstrate the tradeoff between the
 complexity of the mechanism its performance.

Another complementary work of interest is that of Ogston and
Vassiliadis [12], which suggests a sophisticated mechanism for
querying neighbors and forming clusters of agents to replace
 the matchmaker function. Their simulation focused on the hit
rate of the agent queries and the emergent
behavior of the overlay network, while our work is focused on
response time and message count measurements.

5. CONCLUSION
We have evaluated and compared distributed and centralized

agent location mechanisms. For this we have developed a large
scale MAS simulation testbed and performed a series of
experiments in which both types of location mechanisms were
examined and matched. Our major conclusions are as follows.
Firstly, the response time of a distributed location mechanism is
significantly better than the response time of a centralized one, in
particular for large scale MAS. This result does not hold,
however, in capability-deprived MAS, where a centralized
mechanism will perform better. Secondly, it is evident that a
centralized location mechanism is very sensitive to workloads. At
a medium to high load, in particular in large MAS, the centralized
mechanism will perform poorly, whereas the distributed one will
hardly be affected.

In summary, it appears that a distributed agent location
mechanism is the appropriate solution for large scale MAS with
high workloads. Yet, one should recall that the advantages of the
distributed solution do come at the cost of a communication
overhead. This overhead may pose a severe problem. However, as
our results suggest, a careful design of the connection model can
reduce this risk.

Our study is a first step towards a better understanding of the
advantages and drawbacks of agent location mechanisms. In
particular, in future work we intend to examine mixed
mechanisms in which agents can decide whether to use peers or to
use middle agents to find other agents. We believe that such
mechanisms have the potential to perform better than both the
pure-centralized and pure-distributed solutions.

6. REFERENCES
[1] Barabasi, A.L., Albert, R., “Emergence of Scaling in Random
Networks”. Science, page 286(509), 1999.
[2] Ben-Ami, D., Shehory, O., “Evaluation of Distributed and
Centralized Agent Location Mechanisms”. LNAI, vol. 2446,
pages 264-278, Springer, 2002.
[3] Clarke I., Sandberg O., Wiley B., Hong T.W., "Freenet: A
Distributed Anonymous Information Storage and Retrieval
System”. Proceedings of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, 2000.
[4] Decker K., Sycara K., Williamson M. “Middle-Agents for the
Internet” .Proceedings of IJCAI-97, pages 578-583, Nagoya Japan
1997.
[5] Dimakopoulos V.V., Pitoura E., "A Peer-to-Peer Approach to
Resource Discovery in Multi-agent Systems". Proceedings of.
CIA 2003: pages 62-77.
[6] Genesereth M., Ketchpel S., “Software Agents”.
Communications of the ACM 37(7): 48-53, July 1994.
[7] Gibbins, N. and Hall, W. “Scalability Issues for Query
Routing Service Discovery”. Proceedings of the Second
Workshop on Infrastructure for Agents, MAS and Scalable MAS
(2001), pages 209-217.
[8] Iamnitchi, A., Foster, I., Nurmi, D., “A peer-to-peer approach
to resource discovery in grid environments”. High Performance
Distributed Computing, IEEE, Edinbourgh, UK, July 2002.
[9] Jha S., Chalasani P., Shehory O., Sycara K. “A formal
treatment of distributed matchmaking”. Proceedings of Agents-
98, pages 457-458 , Minneapolis, Minnesota, 1998.

345

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pitoura:Evaggelia.html

[10] Koubarakis M., "Multi-agent Systems and Peer-to-Peer
Computing: Methods, Systems, and Challenges". Proceedings of.
CIA 2003 pages 46-61.
[11] Kuokka D., Harada L., “Matchmaking for information
agents”. Proceedings of IJCAI-95, pages 672-679, 1995.
[12] Ogston E., Vassiliadis S., "Matchmaking Among
Minimal Agents Without a Facilitator". Proceedings of the 5th
International Conference on Autonomous Agents, pages 608-615,
2001.
[13] Shehory O., “A scalable agent location mechanism”.
LNAI Vol. 1757 (ATAL-99), pages 162-172, Springer, 2000.
[14] Smithson A., Moreau L., “Engineering an Agent-Based
Peer-To-Peer Resource Discovery System”. In Gianluca Moro
and Manolis Koubarakis, editors, First International Workshop on
Agents and Peer-to-Peer Computing, pages 69-80, Bologna, Italy,
July 2002.
[15] Srinivasan N. et al., ”Enabling Peer-to-Peer Resource
Discovery in Agent Environment” . Proceedings of Challenges in
Open Agent Systems (AAMAS 2002), July 2002.
[16] Stoica I., Morris R., Karger D., Kasshoek M.F.,
Balakrishnan H., “Chord: A scalable peer-to-peer lookup service
for Internet Applications”. Technical Report TR-819, MIT, March
2001.

[17] Vitaglione G., Quarta F. and Cortese E.. “Scalability
and Performance of JADE Message Transport System”.
Proceedings of the AAMAS Workshop on AgentCities, Bologna,
2002.
[18] Watts, D.J., Strogatz, S.H, “Collective Dynamics of
‘Small World’ Networks”. Nature, 393: pages 440-442, 1998.
[19] Wong H. C., Sycara K., “A taxonomy of middle-agents
for the Internet”. Proceedings of ICMAS-00, pages 465-466, July
2000.
[20] Yolum P., Singh M.P., “An Agent-Based Approach for
Trustworthy Service Location”. Proceedings of the 1st
International Workshop on Agents and Peer-to-Peer Computing,
Bologna, Italy 2002.
[21] Yu B., Singh M.P., “A Social Mechanism of Reputation
Management in Electronic Communities”. Proceedings of CIA-
00, pages 154-165, 2000.

346

