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ABSTRACT 
Agents in open multi-agent systems (MAS) need means for 
locating other agents with which they may collaborate. To address 
this need, several agent location mechanisms were suggested. 
Two major approaches dominate agent location mechanisms: a 
centralized approach using middle agents, and a distributed, peer-
to-peer approach. Agent designers, when designing agents to be 
part of open MAS, should consider these approaches, to provide 
the agents with appropriate agent location capabilities. However, 
selecting an agent location approach, let alone a specific solution, 
is a nontrivial task. In this study we address this difficulty. We 
perform a systematic comparative evaluation of agent location 
approaches. We measure the performance of these approaches 
subject to various MAS configurations. We draw conclusions 
regarding the conditions in which each approach is preferable. 
Prior evaluations fall short in addressing realistic MAS settings. 
In particular, our evaluation is the first to examine scalability of 
agent location mechanisms in terms of both system size 
(thousands of agents) and network distribution (over multiple 
hosts). We present advantages and shortcomings of the examined 
approaches. 

Categories and Subject Descriptors 
I.2.1 [Distributed Artificial Intelligence]: Multiagent systems 

General Terms 
Algorithms, Management, Measurement, Performance, Design. 

Keywords 
Multi Agent Systems; Location Mechanisms; Peer to Peer; 
Distributed; Evaluation; Simulation.  

1. INTRODUCTION 
Agents in open MAS may need to perform tasks for which they 

do not have the required capabilities or capacities. They may 
however be able to delegate their tasks to other agents to be 
performed by them. To do that, agents need to either hold contact 
information of the other agents, or be able to acquire such 
information. In open MAS, holding up-to-date contact 
information of other agents is impractical. Hence, a major 
problem in open MAS is the agent location problem.  

Solutions to the agent location problem follow two major 
approaches: a centralized approach using middle agents, and a 
distributed, peer-to-peer approach. Agent designers, when 
designing agents to be part of open MAS, should consider these 
approaches, to provide the agents with appropriate agent location 
capabilities. However, selecting an agent location approach, let 
alone a specific solution, is a nontrivial task.  

The majority of agent location mechanisms (e.g., [4,6,11,19]) 
adopt the centralized approach. However, centralized mechanisms 
in large-scale, distributed MAS introduce problems. Most 
prominently, central middle agents are potential single points of 
failure, which can compromise the overall fault-tolerance of the 
system. Some solutions attempt to overcome those problems via 
distribution. In [9], a distributed matchmaking solution is 
presented, where multiple matchmakers with partial information 
each are coordinated using a special protocol.  Another approach 
[13] takes advantage of the fact that each agent already knows 
about its own capabilities and uses a peer-to-peer (recursive) 
search for locating an agent with the needed capability. The 
distributed solutions introduce communication and coordination 
overheads. 

Given the limitations each solution approach introduces, one 
needs means to decide which approach is more appropriate for 
specific MAS. An attempt to evaluate these approaches was 
introduced in [2]. That work however does not address well 
realistic MAS settings. In particular, the size of MAS examined is 
small to medium, and distribution over a network is not examined. 
In contrast, in this work we evaluate and compare centralized and 
distributed location mechanisms in large scale MAS (consisting of 
thousands of agents) distributed over a real multi-host network. 
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We derive system characteristics in which each mechanism 
performs better. We show that although both location approaches 
provide agents with references they seek, they differ in speed and 
quality of the results provided. We further prove that the 
centralized mechanism works better for smaller, lightly loaded 
systems, and that the distributed mechanism performs better for 
larger, highly loaded systems.  

Our results were arrived at via experiments performed on a 
MAS deployed on a multi-host network. We have implemented 
both centralized and distributed agent location mechanisms, 
evaluated them, and compared their performance and robustness 
under various configurations. Our methodology and results are 
presented in this paper. 

2. AGENT LOCATION APPROACHES 
The most common location mechanisms are central directory 

services in the form of middle agents of different sorts (e.g. 
facilitators, matchmaker and registry agents). The problems with 
the centralized solutions are the potential limitations on scalability 
and fault tolerance of the system. In a large-scale system with 
heterogeneous agent capabilities the workload on the middle-
agent that handles the location requests for the whole system can 
increase rapidly and degrade the overall performance of the 
system and of individual agents. Moreover, the middle agent that 
supplies the directory services becomes one of the system failure 
points and/or communication bottlenecks. Failures in the middle 
agent can be critical and paralyze the entire system. These 
potential performance and fault-tolerance drawbacks call for 
alternative location mechanisms in open MAS that offer 
scalability and fault-tolerance while preserving the inherent 
accuracy of the centralized mechanisms. 

Different approaches were suggested to overcome the above 
mentioned problems. These solutions distribute the information 
about agents’ capabilities among other system elements. 
Distributed matchmaking [8] suggests coordination among 
multiple matchmakers, each holding only part of the contact 
information of the MAS. A variation of this approach might take 
advantage of deployment of agents on different hosts or network 
segments. The system designer assigns each host or segment of 
the system with a local matchmaker that provides service to 
agents in its vicinity (its segment). The local matchmaker can 
consult its peers or a central matchmaker whenever it cannot 
provide an answer to a local query. This type of solution reduces 
communication traffic and confines it to network segments (in 
which communication is fast). It further reduces message queue 
sizes, thus improving scalability and fault tolerance. This 
approach is applicable mainly in systems that have a hierarchical 
topology, in which information sharing can be confined to local 
segments. In systems with very large segments the problems of 
scalability are only marginally relieved by this approach (because 
the large segments become overloaded systems which have local 
bottlenecks). Another case in which this approach is not useful is 
systems with many cross-links between segments, in which case 
the overhead of coordinating among local matchmakers might be 
greater than the benefit from their distribution. 

 A peer-to-peer approach [10] takes advantage of the fact that 
each agent already knows about its own capabilities and those of a 
few peers, and uses peer-to-peer (recursive) search for locating 
agents with the needed capability. An agent broadcasts a query 

for reference to its neighbors, and an agent that receives such a 
request either offers its services to the original caller or broadcasts 
the request to its own neighbors. This approach relies on each 
agent indeed holding a neighbor list of its peers and adhering to 
the location protocol. The communication among agents in this 
approach is essential and the overall communication traffic 
overhead may be large. It also requires a connection model among 
the agents that will ensure a high number of correct answers 
(good hit ratio for queries) and in the same time control 
communication overhead so that the network is not overwhelmed 
by the messages of the location protocol.  

3. SIMULATION DESCRIPTION AND 
RESULTS 
3.1 Simulation Testbed Description 

To examine location mechanisms, we developed a simulation 
testbed that enables the definition of multiple different MAS 
configurations and the deployment of agents on multiple hosts. 
The testbed was developed in Java 2, using RMI for inter-agent 
communication. Using the simulator, we have thoroughly tested 
both the distributed and the centralized agent location 
mechanisms in a wide set of configurations. We have specifically 
measured the following metrics: 

�RefTime – The average time for an agent to find another agent 
with the sought capabilities (that is – to receive a reference to 
a relevant other agent). We also measure the average time for 
an agent's delegated tasks to complete (denoted as DoneTime). 

�HitRate – The average rate of task accomplishment, the ratio 
between the number of tasks that were successfully processed 
by an agent and the total number of tasks assigned to it. 

�MsgCount – The average number of both outgoing and 
incoming messages (generated as a result of the use of the 
location mechanism) per agent. 

 
In our simulation, a MAS is implemented as a group of agent 

threads. A set of capabilities, referred to as system capabilities, is 
allocated to agents in the system. Each agent is allocated a 
private, randomly generated, subset of system capabilities referred 
to as local capabilities, and a set of randomly generated tasks 
(each task requires one capability for its execution). A central 
location mechanism is implemented as an independent 
matchmaker thread. 

The agents are identical in their logic but they differ in their 
capabilities and tasks. When seeking other agents to perform a 
task it cannot perform by itself, an agent may use one of the two 
location mechanisms: centralized or distributed, to locate a 
reference for a relevant agent. 

The distributed location mechanism relies upon an agent 
connection graph. This graph is determined at system setup 
according to a connection model. Note that a connection between 
two agents A, B does not refer to the existence of a 
communication line between the two. Rather, it refers to the fact 
that A knows of B or its address a-priori. Thus, the so-called 
connection graph is fully expressed by the neighbor lists held by 
the individual agents. In our tests of the distributed location 
mechanism, we used 2 principal connection models: 

�Grid connection - connecting each agent to its neighbors in a 
grid of agents. This model is typical to designed, close 
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systems, where agents are known in advance to the designer. 
This model is very convenient for analysis. 

�Random connection – connecting each agent to k randomly 
selected agents in the system. This model is typical to 
emergent, open systems, where agents build their contact list 
upon interaction with others. 

 
The important parameters in this respect are the size of the 

neighbor list of each agent (out-rank of the connection graph) and 
the search horizon parameter. The latter is determined by the 
Max_TTL parameter. TTL, (Time To Live) determines the number 
of hops a query travels from its originator. The time complexity 
of the distributed discovery algorithm in ordered graphs is 
O(logN) (using the emergent small world actual connectivity 
graph among agents [20]). 

In the distributed mechanism, agents attempt to execute their 
tasks, while attending to incoming messages from their peers. A 
uniform delay between tasks (which may also be set to 0) enables 
us to control the average workload on the system 

 

3.2 Simulation Structure and Algorithms 
This section provides a description of the structures, activities 

and protocols of simulation entities.  
 

3.2.1 The algorithm of the agent thread. 
Initially, an agent is allocated a set of capabilities and a set of 

tasks randomly. The agent then successively tries to find a 
reference to service provider agents that can perform a task it 
cannot perform by itself. Upon receiving references to other 
relevant agents, the agent selects one of the references – a service 
provider agent – and delegates the task to it. A task is considered 
done after the requester agent receives an acknowledgement from 
the service provider agent. 

An agent that received a request for a reference either offers its 
services to the original requester, if it can perform the task, or 
broadcasts this request to its neighbors (provided that the request's 
TTL has not expired). An agent that is requested to perform a task 
on behalf of another agent does so and, upon completion, sends an 
acknowledgement to the requesting agent.  

 
3.2.2 The algorithm of the matchmaker thread.  

In the case of a central location mechanism, each agent sends 
its list of local capabilities to the matchmaker thread. Using these 
inputs, the matchmaker constructs and holds, for each system 
capability, a list of agents that provide it. To reduce 
complexity, these lists are not exhaustive. Instead of including all 
the agents that provide a specific capability in a capability 
provision list, only N½ service providers – N being the number of 
agents in the system – are included in each list. Upon receiving a 
request for reference, the matchmaker selects (based on a 
predefined randomized selection policy) one service provider 
from the relevant capability provision list and sends a reference to 
the requester. The combination of square-root list sizes with 
random selection from the lists has experimentally shown to 
minimize the workload of execution on the service provider 
agents. 

 

The size of the capability provision list was determined 
heuristically based on experiments which showed that long lists 
(close to N) proved to overload the matchmaker setup phase, and 
constant sizes have affected agent performance negatively. Yet 
we have no proof of optimality for square-root list sizes.  

 
3.2.3 The algorithm of the monitor thread.  

The monitor thread periodically queries all of the agents for 
their progress rate; the agents return their counter of done tasks. 
When all agents have finished their tasks, or the system is no 
longer progressing, or a global timeout was reached, the monitor 
thread stops all agents and closes log files. 

 
3.2.4 Controlling system workload.  

The rate at which agents request references depends on the 
time it takes them to complete tasks; since in a simulated system 
this time is negligible (there is no execution logic of the tasks), we 
introduced artificial delays to prevent unrealistic overloads. A 
constant delay between tasks, denoted by InterTaskDelay, was 
added to the agent's execution algorithm. This delay reduces the 
request rate and thus the workload on the location mechanism and 
on the service provider agents. By varying the value of 
InterTaskDelay, we controlled the system’s workload. 
 

3.3 Experimental Results 
Several sets of experiments were conducted on randomly 

generated simulated MAS. Each set of experiments was repeated 
5 times and results are the average of these 5 iterations. Each 
agent was allocated 50 tasks. Averaging over tasks was performed 
as well. 

The first phase of experiments was conducted on a medium 
size (up to 200 agents) single host system (all the threads 
competed for resources on a single host). The second phase, 
conducted on a large scale (up to 1500 agents) multiple host 
system (consisting up to 15 hosts, each running a segment of the 
system), will be described later in this paper.  

The parameters that were set in our experiments, their notations 
and units are described below: 

1. System scale, denoted by N or NumAgents, is the 
number of the agents in the system. 

2. System workload is inversely proportional to the 
delay between tasks. Therefore, we express it via this 
delay, denoted by InterTaskDealy, measured in 
milliseconds. 

3. Connection model, may be either an ordered grid 
(with 2 or 4 neighbors) or random (2, 3 or 4 neighbors). 

4. Search horizon, denoted by Max_TTL, is the 
maximal number of hops per message in the distributed 
location mechanism.  

5. Capability distribution (CD) is the percentage of 
local capabilities out of the system capabilities allocated 
to each agent. 

 
In the first phase of the simulation we were specifically 

interested in examining the effects of system workload, system 
scale, capability distribution, connection model and search 
horizon. We have thus conducted 4 sets of experiments in which 
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these parameters were examined. The experiments were 
performed such that, when testing (and varying the value of) a 
specific parameter, other parameter values were kept constant. 
The specific settings of these experiments’ sets and their results 
are described below.  

 
3.3.1 Effect of system scale (set 1). 

 For this set of experiments, we have constructed 
configurations with 9, 16, 25, 49, 64, 100, 121, 144 and 196 
agents (grids were square, for convenience). The other parameters 
were set as follows: the workload was set to high (0 delay 
between tasks); the connection model was a grid connection with 
2 neighbors and Max_TTL = 5; the CD was set to 30%. In these 
experiments we measured the response time (RefTime) for the 
distributed location mechanism, denoted by DrefTime, and for the 
centralized location mechanism denoted by CRefTime. The results 
are presented in Figure 1.  

Figure 1. The response times of the distributed location 
mechanism are shorter than the response times of the central 
location mechanism. 

We have further measured MsgCount, the average number of 
messages passing through an agent. The results appear in Figure 
2, where DMsgs refers to the average message count for the 
distributed location mechanism, and CMsgs refers to the average 
message count for the centralized location mechanism. 

As appears in Figure 1, the response times of the centralized 
location mechanism are significantly higher than those of the 
distributed location mechanism. Note however that the variance 
of the response time (not presented in the figure) is greater for the 
distributed location mechanism than it is for the centralized 
mechanism. The message count (Figure 2) is significantly higher 
for the distributed mechanism, however it is almost independent 
of the system scale. These results suggest that, in terms of 
responsiveness, the distributed location mechanism is more 
efficient than the centralized mechanism in systems with high 
workload, regardless of system size. Although this advantage of 
the distributed mechanism results in a communication overhead, 
this overhead is independent on system scale, therefore it does not 
affect scalability. 

 

Figure 2.  The average message count per agent is higher for 
the distributed location mechanism than it is for the 
centralized location mechanism. 

3.3.2 Effect of system workload (set 2).  
For this set of experiments, we varied workloads (by varying 

interTaskDelay), keeping other parameters constant. Recall that 
lower delays mean higher workloads. The delays checked were 0, 
100, 200, 300, 400, 500, 750 and 1000 milliseconds. Other 
parameters were set as follows: system scale was set to two sizes, 
49 and 100 agents; the connection model was a grid with 2 
neighbors and Max_TTL=5; the CD was set to 30%. We measured 
DRefTime and CRefTime. The results are presented in Figure 3. 

Note that for both system sizes, 49 and 100, at some point  – 
we denote this point as the phase transition point – the response 
time of the centralized location mechanism becomes better (i.e. 
shorter) than the response time of the distributed mechanism. 
Phase transitions occur when the system’s workload goes below 
some threshold. 

Figure 3 shows that, as workload decreases, the response time 
of the centralized mechanism improves. Below some workload 
threshold, the centralized mechanism is better than the distributed 
mechanism. This workload threshold is lower as system scale 
increases. On the other hand, for high workloads – the distributed 
mechanism is significantly better than the centralized one, and 
this advantage is more prominent for larger systems.  

 
Figure 3. The response time improves as workload decreases 
(and delay increases). The improvement in the centralized 
case is sharper than it is in the distributed case. Phase 
transition occurs at ~150 ms and ~400 ms, 49 and 100 agents, 
respectively.  
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3.3.3 Effect of capability distribution (set 3). 
For the third set of experiments, we have constructed 

configurations with CDs of 10%, 20%, 30%, 40%, 50%, 60% and 
70%, keeping other parameters constant. Recall that CD refers to 
the ratio between the number of local capabilities and system 
capabilities. The other parameters were set as follows:  scale was 
set to 49 agents; workload was set to high (setting delay to 0); the 
connection model was a grid with 2 neighbors and Max_TTL=4. 
We measured the HitRate (i.e. the average rate of accomplished 
tasks). The results appear in Figure 4, where DHitRate and 
CHitRate denote the hit rates of the distributed and the centralized 
mechanisms, respectively. 

For brevity, response time and message count measurements 
for this set are not presented, however they were not surprising. 
Higher CD values result in shorter response times and lower 
message counts. A high hit rate for a centralized mechanism is not 
a surprise either. However, interestingly, the distributed 
mechanism achieved close to 100% hit rate for CDs above 20%; 
even for a 10% distribution it achieved a 75-80% hit rate (Figure 
4). For CDs of 20% or less, the results of the centralized 
mechanism are better than those of the centralized one. This 
however depends on the connection model and does not scale up 
in larger systems and random connection models (Figure 5). 

 
Figure 4.  For small systems, hit rates are very high for both 
mechanisms. 

 
 
Figure 5. Hit rates with the distributed location mechanism 
deteriorate in large-scale systems. 

 
 
 
 

A set of experiments with large-scale systems (with a random 
connection model) measured the average HitRate.  As appears in 
Figure 5, there is a clear degradation in the hit rate as system scale 
increases. From this we can conclude that for larger system 
scales, one might consider changes in the location search strategy 
such as increasing search horizon or adding more contacts to the 
connection model. These changes will trade off communication 
overload for service quality. 

 

3.3.4 Effect of the connection model (set 4).  
For the fourth set of experiments, we have constructed 

configurations with 5 different connection models and search 
horizon (Max_TTL) values, keeping other parameters constant. 
The connection models we checked were grid2, grid4, random2, 
random3 and random4.  Here, the number attached to the name of 
the model refers to the size of the agent's contact list or number of 
neighbors for each agent. The value of Max_TTL was varied from 
2 to 6. Other parameters were set as follows: system scale was set 
to 49 agents; workload was set to high; the CD was set to 30%. 

 
In these experiments we measured the response times only for 

the distributed location mechanism, as the connection model is 
irrelevant in the case of a centralized location mechanism. The 
results of these measurements are presented in Figure 6. 

 
Figure 6. Response times of the random connection model are 
consistently higher than those of the grid models. 

The outrank of the connection graph is the most important 
factor in affecting the growth rate of the message count. An 
outrank of 2 neighbors provides satisfactory results for most TTL 
values, while maintaining low overhead of messages. 

The results of this experiment set suggest that the distributed 
location mechanism performs more efficiently with an ordered 
connection model than it does with a random model, although the 
communication overhead is higher in this former case. From 
multiple experiments we conducted, we learned that one should 
use small sizes of contact lists (2-3) to prevent exponential growth 
in the communication overhead in the distributed model. Even a 
contact list of size 4 must have a limited search horizon to prevent 
high communication overhead.  
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3.4  Multiple Hosts Experiments 
In this section we describe the second phase of experiments, 

conducted on a large scale (up to 1500 agents) multi-host system, 
consisting of 10-15 hosts  (some of the hosts were located in 
different LAN segments). This phase of experiments examines the 
results obtained in the previous phase in a larger, more realistic 
environment. We balanced the number of agents on each host by 
grouping them in system segments, although their contacts were 
deliberately chosen to be from other system segments. 

3.4.1 Effect of system scale in multiple host MAS. 
In this set of experiments, we varied system scale, keeping 

other parameters constant. The scales we checked were 200, 300, 
400, 500, 700, 1000 and 1500. The agents were organized in 
segments of  100 agents, each segment deployed on a different 
host. The other parameters were set as follows: system workload 
was set to high; the connection model was a random model with 2 
neighbors from another segment and Max_TTL = 4; the CD was 
set to 30%. 
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In these experiments we measured the response time (RefTime) 
for the distributed location mechanism, denoted by DrefTime, and 
for the centralized location mechanism denoted by CRefTime. 
The results of these measurements are presented in Figure 7. Note 
that beyond 500 agents, the message queues of the centralized 
location mechanism were extremely overloaded, and the 
simulation stagnated. Under the same conditions, the distributed 
mechanism functioned properly with 1500 agents, at reasonable 
response times. Larger scales were not examined because of 
limited memory resources: we could not run more than a 100 
agents on each host, and we had only 15 hosts available.      

As appears in Figure 7, the response times of the centralized 
location mechanism are significantly higher than those of the 
distributed location mechanism, and the centralized mechanism 
stagnates for medium to large systems. Even for smaller systems, 
the centralized mechanism exhibits a steep increase in response 
time. This indicates that this mechanism is very sensitive to scale. 
The system's scale affects the distributed location mechanism too, 
however this effect is moderate, which implies that the 
mechanism is scalable beyond the sizes examined here. 

Figure 7. The central location mechanism exhibits consistently 
higher response times than the distributed location 
mechanism does in multiple host systems. 

 
 
 

3.4.2 Effect of connection model in multiple host 
MAS. 

In this set of experiments we also studied the behavior of 
response times and message count vs. different connection models 
and search horizons in a large-scale system (1000 agents deployed 
on 10 hosts).  We used a random connection model (with 3 
variations: 2, 3 and 4 contacts per agent) and allowed a range of 
search horizons. Note that implementing a grid connection model 
in a large system distributed across multiple hosts is cumbersome, 
and therefore we do not examine such a configuration. The results 
of the response times is not presented here for brevity however 
the message count results appear in Figure 8. 
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Figure 8. Random connection models achieve exponential 
message counts in large-scale multihost systems (The search 
horizon and outrank cause steep increase in communication 
overhead). 
 
As seen in Figure 8, increasing the search horizon results in a 

exponential increase in message counts; this phenomenon occurs 
in all of the variations of the connection model checked. Thus, 
achieving better hit rates comes at the expense of a steep rise in 
communication overload.  The effect of the outrank of the 
connection model on the response time is relatively minor, 
whereas it has a prominent effect on communication traffic. 

In summary, the experiments presented in this paper 
systematically compare agent location mechanisms. The results 
provide valuable insights on performance and accuracy tradeoffs 
when such mechanisms are implemented in open large-scale 
MAS.  

4. RELATED WORK 
The MAS research community has performed several studies 

on agent location mechanisms. That research introduced 
mechanisms which are mostly centralized [4, 6, 11, 19]. While 
Decker et al. [4] introduce middle agents for web-based MAS and 
Wong and Sycara [19] describe different types of middle agents 
in MAS, Kuokka and Harada [11] suggest the use of a 
matchmaker mechanism and discuss its structure and merits, 
while recognizing that it might not scale well. Jha et al. [9] 
introduced a distribution of matchmakers and proposed a formal 
analysis of an algorithm for coordination among them. A fully 
distributed location mechanism was described in [13] and was 
analyzed theoretically. In [2], the authors evaluate location 
mechanisms, however they do so for fairly small systems, and 
without network distribution.   
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Similar ideas of distributed resource discovery in the Internet 
suggested, and new network models such as small-world [18] and 
scale-free networks [1], in line with our results, suggest that 
scalability of agent location mechanisms can be improved by 
using proper connection models among the agents and by 
eliminating central bottlenecks.   

In a wider context, the theme of service location (or service 
discovery in different terminology) in distributed systems and 
networks was widely studied and many different mechanisms and 
protocols were suggested in that context. Many of the distributed 
models were inspired by ideas and successes of new 
communication models such as the emerging peer-to-peer [3, 16] 
and GRID [8,14,15] technologies. 

These studies try to bring distribution of location and discovery 
mechanisms into GRID and agent systems and show the potential 
merits of these methods.  Our study adds an experimental 
evidence to the potential benefits of these mechanisms in large-
scale systems. We have seen relatively few studies ([8,17]) that 
emphasize simulation with similar conclusions, however these 
have focused on a specific framework and did not compare 
systematically the performance of distributed and centralized 
location mechanisms for large-scale MAS as we do. 

Iamnitchi et al. [8] survey the resource discovery alternatives in 
very large scale systems (GRID) and recommend (without 
providing results for centralized mechanisms) introducing peer-to-
peer discovery methods over centralized ones for improved 
scalability and fault-tolerance. Smithson and Moreau [14] and 
Srinivasan et al. [15] argue for a similar move in MAS for 
obtaining similar objectives. Vitaglione et al. [17] studied the 
effect of using agent-to-agent methods in the JADE agent 
framework. Gibbins and Hall [7] studied query routing services in 
MAS and arrived at conclusions similar to ours regarding the 
possibilities of fully distributed discovery, although they analyzed 
the problem theoretically and did not backup it up with 
experimental data. 

Koubarakis  [10]  surveys  the  potential  advantages  of 
synergizing the benefits of peer-to-peer methods and ideas into 
MAS research and suggests a solution  that  involves  distributed 
caches (called also DHT – Distributed Hash  Tables)  and  super-
peer  solutions adopted in MAS context. A similar work  is 
 described  in  more detail by Dimakopoulos and Pitoura [5]. 
Their solution arrives  at results better than our approach 
provides, however it requires a more complicated protocol to be 
embedded in each agent. Our work tried  to  keep  the evaluated 
mechanisms as simple as possible, to isolate 
the  effects  of  distribution  on  scalability. In addition to showing 
the advantages   of   distributed  mechanisms,  the  results  
reported  in  [5] demonstrate  the  tradeoff  between  the 
 complexity  of  the mechanism its performance. 

Another  complementary work of interest is that of Ogston and 
Vassiliadis [12],  which  suggests a sophisticated mechanism for 
querying neighbors and forming  clusters  of  agents  to  replace 
 the  matchmaker function. Their simulation  focused  on  the hit 
rate of the agent queries and the emergent 
behavior of the overlay network, while our work is focused on 
response time and message count measurements. 

5. CONCLUSION 
We have evaluated and compared distributed and centralized 

agent location mechanisms. For this we have developed a large 
scale MAS simulation testbed and performed a series of 
experiments in which both types of location mechanisms were 
examined and matched. Our major conclusions are as follows. 
Firstly, the response time of a distributed location mechanism is 
significantly better than the response time of a centralized one, in 
particular for large scale MAS. This result does not hold, 
however, in capability-deprived MAS, where a centralized 
mechanism will perform better. Secondly, it is evident that a 
centralized location mechanism is very sensitive to workloads. At 
a medium to high load, in particular in large MAS, the centralized 
mechanism will perform poorly, whereas the distributed one will 
hardly be affected.  

In summary, it appears that a distributed agent location 
mechanism is the appropriate solution for large scale MAS with 
high workloads.  Yet, one should recall that the advantages of the 
distributed solution do come at the cost of a communication 
overhead. This overhead may pose a severe problem. However, as 
our results suggest, a careful design of the connection model can 
reduce this risk. 

Our study is a first step towards a better understanding of the 
advantages and drawbacks of agent location mechanisms. In 
particular, in future work we intend to examine mixed 
mechanisms in which agents can decide whether to use peers or to 
use middle agents to find other agents. We believe that such 
mechanisms have the potential to perform better than both the 
pure-centralized and pure-distributed solutions. 
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