
Shoham, “Agent-oriented Programming”
§1. Introduction
Present a programming paradigm promoting a social view of

computing, where “agents” interact.

§1.1. What is an Agent?
An agent is any entity whose state is viewed as consisting of mental

components (e.g., beliefs, capabilities, choices, and commitments).

So agenthood is in the mind of the programmer.

While anything can be viewed as having mental states, it’s not
always advantageous to do so.

§1.2. On the Responsible Use of Pseudo-mental

Terminology
Elements required to ascribe a given quality to a component of a

machine:
• a precise theory regarding the mental category: a semantics

that’s clear yet close to the ordinary use of the term;
• a demonstration that the component obeys the theory; and
• a demonstration that the formal theory plays a nontrivial role in

analyzing or designing the machine.

The correspondence of the formal theory to common sense needn’t be

exact.

Shoham “Agent-oriented Programming”

 2

§1.3. AOP versus OOP
Use mental constructs to design the computational system.

Mental categories appear in the programming language.

Programming language semantics relates to the semantics of mental
constructs.

The agent-oriented programming (AOP) framework specializes the

object-oriented programming (OOP) paradigm in the sense of
Hewitt’s Actors:

view a computational system as composed of communicating
modules, each with its own way of handling messages.

AOP fixes the (mental) state of the modules (agents) to consist of

components such as beliefs, capabilities, and decisions.

A computation consists of these agents informing, requesting, offering,

accepting, rejecting, competing, and assisting one another.

According to speech act theory, each type of communication act
involves different presuppositions and has different effects.

Table 1. OOP versus AOP

 OOP AOP
Basic unit object agent
Parameters defining
state of basic unit

unconstrained beliefs, commitments,
choices, …

Process of
computation

message passing and
response methods

message passing and
response methods

Types of messages unconstrained inform, request, offer,
promise, decline, …

Constraints on
methods

none honesty, consistency,
…

Shoham “Agent-oriented Programming”

 3

§2. Two Scenarios
The first scenario is complex -- the type of application envisioned.

The second is a toy example serving three purposes:

• It crisply illustrates several AOP ideas.
• It’s implementable in the simple AGENT-0 language defined

later.
• It illustrates the fact that agents needn’t be robotic agents.

§2.1. Manufacturing Automation
Agents:

• Alfred handles regular-order cars.
• Brenda handles special-order cars.
• Calvin is a welding robot.
• Dashiel is a coordinating program controlling the plant.

--

• 8:00: Alfred requests that Calvin promise to weld ten bodies for him
that day.
Calvin agrees to do so.

• 8:30: Alfred requests that Calvin accept the first body, Calvin agrees,

and the first body arrives.
Calvin starts welding it and promises Alfred to notify him when it is
ready for the next body.

• 8:45: Brenda requests that Calvin work on a special-order car which

is needed urgently.
Calvin responds that it cannot right then. but that it will when it
finishes the current job, at approximately 9:00.

Shoham “Agent-oriented Programming”

 4

• 9:05: Calvin completes welding Alfred's first car, ships it out, and
offers to weld Brenda's car.
Brenda ships it the car, and Calvin starts welding.

• 9:15: Alfred enquires why Calvin is not yet ready for his (Alfred's)

next car.
Calvin explains why, and also that it (Calvin) expects to be ready by
about 10:00.

• 9:55: Calvin completes welding Brenda's car, and ships if out.

Brenda requests that it reaccept it and do some painting, but Calvin
refuses, explaining that it does not-know how to paint.
Calvin then offers to weld another car for Alfred, and proceeds to
weld Alfred's cars for a while.

• 12:15: Brenda requests that Calvin commit to welding four more

special-order cars that day.
Calvin replies that it cannot, since that conflicts with its commitment
to Alfred, who still has six unwelded cars.
Brenda requests Alfred to release Calvin from its commitment to
Alfred. Alfred refuses.
Brenda requests that Dashiel (remember Dashiel?) order Calvin.to
accept her important request and revoke its commitment to Alfred.
Dashiel orders Calvin to weld two of Brenda's cars, and then as
many of Alfred's as time allows.

• 3:30: Calvin senses it is low on lubricant, and, without interrupting its

work, asks Alfred for when the next lubrication is scheduled.
Alfred responds that he doesn't know, but that Dashiel should know.
Calvin asks Dashiel, who informs it that the next lubrication is
scheduled for 4:00.
Since that is sufficiently soon, Calvin continues to weld.

--

Shoham “Agent-oriented Programming”

 5

§2.2. Airline Reservation
Agents:

• P is a passenger.
• C is an airline clerk, a program.
• S is C’s supervisor.

By confirming a reservation, the airline enters into a commitment to
issue a boarding pass to the passenger at the appropriate time.

March

• P to C: Please inform me what flights you have from San Francisco to
New York on April 18.

• C to P: Flight #354 departs at 08:30. flight #293 departs at 10:00,
flight #441 departs at noon, …

• P to C: Please book me on #354.

• C to P: That is sold out.

• P to C: Please book me on #293.

• C to P: That is confirmed: your reservation number is 112358.

• P to C: Please book me also on #441.

• C to P: That conflicts with #293: I am not allowed to double book a
passenger.

• P to C: Please get permission to do so.

• C to S: I request permission for the fallowing double booking: …

• S to C: Permission denied.

• C to P: Sorry, I cannot get approval.

April 18, at the airport

• P to C: My name is P; I have a reservation for flight =293.

• C to P: Here is your boarding pass.

Shoham “Agent-oriented Programming”

 6

§3. Overview of the AOP Framework
A complete AOP system includes three primary components:

1. a restricted formal language (including several modalities such
as belief and commitment) with clear syntax and semantics for
describing mental states;

2. an interpreted programming language in which to define and
program agents, with primitive commands (e.g., REQUEST,
INFORM);

3. an “agentifier”, converting neutral devices into programmable
agents.

Component 2 is the main purpose of this article.

It relies on component 1.

Component 3 remains rather mysterious.

Shoham “Agent-oriented Programming”

 7

§4. Mental Categories and Their Properties
There’s no “correct” selection of mental categories nor a “correct”

theory of them.

§4.1. Components of Mental State
The actions of an agent are determined by its decisions, or choices.

Decisions are constrained (but nor determined) by the agent’s beliefs,

which refer to
• states of the world,
• mental states of other agents, and
• capabilities of this and other agents.

Decisions are also constrained by prior decisions.

So we introduce two mental categories, belief and decision, and a

third (not per se mental) category, capabilities.

Rather than take decision as basic, we start with obligation, or
commitment, and treat decision as commitment to oneself.

Shoham “Agent-oriented Programming”

 8

§4.2. A Language for Belief, Obligation, and Capability
Time
We believe things both about different times and at

different times.

Likewise for other modalities.

We adopt a point-based temporal language − e.g.,

holding(robot,cup)t
means

“The robot is holding the cup at time t.”

Action
We don’t distinguish between actions and facts:

the occurrence of an action is represented by the corresponding
fact holding.

E.g., instead of saying that the robot took the action raise-arm at time

t, we say that the sentence
raise-arm(robot)t

is true.

(To retain the agency behind the action, we introduce the notion of
decision.)

Since actions are facts, they’re instantaneous.

Shoham “Agent-oriented Programming”

 9

Belief
Using modal operator B,

Ba
t ϕ ⇒ “At time t agent a believes that ϕ“,

where ϕ is a (recursively defined) sentence.

E.g.,
7103),(balikeBB ba

means
“At time 3 agent a believes that at time 10 agent b will believe that

at time 7 a liked b.”

Obligation

ϕt
baOBL ,

means
“At time t agent a is obligated (committed) to agent b about ϕ.”

Decision (choice)
Decision is defined to be obligation to oneself:

ϕϕ t
aadef

t
a OBLDEC ,=

Shoham “Agent-oriented Programming”

 10

Capability

ϕtaCAN
means

“At time t agent a is capable of ϕ.”

E.g.,

85)(dooropenCAN robot
means

“At time 5 the robot can ensure that the door is open at time 8.”

ABLE is the “immediate” version of CAN.

Letting time(ϕ) be the outermost time occurring in sentence ϕ,

ϕϕ ϕ)(time
adefa CANABLE =

Shoham “Agent-oriented Programming”

 11

§4.3. Properties of the Various Components
Internal Consistency
We assume that both the beliefs and the obligations are internally

consistent:

• For any t, a: { }ϕϕ t
aB: is consistent.

• For any t, a: { }bOBLt
ba somefor : , ϕϕ is consistent.

Good Faith
Agents commit only to what they believe themselves capable of and

only if they mean it:
• For any t, a, b, ϕ: OBL B ABLEa b

t
a
t

a, (())ϕ ϕ ϕ→ ∧

Introspection
Agents are aware of their obligations:

• For any t, a, b, ϕ: OBL B OBLa b
t

a
t

a b
t

, ,ϕ ϕ⇔ .
• For any t, a, b, ϕ: ¬ ⇔ ¬OBL B OBLa b

t
a
t

a b
t

, ,ϕ ϕ .

But we don’t assume that agents need be aware of commitments

made to them.

Shoham “Agent-oriented Programming”

 12

Persistence of Mental State
Consider how mental states persist or change.

• Beliefs persist by default: agents have perfect memory of their

beliefs; a belief is dropped only when a contradictory fact is
learned.

The absence of belief also persists by default.

• Obligations persist but default, but there are conditions under

which they’re revoked, e.g.:
• explicit release of the agent by the party to which it’s obligated,

and
• realization by the agent that it’s no longer able to fulfill the

obligation.

• Since decision is defined in terms of obligation, it inherits the

default persistence.

While an agent can’t unilaterally revoke obligation to others, it can
cancel obligations to it -- including decisions.

• We here assume that capabilities are fixed.

The Contextual Nature of Modal Statements
Skip.

§4.4. A Short Detour: Comparison with Cohen and

Levesque
Skip.

Shoham “Agent-oriented Programming”

 13

§5. A Generic Agent Interpreter
The role of an agent program is to control the evolution of an agent’s

mental state.

Actions occur as side-effects of the agent being committed to an

action whose time has come.

The Basic Loop
Each agent iterates the following steps at regular intervals:

1. Read the current messages and update your mental state,
including your beliefs and commitments.
(The agent program is crucial for the update.)

2. Execute the commitments for the current time, possibly resulting

in further belief change.
(This is independent of the agent program.)

Actions to which agents can be committed include

• communicative actions (e.g., informing and requesting) and
• arbitrary “private” actions.

See Figure 1.

Shoham “Agent-oriented Programming”

 14

Initialize mental state
and capabilities.

Define rules for making

new commitments

Update
mental
state.

representation of
mental state

and
capability

Execute
commitments

for current time

Clock

outgoing messages

incoming messages

Legend:
control data

Fig. 1. A flow diagram of a generic agent interpreter

Shoham “Agent-oriented Programming”

 15

Assumption about Message Passing
Assume that the platform can pass messages to other agents.

addressable by name.

The interpreter determines when messages are sent.

Assumption about the Clock
The clock initiates iterations of the two-step loop at regular intervals.

The length of these intervals (the “time grain”) is determined by the

settable variable timegrain.

Assume a variable now whose value is set by the clock to the current

time.

Assume that a single iteration through the loop lasts less than the

time grain.
(A very strong assumption)

Synchronization is crucial for proper functioning of a society of

agents.

Shoham “Agent-oriented Programming”

 16

§6. AGENT-0, A Simple Language and Its
Implementation

§6.1. The Syntax of AGENT-0
The language itself specifies only conditions for making

commitments.

Commitments are actually made, and later carried out, automatically

at the appropriate times.

Commitments are only to primitive actions (directly executed by the

agent).

So an agent can’t commit to achieving any condition that requires

planning.

Fact Statements
Fact statements are used to specify both the contents of actions and

conditions for their execution.

They’re the atomic objective sentences of the temporal language

described above:

(t (employee smith acme))

(NOT (t (employee jones acme)))

Shoham “Agent-oriented Programming”

 17

Private and Communicative Action Statements
Actions may be private or communicative and, independently,

conditional or unconditional.

The syntax for a private action (e.g., by a database agent or a robot) is

(DO t p-action)

where t is a time point and p-action is a private action name.

Private actions may or may not involve IO.

Communicative actions always involve IO and are common to all agents.

AGENT-0 has only three types of communicative action:

• The syntax of informing is

(INFORM t a fact)

where t is a time point, a an agent name, and fact a fact statement.

• The syntax of requesting is

(REQUEST t a action)

where action is an action statement, recursively defined.

E.g.,

(REQUEST 1 a (DO 10 update-database))

(REQUEST 1 a (REQUEST 5 b
 (INFORM 10 a fact)))

• The syntax of canceling a request is

(UNREQUEST t a action)

We can also prevent commitment to a particular action:

(REFRAIN action)

Shoham “Agent-oriented Programming”

 18

Conditional Action Statements
We distinguish between

• commitments for conditional actions, which include conditions
to be tested just before acting, and

• conditions for entering into commitments in the first place (see
below).

A conditional action relies on a mental condition, which refers to the

mental state of the agent.

When the time comes to execute the action, the mental state at that

time is examined to see whether the mental condition is satisfied.

So the agent and time components of the mental state are left

implicit.

A mental condition, then, is any combination of modal statements in

the temporal-modal language, with the primary agent and time
arguments omitted.

Specifically, a mental condition is a logical combination of mental

patterns of the form

(B fact) or ((CMT a) action)
(“CMT” means the same as “OBL”.)

E.g.: (B (t (employee smith acme)))

Shoham “Agent-oriented Programming”

 19

The syntax of a conditional action, then, is

(IF mntlcond action)

E.g.,
(IF (B (t’ (employee smith acme)))
 (INFORM t a
 (t’ (employee smith acme))))

Mental conditions may contain the logical connectives AND, OR, NOT.

E.g., the following three actions constitute a query about whether
fact is true (b is being queried and is asked to inform a):

(REQUEST t b (IF (B fact)
 (INFORM t+1 a fact)))

(REQUEST t b (IF (B (NOT fact))
 (INFORM t+1 a (NOT fact))))

(REQUEST t b
 (IF (NOT (BW fact))
 (INFORM t+1 a
 (NOT (t+1 (BW a fact))))))

Shoham “Agent-oriented Programming”

 20

Variables
Procedures are invoked in a pattern-directed fashion.

Commitment rules are activated by certain patterns (generally

involving variables) in the incoming messages and current
mental state. (See below.)

A variable begins with “?”.

It may range over agent names, fact statements, or action

statements.

E.g.,
(IF (NOT ((CMT ?x) (REFRAIN sing))) sing)

Variables in action statements are interpreted as existentially

quantified.

The scope of the quantifier is upwards to the scope of the first
NOT or (if the variable isn’t in the scope of a NOT) it’s the
entire statement − see the last example.

A universally quantified variable begins with “?!”; its scope is the

entire formula.

E.g.,

(IF (B (t (emp ?!x acme)))
 (INFORM tʹ′ a (t (emp ?!x acme))))

Shoham “Agent-oriented Programming”

 21

Commitment Rules
Most of the action statements are unknown at programming time −

they’re communicated by other agents.

The program itself just contains conditions for the agent to enter into

new commitments.

Most commitments are in response to messages.

Conditions for commitments include both mental conditions (see

above) and message conditions (referring to the current incoming
messages).

A message condition is a message patterns of the form

(From Type Content)

where
• From is the sender’s name,
• Type is INFORM, REQUEST, or UNREQUEST, and
• Content is a fact statement or an action statement,

depending on Type.

Other information associated with a message (destination and
arrival time) is left implicit.

E.g:

(a INFORM fact)

means that one of the new messages is from a informing the agent of
fact.

And

(AND (a REQUEST (DO t walk))
 (NOT (?x REQUEST (DO t chew-gum))))

means that there’s a message from a requesting the agent to walk and
but no new request from anyone that the agent chew gum.

Shoham “Agent-oriented Programming”

 22

The syntax of a commitment rule is

(COMMIT msgcond mntlcond (agent action)*)

(The action statement may contain its own mental condition.)

E.g.,

(COMMIT (?a REQUEST ?action)
 (B (now (myfriend ?a)))
 (?a ?action))

A program is a sequence of commitment rules, preceded by a

definition of the agent’s capabilities and initial beliefs, and the
fixing of the time grain.

The following is the BNF for the AGENT-0 syntax.

<program> ::=
 timegrain := <time>
 CAPABILITIES := (<action> <mntlcond>)*
 INITIAL BELIEFS := <fact>*
 COMMITMENT RULES := <commitrule>*

<commitrule> ::=
 (COMMIT <msgcond> <mntlcond>
 (<agent> <action>)*)

<msgcond> ::=
 <msgconj> | (OR <msgconj>*)

<msgconj> ::=
 <msgpattern> | (AND <msgpattern>*)

<msgpattern> ::=
 (<agent> INFORM <fact>) |
 (<agent> REQUEST <action> |
 (NOT <msgpattern>)

<mntlcond> ::=
 <mntlconj> | (OR <mntlconj>*)

Shoham “Agent-oriented Programming”

 23

<mntlconj> ::=
 <mntlpattern> | (AND <mntlpattern>*)

<mntlpattern> ::=
 (B <fact>) |
 ((CMT <agent>) <action>) |
 (NOT <mntlpattem>)

<action> ::=
 (DO <time> <privateaction>) |
 (INFORM <time> <agent> <fact>) |
 (REQUEST <time> <agent> <action>) |
 (UNREQUEST <time> <agent> <action>) |
 (REFRAIN <action>) |
 (IF <mntlcond> <action>)

<fact> ::=
 (<time> (<predicate> <arg>*))

<time> ::=
 <integer> | now | <time-constant> |
 (+ <time> <time>) | (- <time> <time>) |
 (× <iD.teger> <time>)
 ; Time may be a <variable> when
 ; it appears in a commitment rule

<time-constant> ::=
 m | h | d | y
 ; m (minute) =60, h (hour) 3600, etc.

<agent> ::=
 <alphanumeric_string> | <variable>

<predicate> ::= <alphanumeric_string>

<arg> : :=
 <alphanumeric_string> | <variable>

<variable> ::=
 ?<alphanumeric_string> |
 ?!<alphanumeric_string>

Shoham “Agent-oriented Programming”

 24

§6.2. The AGENT-0 Interpreter
Since the AGENT-0 interpreter is an instance of the generic

interpreter, it inherits the two-step loop design.

In AGENT-0, the mental state consists of three components.

One − capabilities − is fixed.

So the first step in the loop may be specialized as:

(1a) Update the beliefs.
(2a) Update the commitments.

In AGENT-0, the beliefs, commitments, and capabilities of an agent

are each represented by a database.

Updating Beliefs
The belief database is updated either

a. as a result of being informed or
b. as a result of taking a private action -- e.g.,
1) A database agent comes to believe a fact after performing a

retrieval operation.
2) A robotic agent comes to believe something after performing a

visual routine.

We’re interested in a.

Shoham “Agent-oriented Programming”

 25

Consider assimilating a new fact ϕ into an existing database Γ.

Checking consistency for unconstrained theories (databases) is
either intractable (in the propositional case) or undecidable (in
the first-order case).

If ϕ is inconsistent with Γ, most theories of assimilation require
that Γ be “minimally” modified to restore consistency − this is an
even harder problem.

There are at least two approaches to getting around the complexity:

1. Relax the requirements. Adopt a heuristic assimilation
algorithm that compromises soundness or completeness.

2. [Taken in AGENT-0] Restrict the sentences so the problem
becomes tractable.

AGENT-0 disallows connectives other than negation −
consistency checking is at most linear in the database size.

(This is in addition to disallowing modal operators, needed for
nested beliefs.)

There remains the question of how to judge the new information −

we ultimately need a theory of authority.

AGENT-0 agents incorporate any fact they’re told, retracting the
contradictory atomic belief if it was held.

Shoham “Agent-oriented Programming”

 26

Updating Commitments
Items in the database of commitments are pairs

(agent action),
the agent to which the commitment was made and the content of the

commitment.

Items in the database of capabilities are pairs
(privateaction mntlcond).

The mental condition part prevents commitment to incompatible
actions.

E.g.,
((?!time (rotate wheelbase ?degrees))
(NOT ((CMT ?x) ?!time (service wheelbase))))

Existing commitments are removed either

a. as a result of UNREQUEST messages

The agent removes the corresponding item from the commitment
database if it exists, else does nothing.

or

b. as a result of belief change.

Belief change may affect capabilities since the capability of each
private action depends on mental preconditions.

So, whenever a belief update occurs, the AGENT-0 interpreter
examines the current commitments to private actions.

It removes those whose preconditions in the capability database
have been violated.

It should add a commitment to inform the agent to which it was
committed (but AGENT-0 doesn’t enforce this).

Removing existing commitments is independent of the program, but
adding them depends on the program.

Shoham “Agent-oriented Programming”

 27

Algorithm to add commitments
For each program commitment statement

(COMMIT msgcond mntlcond (ai actioni)*)

if
• msgcond holds of the new incoming messages,

• mntlcond holds of the current mental state,

• for all i, the agent is currently capable of actioni, and

• for all i,
• the agent is not committed to REFRAIN actioni, and
• if actioni is itself of the form REFRAIN actioni,

the agent isn’t committed to actioni

then, for all i, commit to ai to perform actioni.

Conditions for an agent to be capable of an action:

• An agent can request and unrequest anything from anyone.

• An agent can inform anyone of a fact he believes.
An agent can inform itself of any fact at all (useful to implement

reasoning in the agent).

• An agent is capable of any private action in the capability database
provided the mental condition associated with that private action
by the database holds at that time.

• An agent can refrain from any action provided he’s not already
committed to it.

• An agent can perform a conditional action (IF mntlcond
action) if he can perform action under the condition
mntlcond.

Shoham “Agent-oriented Programming”

 28

Carrying Out Commitments
Each commitment in the commitment database has an associated time.

In this second step, the interpreter executes all actions whose time is

in the interval (now - timegrain, now].

The meaning of “execute” depends on the type of action:

• INFORM, REQUEST, UNREQUEST: Send the appropriate
message.

• REFRAIN: No effect on execution.

• DO: Consulting the belief and commitment databases, check the
mental condition associated with the primitive action in the
capability database; if it holds, then perform the primitive action.

• IF: Consulting the belief and commitment databases, test the
mental condition; if it holds, then (recursively) execute the
action.

Shoham “Agent-oriented Programming”

 29

§6.3. A Sample Program and Its Interpretation
Present a program implementing a simplified version of the airline
representative of §2.

The ideas behind the program are that

• the relevant activity on the part of the airline is issuing a
boarding pass to the passenger, and

• confirming a reservation is a commitment to issue a boarding
pass at the appropriate time.

We first define some macros.

(issue_bp pass flightnum time) ⇒

 (IF (AND (B ((- time h) (present pass)))
 (B (time
 (flight ?from ?to flightnum))))
 (DO time - h
 (physical_issue_bp
 pass flightnum time)))

Explanation: Issue the boarding pass precisely 1 hr. (h) before the

flight.

physical_issue_bp is a private action involving some
external events.

Shoham “Agent-oriented Programming”

 30

--
(query_which t asker askee q) ⇒

 (REQUEST t askee
 (IF (B q) (INFORM (+ t 1) asker q)))

Explanation: This requests only a positive answer.

If q contains a universally-quantified variable, then
query_which requests to be informed of all instances of the
answer to the query q.

--
(query_whether t asker askee q) ⇒

 (REQUEST t askee
 (IF (B q)
 (INFORM (+ t 1) asker q)))

 (REQUEST t askee
 (IF (B (NOT q))
 (INFORM (+ t 1) asker (NOT q))))

Explanation: query_whether expects either a confirmation or a

disconfirmation of a fact.

Shoham “Agent-oriented Programming”

 31

Now, to define the airline agent, we define its initial beliefs,
capabilities, and commitment rules.

Initial Beliefs
Concerning the flight schedule:
(time (flight from to number))

And the number of seats available:

(time (remaining_seats time1 flight_number seats)

Capabilities

These are issuing boarding passes and updating the count of the
available seats on flights.

So the capability database contains two items:

((issue_bp ?a ?flight ?time) true)

((DO ?time
 (update_remaining_seats ?time1 ?flight_number
 ?additional_seats))
 (AND
 (B (?time
 (remaining_seats ?time1
 ?flight_number ?current_seats)))
 (?current_seats >= |?additional_seats|)))

 ; update_remaining_seats is a private action
 ; changing the belief about remaining_seats.

Shoham “Agent-oriented Programming”

 32

Commitment Rules
(COMMIT
 (?pass REQUEST
 (IF (B ?p) (INFORM ?t ?pass ?p)))
 true
 ?pass
 (IF (B ?p) (INFORM ?t ?pass ?p)))

(COMMIT
 (?cust REQUEST
 (issue_bp ?pass ?flight ?time))

 (AND
 (B (?time (remaining_seats ?flight ?n)
 (?n > 0)
 (NOT ((CMT ?anyone)
 (issue_bp ?pass ?anyflight ?time))))

 (myself
 (DO (+ now 1)
 (update_remaining_seats
 ?time ?flight -1)))

 (?cust (issue_bp ?pass ?flight ?time)))

See Table 2: a sample exchange between a passenger and the airline

agent.

The messages from the passenger are determined by him.

Those of the airline are initiated by the agent interpreter in

response.

Shoham “Agent-oriented Programming”

 33

Table 2
Sample exchange between a passenger and an airline agent
--

agent action
--

smith (query_which lmarch/l:00 smith airline
 (18april/?!time (flight sf ny ?!num)))

airline (INFORM lmarch/2:00 smith
 (18april/8:30 (flight sf ny #354)))

airline (INFORM lmarch/2:00 smith
 (18april/10:00 (flight sf ny #293)))

airline (INFORM lmarch/2:00 smith
 (18april/ …

smith (REQUEST lmarch/3:00 airline
 (issue_bp smith #354 18april/8:30))

smith (query_whether lmarch/4:00 smith airline
 ((CMT smith)
 (issue-bp smith #354 18april/8:30)))

airline (INFORM lmarch/5:00 smith
 (NOT ((CMT smith)
 (issue-bp smith #354 18april/8:30))))

smith (REQUEST lmarch/6:00 airline
 (issue-bp smith #293 18april/10,.00))

smith (query-whether lmarch/7:00 smith airline
 ((CMT smith)
 (issue-bp smith #293 18april/10:00)))

airline (INFORM lmarch/8:00 smith
 ((CMT smith)
 (issue-bp smith #293 18april/10:00)))

…

smith (INFORM 18april/9:00 airline
 (present smith))

airline (DO 18april/9:00
 (issue-bp smith #293 18april/10:00))

Shoham “Agent-oriented Programming”

 34

§6.4. Implementation
Skip.

§7. Agentification
Releasing manufacturers from the requirement to supply a mental

state creates a gap between
• the intentional level of agent programs and
• the mechanistic process representation of a given device.

The role of the agentifier is to bridge this gap.

We follow Rosenschein and Kaebling − situated automata − in this

decoupling of the intentional and machine levels.

There’s
• a low-level language for describing the device and
• a high-level language for the designer to reason about the

device.

The compiler takes a program in the high-level language and

produces a description of a device in the low-level language.

For the low-level process language, we require

• representation of process time, including real-valued durations,

• asynchronous processes, and
• multiple levels of abstraction.

− He has developed his own process model, temporal automata (see

references).

Shoham “Agent-oriented Programming”

 35

In agentification,
• the input to the translator includes a description of a machine in

the process language and
• the output is an intentional program.

So compilation into situated automata is de-agentification.

§8. Related Work
Skip.

Shoham “Agent-oriented Programming”

 36

§9. Discussion
Directions in which to extend the framework:

• Mental categories
Augment the language of mental states to include more complex

notions (e.g., desires, intentions, plans).

This will allow
◊ a richer set of communicative commands and
◊ more structure on the behavior of agents.

• Groundedness of mental categories

One contribution of distributed computing to the formal theory of
knowledge is the concrete grounding of the semantics:

the set of possible worlds became the set of possible global states
of a collection of finite-state processes, given a protocol.

With agentification, we should be able similarly to anchor belief
and commitment.

• Probability and utility
Most work on knowledge and belief adopts crisp notions of mental

attitudes − no representation of graded belief or commitment.

This contrasts with game-theoretic work on rational interaction

among agents in economics and AI, where uncertainty and utility
play key roles.

Shoham “Agent-oriented Programming”

 37

• Inheritance and groups
An analogue to inheritance in OOP would be (in AOP) “group

agents,” a group of agents constituting an agent.

If we define

◊ the beliefs of the composite agent as the common beliefs of the
individual agents and

◊ the commitments of the composite agent as the common
commitments of the individual agents,

then mental attitudes of the group are indeed inherited by the
individuals.

• Persistence of mental states
Dealing formally with the persistence of mental states is even harder

than dealing with the frame problem (cf. §4).

E.g., if I believe that you don’t believe x, do I believe that you won’t

believe x in a little while?

• Resource limitations

The definition of the interpreter assumed that belief and
commitment updates take negligible time.

But in many real-time applications this assumption is violated.

So the interpreter should choose wisely among mental operations.

(There’s much interest in intelligent real-time problem solving,
including the tradeoff between quality and timeliness.)

Shoham “Agent-oriented Programming”

 38

• Belief revision and update
AGENT-0 accepts all new information.

But we should consider what constitutes a reasonable policy of

belief update.

There are both semantic and algorithmic questions.

• Temporal belief maps
AGENT-0 can’t represent beliefs of agents about the beliefs or

commitments of other agents.

AGENT-0 keeps track of its beliefs by a time map, recording the

points of transition and assuming default persistence between
them.

AGENT-1 allows nested modalities in the belief database, using

high-dimensional time maps called mental time maps.

Temporal belief maps are a special case.

Shoham “Agent-oriented Programming”

 39

• Societies
We’ve looked only at agents functioning autonomously.

But successful agent societies need some global constraints – e.g.,
◊ social rules and
◊ social roles .

Both of these reduce the problem solving required by agents and

the communication overhead.

There’s a rich body of literature on computer societies − e.g.,

◊ Minsky’s informal Society of Mind metaphor

◊ Winograd’s studies of societal roles (human and machine)

◊ Moses and Tennenholz’s discussion of the computational
advantages of social laws

◊ Doyle’s work on the relationship between AI, rational
psychology, and economics

Shoham et al. have recently investigated the off-line design of social

laws that strike a good balance between

◊ preventing chaos and

◊ allowing sufficient freedom to individual agents.

They’re currently investigating the automatic on-line learning of
such laws.

