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Figure 2.1: Simple unconstrained 
optimization. 

Chapter 2: Introduction to Linear Programming 

You may recall unconstrained optimization from your high school years: the idea is to 
find the highest point (or perhaps the lowest point) on an objective function (see Figure 
2.1).  For optimization to be required, there must be more than one solution available.  In 
Figure 2.1, any point on the function is a 
solution, and because the single variable is 
real-valued, there are an infinite number of 
solutions.  Some kind of optimization 
process is then required in order to choose 
the very best solution from among those 
available.  What is meant by best depends 
on the problem at hand: it might mean the 
solution that provides the most profit, or that 
consumes the least of some limited resource, 
e.g. area in computer chip design, or fuel in 
delivery route design. 

Linear programming (LP) is the most 
commonly applied form of constrained optimization.  Constrained optimization is much 
harder than unconstrained optimization: you still have to find the best point of the 
function, but now you also have to respect various constraints while doing so.  For 
example, you must guarantee that the optimum point does not have a value above or 
below a prespecified limit when substituted into a given constraint function.  The 
constraints usually relate to limited resources.  The simple methods you used in high 
school to find peaks and valleys won’t work anymore: now the best solution (the 
optimum point) may not occur at the top of a peak or at the bottom of a valley.  The best 
solution might occur half way up a peak when a constraint prohibits movement farther 
up. 

The main elements of any constrained optimization problem are: 
• Variables (also called decision variables).  The values of the variables are not 

known when you start the problem.  The variables usually represent things that 
you can adjust or control, for example the rate at which to manufacture items.  
The goal is to find values of the variables that provide the best value of the 
objective function. 

• Objective function.  This is a mathematical expression that combines the 
variables to express your goal.  It may represent profit, for example.  You will be 
required to either maximize or minimize the objective function. 

• Constraints.  These are mathematical expressions that combine the variables to 
express limits on the possible solutions.  For example, they may express the idea 
that the number of workers available to operate a particular machine is limited, or 
that only a certain amount of steel is available per day. 
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• Variable bounds.  Only rarely are the variables in an optimization problem 
permitted to take on any value from minus infinity to plus infinity.  Instead, the 
variables usually have bounds.  For example, zero and 1000 might bound the 
production rate of widgets on a particular machine. 

In linear programming (LP), all of the mathematical expressions for the objective 
function and the constraints are linear.  The programming in linear programming is an 
archaic use of the word “programming” to mean “planning”.  So you might think of 
linear programming as “planning with linear models”.  You might imagine that the 
restriction to linear models severely limits your ability to model real-world problems, but 
this isn’t so.  An amazing range of problems can be modeled using linear programming, 
everything from airline scheduling to least-cost petroleum processing and distribution.  
LP is very widely used.  For example, IBM estimated that in 1970, 25% of all scientific 
computation was devoted to linear programming.   

Linear programming is by far the most widely used method of constrained optimization.  
The largest optimization problems in the world are LPs having millions of variables and 
hundreds of thousands of constraints.  With recent advances in both solution algorithms 
and computer power, these large problems can be solved in practical amounts of time. 

Of course, there are also many problems for which LP is not appropriate, and part of the 
job for this textbook is to help you decide when to use LP and the other techniques 
covered here, and when not to use them. 

A Prototype Example: The Acme Bicycle Company 

It’s time now to introduce you to a small example that we will be visiting numerous times 
throughout the book: the Acme Bicycle Company (ABC).  The name follows the time-
honored tradition in optimization and operations research texts of inventing bogus 
companies such as the “Wyndor Glass Company” (which, oddly, makes glass windows 
and doors), or the “Nori and Leets” Iron and Steel Company. 

The Acme Bicycle Company produces two kinds of bicycles by hand: mountain bikes 
and street racers.  Acme wishes to determine the rate at which each type of bicycle should 
be produced in order to maximize the profits on the sales of the bicycles.  Acme assumes 
that it can sell all of the bicycles produced. 
 
The physical data on the production process is available from the company engineer.  A 
different team produces each kind of bicycle, and each team has a different maximum 
production rate: 2 mountain bikes per day and 3 racers per day, respectively.  Producing a 
bicycle of either type requires the same amount of time on the metal finishing machine (a 
production bottleneck), and this machine can process at most a total of 4 bicycles per day, 
of either type. The company accountant estimates that mountain bikes are currently 
generating a profit of around $15 per bicycle, and racers a profit of around $10 per 
bicycle. 
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This problem is small enough to solve without using LP, just the straightforward 
application of common sense.  To maximize profit, start by producing the maximum 
number possible of the higher-profit mountain bikes and use any leftover production 
capacity to produce racers for additional profit.  This would mean a production rate of 2 
mountain bikes per day, which is the limit of the mountain bike team, yet leaves spare 
capacity on the metal finishing machine.  This remaining capacity can be used to produce 
2 racers per day, which is below the capacity of the racer production team. The total 
profit would then be 2×$15+2×$10=$50 per day. 
 
We will be formulating and solving the Acme problem as a linear program, but there is 
an important lesson here: the results returned by a mathematical program should always 
be compared to the results predicted by common sense.  If the two are in conflict, 
investigate.  You will discover either a modeling or data error, or will learn more about 
the underlying process, thereby sharpening your intuition.  The LP solution of the Acme 
problem had better turn up a daily profit of at least $50! 
 
The first step in formulating the ABC problem as a linear program is to identify the 
variables.  These are the items whose values you can set or otherwise control. The Acme 
variables are the production rates of mountain bikes (call this x1) and racers (call this x2).  
Note any bounds on the variables: 

• variable nonnegativity:  x1≥0, x2≥0 
 
Using these variables, next write the objective function: 

• maximize daily profit:  maximize Z=15x1+10x2 (in $ per day) 
 

It’s a convention to represent the value of the objective function by Z.   
 
Use the variables to write the constraints as well: 
 

• mountain bike production limit: x1≤2 (in bikes per day)
• racer production limit: x2≤3 (in bikes per day)
• metal finishing machine production limit: x1+x2≤4 (in bikes per day)

 
The first two constraints are normally considered variable bounds, but we will treat them 
as general constraints for now. 
 
Note that it is customary to write LP constraints with all of the variables on the left hand 
side of the relationship, and the constant value on the right hand side (rhs).  As in all LPs, 
all of the relationships (constraints and objective) are linear.   
 
On a superficial level, you now have all that you need to apply a linear programming 
solver: a set of linear constraints (≥ type, ≤ type, or = type) and a linear objective, and 
some variable bounds.  LP solvers are not hard to find: several are available for free via 
the World Wide Web, and an LP solver is even included in the Microsoft Excel 
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spreadsheet software for PCs.  For this reason, many people with only very limited 
understanding of LP are formulating and solving them.  The difficulty arises when 
unexpected results are returned: then a deeper understanding of LP is essential. 

Cornerpoints are Important 

Because there are only two variables in the Acme Bicycle Company formulation, the 
problem can be sketched on the plane, as shown in Figure 2.2.  The limiting value of each 
of the constraints is shown as a line.  Each constraint eliminates part of the plane.  For 
example, the vertical line labeled “x1=2” is the limiting value of the inequality x1≤2 and 
all points to the right of the line violate the constraint (i.e. are infeasible).  The areas 
eliminated by the constraints are shaded.  The unshaded area represents points that are 
not eliminated by any constraint, and is called the feasible region.  Points in the feasible 
region (which includes the bordering lines) satisfy all of the constraints. 
 
The linear programming problem in 
Figure 2.2 is to find the point in the 
feasible region that gives the largest 
value of the objective function.  One 
(silly) way to do this is to randomly 
choose feasible points and to calculate 
the value of the objective function at 
those points, keeping the point that gives 
the best value of the objective.  Because 
there are an infinite number of points in 
the feasible region, this is not very 
effective!  There is no guarantee that the 
best point will be found, or even that an 
objective function value that is close to 
the best possible value will be found.  We need a more efficient way of searching the 
feasible region. 
 
We can develop a more efficient search technique based on a couple of simple 

observations.  First, let’s plot points in the 2-
dimensional x1×x2 plane that have the same value 
of the objective function.  As shown in Figure 2.3, 
points having the same value of Z (value of the 
objective function) form a line.  This is easy to 
understand if we replace Z by the specific value 
that we want to plot, e.g. Z=15x1+10x2 becomes 
the line 15x1+10x2=20 plotted in Figure 2.3. 
 
Figure 2.3 also shows that all of the constant-
profit lines are parallel.  This is because all of the 
constant-profit line equations differ only by the 
selected value of Z.  If you were to calculate the 

Figure 2.2: The feasible  region for the Acme 
Bicycle Company problem. 

Figure 2.3: Some constant-profit 
lines for the ABC problem. 
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slope of any constant-profit line, the Z constant disappears; hence the slopes of all of the 
constant-profit lines are the same.  For the Acme Bicycle Company, all of the constant 
profit lines have the same slope, given by dx2/dx1 = -15/10 = -1.5. 
 
The third important observation is that the value of Z is higher for the constant-profit 
lines towards the upper right in Figure 2.3.  We will revisit this property in more detail 
when we cover nonlinear programming, but for now accept that this is a property of 
linear functions because they have a constant gradient. 
 
Now we can view the linear programming problem in a different way.  Picture the 
objective function as a constant-profit line that is floating upwards from the lower left to 
the upper right in Figure 2.3, increasing in value as it floats higher.  Now the linear 
programming question is this: what is the last point in the feasible region that the 
objective function passes through as it floats up to infinity?  From Figure 2.3 we see that 
the last point is (2,2) with Z=50.  This is the solution to the LP: the feasible point that has 
the best value of the objective function!  Another analogy is to imagine the objective 
function sinking from infinity in the upper right, decreasing in value until it first bumps 
into the feasible region.  What is the first feasible point that it bumps into (which will 
give the best value of the objective function)?  It is of course (2,2) with Z=50. 
 
Here is the final and most important observation.  Because lines define the feasible 
region, all of its external edges (or faces) are flat linear surfaces that join together at 
cornerpoints.  Again imagine the objective function as a line sinking from infinity: where 
will it first bump into this feasible region defined by flat faces and cornerpoints?  As you 
can see by inspection, the linear objective function will always first bump into the 
feasible region at a cornerpoint!  This is because a cornerpoint “sticks out farthest” in the 
direction of the sinking objective function line, hence first contact will be at a 
cornerpoint, and this will define the optimum point. 
 
In some cases, the objective function has exactly the 
same slope as a face of the feasible region and first 
contact is between the objective function and this 
face, as in Figure 2.4.  This means that all of the 
points on that face have the same value of the 
objective function, and all are optimum: i.e. there are 
multiple optima.  Notice, though, that if a face has 
first contact, then the cornerpoints of the face also 
have first contact.  The important idea is that first 
contact between the objective function and the 
feasible region always involves at least one 
cornerpoint.  Hence, an optimum solution to the LP is 
always at a cornerpoint. 
 
This observation drastically simplifies the search for the optimum point: we need to look 
only at the relatively small number of cornerpoints of the feasible region instead of 
randomly sampling the infinite number of points on the interior of the feasible region.  

Figure 2.4: The slope of the 
objective function exactly matches 
the slope of the face of the feasible 

region. 
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This fact underlies the simplex method of linear programming, which we shall begin to 
address in the next chapter.  For now just observe in Fig. 2.2 that there are only five 
feasible cornerpoints that need to be visited to find an optimum solution to the Acme 
Bicycle Company LP. 
 
It is also easy to identify when there are multiple optima just by looking at the feasible 
cornerpoints.  In two dimensions, when two feasible cornerpoints have the same optimum 
value of the objective function, then all of the points on the line segment joining the two 
cornerpoints have the same optimum value.  It’s worth knowing this because one of the 
intermediate optimum points may be preferable to the cornerpoints for nonquantifiable 
reasons.  It is possible to have three or more feasible cornerpoints with the same optimum 
value of the objective function in a three dimensional problem.  Imagine, for example, 
that the feasible region is defined by a three-dimensional tetrahedron and that the slope of 
the objective function plane is exactly equal to the slope of one of the faces of the 
tetrahedron.  Now all three feasible cornerpoints of the triangular face of the tetrahedron, 
and all of the points on the face of the tetrahedron, will have the same optimum value of 
the objective function. 

The Underlying Assumptions in Linear Programming 

The inescapable underlying assumption that is made in modeling the real world via linear 
programming is that a linear model is suitable.  Models constructed solely from linear 
relationships have certain limitations.  The most obvious is that some real-world 
phenomena are poorly modeled by lines.  Nonlinear relationships such as curves or step-
functions may be needed instead.  If such nonlinear or discontinuous relationships are not 
adequately approximated by linear relationships, then you must use a technique other 
than linear programming. 
 
The two linear properties of additivity and proportionality preclude curves or step-
functions. The additivity property prohibits cross-product terms, e.g. 5x1x2, which might 
represent interaction effects between the variables.  For example, Acme may discover 
that ordering materials for both bicycles together from the same supplier lowers costs, but 
this effect cannot be modelled using a linear relationship. 
 
The proportionality property requires that the value of each term in the linear function is 
strictly proportional to the value of the variable in the term. For example, the objective 
function cost of using a certain variable is always directly proportional to the level of use 
of the variable: it is not possible to include a start-up cost.  In the Acme model, the 
proportionality assumption is violated if, for example, the production efficiency improves 
significantly as the rate of production increases. 
 
Linear programming assumes that the variables are real-valued, meaning that they can 
take on fractional values.  In the Acme problem we are trying to determine the rate of 
production, which can take on fractional values, e.g. produce mountain bicycles at the 
rate of 1.5 per day.  Fractional values are not suitable in some problems, such as 
determining the number of people to staff a set of restaurants or the number of ships to 
purchase.  Where at least one variable is restricted to taking on an integer value, then you 
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must use the methods of integer programming, which are covered in a later chapter.  For 
now, note that it is not acceptable to treat integer problems as linear problems and then 
just round the results to the closest integer.  This may yield an infeasible solution.  The 
true optimum in an integer programming problem can be very far away from the 
approximate solution obtained by linear programming. 
 
A weakness common to all of mathematical programming is the assumption that the input 
data are perfectly accurate.  You are assuming that the objective function coefficients 
(profit per bicycle for Acme), the constraint coefficients, and the constraint right hand 
sides (e.g. maximum team daily production of mountain bikes) are all correct.  In the real 
world, these numbers are seldom known with accuracy.  For example, how does Acme 
really know how much profit it makes per bicycle of either type?  In large companies 
such a number is generally produced by the Accounting department, which uses data 
about average amount of material used in each bicycle, average price paid for the 
materials, average worker wages, yearly depreciation estimates on machines, average 
selling prices, etc., to estimate the “profit per mountain bike sold”.  The emphasis is on 
“estimate”. 
 
So how useful is the optimum result produced by the mathematical program if the input 
data is of poor quality?  It can be extremely useful, but you have to be careful.  First and 
foremost, don’t treat the output result as if it is “the” answer: you might arrive at quite 
different results just by using slightly different estimates of the input parameters.  For 
example, will you get a different result if the profit per mountain bike is estimated at $14 
instead of the present $15?  This is where sensitivity analysis is applied: using various 
tests to determine how sensitive the optimum result is to small changes in the values of 
the input parameters.  It turns out that Acme should still make two each of the racers and 
mountain bikes per day even if the profit per mountain bike is $1 lower than estimated, 
but of course the total rate of profit generation will be lower.  If knowing the total profit 
generation rate is crucial to Acme, then it is worthwhile to analyze various scenarios of 
profit per bicycle. 

Formulation Practice: the Smalltime Mutual Funds Company 

Formulating LPs well takes practice.  In a classroom situation you will often know in 
advance that you are formulating a linear program.  In contrast, in the real world you 
normally don’t know the type of the problem when you begin studying it, and that makes 
formulation much more difficult.  The only way to improve your skills in formulation is 
practice, practice, practice.  So here’s another example.  Try to formulate it before 
looking at the solution as give below. 
 
You are the investments manager for the Smalltime Mutual Funds Company, and are 
trying to determine how to invest a pool of $14 million released by cashing out some of 
the stock investments.  Table 2.1 summarizes the information that you have about a set of 
five possible investments. 
 
To be as conservative as possible, you assume that in the event of a loss by the 
investment, you lose all of your money.  This is a fairly serious assumption, since most 
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mutual fund investments are likely to lose some but not all of their value.  On the other 
hand, you also assume that if there is not a loss, then the investment will grow by the 
growth rate shown.  
 
For policy reasons, there are limits on how you can invest the money.  You must allocate 
at least 35% of the total funds available to the balanced and bond investments.  Of all the 
money put into equity, special equity and foreign investments, at least half must be in the 
equity investment.  Finally, the expected lost capital must be less than 10%.  Of course, 
your overall objective is to maximize the return on the original pool of money. 
 
This is a textbook problem, so the data is stated much more succinctly and clearly than in 
real world problems, which are plagued by misleading, hidden, and spurious information.  
Still, extracting an LP formulation from even a textbook word problem can be harder 
than it seems.  You can test yourself by trying to answer the questions posed in the next 
few paragraphs before reading the answers. 

 
The first thing to do in an LP formulation is to identify the decision variables.  Ask 
yourself what it is that you can control in this problem, what quantities do you need to 
find values for?  What are the decision variables?   
 
The most straightforward formulation of this problem chooses variables representing the 
amount of money put into each investment:  

• x1: millions of dollars put into equity investment, 
• x2: millions of dollars put into special equity investment, 
• x3: millions of dollars put into balanced investment, 
• x4: millions of dollars put into foreign investment, 
• x5: millions of dollars put into bond investment. 

It is also possible to formulate this problem using variables representing the fraction of 
the total money to be put into each kind of investment.  It is an awkward approach, but 
the results are the same in the end. 
 
Now that you have selected variables, the second question is: what is the objective 
function?  You are to “maximize the return on the money invested”, but what does this 
mean?  Since some money is gained from interest on the investments and some money is 
lost, let’s say the net return is: 
 
(expected growth from good investments) minus (expected losses from bad investments).   
 

type of investment annual growth rate probability of loss 
equity 0.15 0.18 

special equity 0.21 0.31 
balanced 0.11 0.09 

foreign 0.19 0.19 
bond 0.08 0.03 

Table 2.1: Investments available to the Smalltime Mutual Funds Company. 
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If you are not sure if this is what the managers at Smalltime mean by “maximizing the 
return on money invested”, then make sure you ask!  Effective mathematical 
programming is not just about number-crunching, it’s about crunching the right numbers. 
 
Assuming we have the correct idea about the objective, let’s now write it out in terms of 
the decision variables: 
 
maximize Z =  0.15(1-.18)x1 + 0.21(1-.31)x2 + 0.11(1-.09)x3 + 0.19(1-.19)x4 +  

0.08(1-.03)x5 - 0.18x1 - 0.31x2 - 0.09x3 - 0.19x4 - 0.03x5 
 
The pattern is simple: the first five terms represent the income due to annual growth on 
the investments that do not lose money, and the second five terms represent the capital 
losses on the investments that lose money (remember that we assume you also get no 
interest on losing investments). 
 
Now we add the constraints.  Scan the problem description.  Can you identify all of the 
constraints?  There are five: 

1. limit on proportion of total funds put into balanced and bond investments, 
2. limit on proportion of funds in the equity, special equity, and foreign investments 

that goes into equity funds, 
3. limit on expected capital losses, 

And the two most frequently forgotten by students: 
4. limit on total funds available, 
5. nonnegativity constraints on the variables. 

 
Now we can write out these constraints. 
 
Limit on proportion of total funds put into balanced and bond investments: 
 

(x3+x5)/14 ≥ 0.35 ⇒ x3+x5 ≥ 4.9 
 
Limit on proportion of funds in the equity, special equity, and foreign investments that 
goes into equity funds: 

 
x1/(x1+x2+x4) ≥ 0.5 ⇒ −0.5x1 + 0.5x2 + 0.5x4 ≤ 0 

 
Limit on expected capital losses. We will interpret this to mean  
(expected capital loss)/(total capital invested), so: 
 

 (0.18x1 + 0.31x2 + 0.09x3 + 0.19x4 + 0.03x5)/(x1 + x2 + x3 + x4 + x5) ≤ 0.1 
⇓ 

0.08x1 + 0.21x2 – 0.01x3 + 0.09x4 – 0.07x5 ≤ 0 
 
Limit on total funds available (remember that the variables are in units of millions of 
dollars): 
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(x1 + x2 + x3 + x4 + x5) ≤ 14 
 
Nonnegativity of the variables: 

x1, x2, x3, x4, x5 ≥ 0 
 
Are the assumptions inherent in any LP model appropriate for this model?  The additivity 
and proportionality assumptions are likely correct here.  Strictly speaking, the restriction 
to real numbers does not hold because you can’t subdivide a penny, but when dealing 
with very large numbers, this rounding to the nearest penny is negligible.  The worst 
assumption here is that the parameters are known for certain.  Both the annual growth 
rate and the probability of loss are educated guesses at best.  Since $14 million depends 
on this decision, you should very carefully examine how changes in those numbers affect 
your solution.  You will need to do some sensitivity analysis, a topic addressed later in 
this book. 
 
Another unrealistic assumption is that you lose all of your capital if the mutual fund loses 
value.  There is an old saying that “the map is not the territory”, or to paraphrase for 
applied optimization “the model is not the real world”.  You must be aware of the losses 
in accuracy inherent in the assumptions that you make during modeling.  Always check 
any assumptions with the client to make sure they are appropriate for the task at hand. 

The Standard Form LP 

Linear programs can have objective functions that are to be maximized or minimized, 
constraints that are of three types (≤, ≥, =), and variables that have upper and lower 
bounds.  An important subset of the possible LPs is the standard form LP.  A standard 
form LP has these characteristics: 

• the objective function must be maximized, 
• all constraints are ≤ type, 
• all constraint right hand sides are nonnegative, 
• all variables are restricted to nonnegativity. 

 
A standard form LP is the simplest form of linear 
program, so we will begin our study of how to solve 
LPs using them.  The most significant property of a 
standard form LP is that the origin (all variables set 
to zero) is always a feasible cornerpoint.  This is 
because all standard form LPs have the kind of 
shape illustrated in Figure 2.5.  Knowing this initial 
feasible cornerpoint greatly simplifies the search for 
the optimum.  After studying how to solve standard 
form LPs, we will return to the problem of 
optimizing LPs that are not in standard form. 
 
In an algebraic representation, a standard form LP 
having m functional constraints and n variables looks like this: 

Figure 2.5: The origin is always a 
feasible cornerpoint in a standard 
form LP. 
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• Objective function: maximize Z = c1x1 + c2x2 + … + cnxn 
where the cj, the coefficients in the objective function, represent the increase or 
decrease in Z, the objective function value, per unit increase in xj.  For the Acme 
Bicycle Company, Z is the daily profit, and the ci are the contributions to profit 
made by the mountain bikes (c1) and the racers (c2). 

• m functional constraints, so called because they take a functional form: 
a11x1 + a12x2 + … + a1nx1n ≤ b1 
a12x1 + a22x2 + … + a2nx2n ≤ b2 

                    M 
am1x1 + am2x2 + … + amnxn ≤ bm 

where the bi are the resource limits, and the aij are the coefficients of the 
functional constraint equations, expressing the usage resource i consumed by 
activity j.  For the Acme Bicycle Company, the bi are limits on mountain bike 
production (b1), on racer production (b2) and on the metal finishing machine (b3). 

• n nonnegativity constraints: x1 ≥ 0, x2 ≥ 0, …, xn ≥ 0. 
 
Don’t forget to explicitly include the nonnegativity constraints when writing out a 
problem formulation.  You don’t want to allow negative values for the variables 
accidentally: in the Acme example, this would mean that you could perhaps make money 
by disassembling bicycles and selling the materials back to the suppliers!  Fortunately, 
most commercial LP solvers will assume nonnegativity if you don’t mention it, but while 
you are learning the subject, show that you have considered the variable bounds by 
explicitly writing them out.  There are some formulations in which negative variables are 
allowed, for example when the variable represents change from the current level, as in the 
level of water in a reservoir.  

In Practice 

It is easy to get started using linear programming on real problems.  Modern LP solvers 
are generally coupled with a user-friendly front-end which permits easy input of the 
model and browsing of the results.  The solvers use a variety of input formats, so choose 
a solver that includes an input format that suits the way you work: 

• A straight algebraic representation of the problem, with each constraint written 
out explicitly, such as in this book. 

• A spreadsheet representation, generally with columns for the variables and rows 
for the constraints. 

• An algebraic language that allows use of summations and indices to write the 
model very compactly.  One statement in the algebraic language may generate 
numerous individual constraints for submission to the solver. 

• A proprietary input format. 

Algebraic modeling languages are the best developed input format, and are most used in 
practice.  The ability to use summations and indices means that large industrial-scale 
models can be written in a concise form that is easier to debug.  Many of the languages 
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permit direct connection to databases, so the details of very large models can be easily 
changed without altering the overall form of the problem.  For example, you may have a 
very stable overall model of your worldwide petroleum refining system, but need to 
change prices and demand information on a regular basis.  This is straightforward to do 
with an algebraic modeling language. 

Algebraic modeling languages also act as generic front-ends to solvers.  In other words, 
you can write the model in the modeling language, and then choose from among the 
solvers that are attached to the modeling system.  You might want a different solver 
because it uses a different algorithm, or because your model has gradually grown so large 
that a more powerful solver is required.  With modeling languages, these kinds of 
changes are not a problem. 

Web Resources 

The following web page has links to web pages where you can find free student-edition 
linear programming solvers, on-line solvers, and other helpful resources: 

http://www.sce.carleton.ca/faculty/chinneck/StudentOR.html 

http://www.sce.carleton.ca/faculty/chinneck/StudentOR.html

