
Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

Chapter 14: Heuristics for Discrete Search:
 Genetic Algorithms and Simulated Annealing

The branch and bound algorithms that we have studied thus far have one very nice property: they
guarantee that the optimum solution will be found. But branch and bound also has one fatal
flaw: it is combinatorially explosive, and hence will take excessive time (and possibly computer
memory) for problems that are larger than medium scale. Further, discrete problems of large
scale are very common in practice, e.g. scheduling (shift workers, exams, airline flights, etc.).
But these problems still need to be solved, so we have to give up on finding the optimum
solution and instead concentrate on finding a pretty good solution within the limits of time and
computer memory available.

This means that we need to employ heuristic methods. A heuristic is a method that is not
guaranteed to find the optimum, but usually gives a very good solution, though it cannot
guarantee to do even that every time. Heuristics are “quick and dirty” methods, generally
relatively fast and relatively good. We have actually studied a couple of heuristic methods
already in Chapter 12: beam search, and stopping branch and bound with a guarantee of
closeness to optimality. Here is a rough guide to when to use various discrete search methods:

Problem Size Methods

small Enumeration

medium Branch and bound
Dynamic programming
A* search

large Branch and bound variants:
• Beam search
• Guarantee of closeness to optimality

Problem-specific heuristics
Controlled random search:

• Genetic algorithms
• Simulated annealing
• Tabu search

Pure random search

In the rest of this chapter we will look at two popular heuristic methods that are applicable to a
very wide range of practical problems.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

2

Genetic Algorithms

These are fascinating algorithms. The name derives from the way in which they loosely mimic
the process of evolution of organisms, where a problem solution stands in for the organism’s
genetic string. Features include a survival of the fittest mechanism in which potential solutions
in a population are pitted against each other, as well as recombination of solutions in a mating
process and random variations. The incredible part is that this heuristic can “evolve” better and
better solutions without any deep understanding of the problem itself! Genetic algorithms can be
applied to any problem that has these two characteristics: (i) a solution can be expressed as a
string, and (ii) a value representing the worth of the string can be calculated.

Genetic algorithms have a couple of important advantages. They are simple to program and they
work directly with complete solutions: unlike branch and bound, there is no need for estimates or
for bounding functions.

As an example, let’s look again at a variation of the person-job assignment problem. Let me
stress that in practice the best way to solve this problem is actually by the exact and fast
assignment problem linear program. However this is an easy-to-understand problem that we
have worked with before, so we will see how it can be solved via a genetic algorithm. In this
example we are assigning salespeople to regions, and the table below shows the expected
number of units sold if a salesperson is assigned to a region.

 Region
 1 2 3 4

A 20 37 15 28
B 25 24 18 29
C 18 30 14 24
D 21 33 16 20

Salesperson

E 23 31 19 23

Our objective is to maximize the number of units sold. Further, since there are only 4 regions to
cover, we must assign just 4 of the 5 salespeople (each salesperson can handle only one region).
Which of the 4 salespeople should be chosen, and how should they be assigned to the regions to
maximize the total number of units sold?

Let’s first check that a genetic algorithm can be applied to this problem. Can a solution be
expressed as a string? Yes: a solution such as CDAB can represent the assignment of
salesperson C to region 1, salesperson D to region 2, salesperson A to region 3 and salesperson B
to region 4. Can a value be assigned to a string to represent its value? Yes: simply add up the
expect units sold for the solution; for example the value associated with string CDAB would be
18 + 33 + 15 + 29 = 95.

Now we can use this example to explore a very basic genetic algorithm approach to solving this
problem. At all times we will have a population consisting of numerous solution strings. Each
string is analogous to a genetic string of chromosomes. The solutions will compete with each
other in a survival of the fittest contest where their chances of survival are proportional to the

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

relative “goodness” of their solution string value. Parts of surviving strings are then combined in
various ways through a process similar to male-female reproduction to create a population of
new child strings. Some of these may be randomly changed as happens in real life through e.g.
bombardment via cosmic rays. Now we have a new population, and the process repeats.
Amazingly, after this cycle repeats a number of times, there are usually much better solutions in
the current population than in the original. Note however that the process is not entirely random:
good solutions have a better chance of survival, and a better chance or reproduction, and
reproduction tends to combine parts of stronger solutions into even better ones. Good
characteristics tend to persist in the population and to combine in useful ways.

There are three main operators in a basic genetic algorithm: reproduction, crossover, and
mutation. We will examine each of these in turn. First, however, it is necessary to establish an
initial population of solutions. The simplest (but probably not the best) way to create an initial
population is generate it randomly. We will discuss better ways later. The size of the population
(i.e. how many solutions there should be) is also an important parameter: it must be large enough
that it can support sufficient genetic variation, but not so large that calculations take an
inordinate amount of time. In practice, the population size is often determined by
experimentation.

The Reproduction Operator

The reproduction is equivalent to the “survival of the fittest” contest. It determines not only
which solutions survive, but how many copies of each of the survivors to make. This will be
important later during the crossover operation. The probability of survival of a solution is
proportional to its solution value; also known as its fitness (the function that assigns values to
solution strings is also known as the fitness function).

As an example, consider a population of 4 solution strings from our small salesperson
assignment problem, and the relative fitness of each string:

String Fitness (solution value) Fitness as % of total
CDAB 95 95/373 = 25.5%
BADC 102 102/373 = 27.3%
BCDA 99 99/373 = 26.5%
CBAD 77 77/373 = 20.7%

fitness total 373 373/373 = 100.0%

The first 3 solutions are relatively evenly matched, though the fourth solution is a bit weaker.
How will we decide which ones survive? Conceptually, we construct a virtual weighted roulette
wheel, as shown in Figure 14.1, where the weight of any solution is proportional to the “fitness
as % of total” shown in the table above. “Spinning the wheel” by generating a random number
selects a solution string to reproduce a copy of itself into a new intermediate population known
as the mating pool for reasons that will be clear soon. If we chose a population of size n, then
the wheel is spun n times to create a mating pool of size n. In our small example since the
population size is 4, then the wheel is spun 4 times.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

4

In reality we “spin the roulette wheel” by generating a
uniformly distributed random number between 0 and
100. The solution is then selected based on the
cumulative sum of the fitness relative weights. For the
example in the table and in Figure 14.1, we spin the
wheel and select as follows:

• If the random number is between 0 and 25.5,
then select CDAB,

• If the random number is between 25.6 and
25.5+27.3=52.8, then select BADC,

• If the random number is between 52.9 and
25.5+27.3+26.5=79.3, then select BCDA,

• If the random number is between 79.4 and
100.0, then select CBAD.

Note that it is entirely possible for one of the solutions to be selected more than once, and for
some solutions not be chosen at all. In general it is most likely that the stronger (most fit)
solutions will be chosen (i.e. survive) most often, and that the weaker (most unfit) solutions will
not be chosen (i.e. die). However, due to the random nature of the process, it is also possible for
a weak solution to be chosen multiple times and for a strong solution to die, but this is unlikely.

After the reproduction operation, we have an intermediate population known as the mating pool
that is ready to mix and mingle, akin to the process of mating and reproducing children that share
some of the genetic material of each parent. This is the function of the crossover operator.

The Crossover Operator

During crossover, two parent solution strings from the mating pool combine to create two new
child solution strings. This happens as follows:

1. Randomly select two parent strings from the mating
pool.

2. Randomly select a crossover point in the solution
string. This is the point between any two positions
in the solution string.

3. Swap the ends of the two parent strings, from the
crossover point to the end of the string, to create two
new child strings.

This process is illustrated in Figure 14.2, where X and O represent values in the two solution
strings. In our example we might see a crossover such as:
 BC|DA → BCAD
 CB|AD CBDA
There are numerous variations on the basic crossover operator, for example randomly choosing
two crossover points and swapping the string contents between those two crossover points.

Of course, it is entirely possible that crossover will produce infeasible children, as for example:

Figure 14.1: A virtual roulette wheel.

parent child
strings strings

XXXX|XX → XXXXOO
OOOO|OO OOOOXX
 ↑
 crossover point

Figure 14.2: Illustration of
crossover.

CDAB
25.5%

BADC
27.3%

BCDA
26.5%

CBAD
20.7%

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

5

 CDA|B → CDAC
 BAD|C BADB
In this case, both children are infeasible because they both contain repeated salespeople, and
each salesperson can handle just one region.

How are we to handle the problem of infeasible child strings? The best way is to use a different
variant of crossover that does not allow infeasible children to be created at all: we will describe
one such variant (partially-matched crossover) later. If infeasible children are relatively
infrequent, they can be handled by simply rejecting the infeasible child and applying the
crossover operator again. Finally, if there is no better crossover operator and infeasibility is
relatively frequent then you can accept the infeasible child, but penalize its fitness. In our
example, we could adjust the fitness downwards, e.g. by 10 points for every repeated salesperson
in a solution string (or by a squared factor, or many other ways).

The new population is now almost ready. There is one last operator to apply.

The Mutation Operator

The mutation operator is used to randomly alter the values of some of the positions in some of
the strings based on a parameter that determines the level of mutation. One common choice is a
1 in 1000 chance of mutation. This can be implemented as follows. For each position in each
string, generate a random integer between 1 and 1000. If this number is 1, then the position is
chosen for mutation, and is randomly switched to any other possible value. In our example, the
second position in the string CBAD might be chosen for mutation and might randomly switched
from a value of B to a value of E. This is an improvement: CBAD has a fitness of 77, while
CEAD has a fitness of 84.

Of course it is just as possible that the mutation could worsen the fitness function or even
generate an infeasible solution. Given this downside, why do we bother with mutation at all?
There is a very good reason. For a clue take a look at the set of solutions that comprised the
original population in our example (see table on page 3). What do you notice about that set of
solutions?

Salesperson E is not present in any of the solutions in that initial population! And there is no
way that salesperson E will be introduced by either the reproduction or crossover operators. The
only way that salesperson E might appear in a solution is via mutation. Now we see the
motivation behind mutation: to sample the solution space widely. So where reproduction and
crossover try to concentrate the solutions that we already have into better solutions, mutation
works instead to sample the solution space and to broaden the search.

Mutation is a vital part of the solution process, and the mutation rate can have a big impact on
the quality of the final solution. It is even possible (though vastly more inefficient) to solve
problems using only the mutation operator.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

Overview of the Basic Genetic Algorithm Process

Now that we’ve seen the basic genetic algorithm operators, we can put the whole process
together. Here are the essential steps:

0. Design the algorithm: choose the population size n and mutation rate; choose the
operators and the stopping conditions (more on stopping conditions later).

1. Randomly generate an initial population (more on generating the initial population later)
and calculate the fitness value for each string. Set the incumbent solution as the solution
with the best value of the fitness function in the initial population.

2. Apply the reproduction operator to the current population to generate a mating pool of
size n.

3. Apply the crossover operator to the strings in the mating pool to generate a tentative new
population of size n.

4. Apply the mutation operator to the tentative new population to create the final new
population. Calculate the fitness values of the solution strings in the new population and
update the incumbent solution if there is a better solution in this population.

5. If the stopping conditions are met, then exit with the incumbent solution as the final
solution. Otherwise go to Step 2.

As you can see, this process generates a series of populations, each of size n. Unlike the other
optimization algorithms we have looked at that keep track of a single developing solution, a
genetic algorithm keeps track of n solutions simultaneously. Some of these are good solutions
and others are poor, but the diversity of the population turns out to be important in generating
good new solutions. In fact, some genetic algorithm implementations suffer from premature
convergence, which happens when one solution is so strong that it takes over the whole
population, often by being almost the only solution to pass through the “survival of the fittest”
test in the reproduction operator. This is not a good outcome since the later generations all
become very similar with very little chance for useful new variations to arise.

Stopping Conditions

Evolution of creatures is obviously an ongoing process, so how do we decide when to stop the
artificial evolutionary process in a genetic algorithm? This can be done in several ways,
depending on the problem. The most obvious way is simply to stop after a prespecified number
of populations have been created (each population is called a generation). But perhaps it would
be better to stop when there is very little change between generations, indicating that the
evolutionary process has reached a plateau.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

Popn.
average
fitness

generation

It is not a good idea to stop when the incumbent solution has not changed for several generations,
since this does not really measure the amount of ferment going on in the current population. To
capture this, the genetic algorithm is sometimes stopped when the average population solution
value has not changed for several generations. However even this measure does not always
represent the amount of change going on in the current population. This is perhaps better
represented by a surprising measure: stop when the worst solution string fitness in the population
has not changed for several generations. It is the worst solution value that usually changes the
most between generations; when it settles down it is usually true that the whole population has
settled down so that more useful new solutions are unlikely to arise.

A typical solution trajectory is shown in Figure 14.3. Note how the average population fitness
varies up and down but generally trends upward. A plot of the worst solution value would have
a similar trajectory, but likely with a lot more variation between generations. A similar plot of
the incumbent solution value, shown in Figure 14.4, tends to have longer and longer periods of
stability, but always improves (since by
definition the incumbent solution is the best
solution seen so far).

There are many variations of genetic
algorithms. One variant that tends to smooth
the solution trajectory is as follows: set the
final new population by looking at the last
population and the newly-generated
population together (hence there will be 2n
solutions). Select the n best solutions from
this population and designate this as the final
new population. The main difficulty with this
approach is that some relatively poor solutions that could have developed into very good
solutions later on are eliminated early.

Alternative Operators

Genetic algorithms are under constant
development and new operators for special
situations are constantly being developed. We
describe two here as representative examples
of other operators that could take the place of
the crossover operators.

In the inversion operator, two inversion sites
are randomly chosen on a single solution
string. The order of the elements in the
substring between the two inversion sites is
then reversed. For example, ABC|DEF|GH → ABCFEDGH. You can see how this operator
would prevent the creation of infeasible child solutions for the salesperson assignment problem
because duplicate salespeople can never result from the inversion.

Figure 14.3: Typical solution trajectory.

Figure 14.4: Typical incumbent fitness trajectory.

Incumb.
fitness

generation

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

8

The partially matched crossover operator is similar to ordinary crossover with two crossover
points. The difference is that special steps are taken to make sure that no duplication occurs in
the resulting child solution strings. Consider the following example:
 IHD|EFG|ACBJ
 HGA|BCJ|IEDF
Normal crossover would produce two child solution strings that contain duplication outside the
crossover zone, as shown in bold:
 IHD|BCJ|ACBJ
 HGA|EFG|IEDF
Now partially-matched crossover uses the correspondence within the crossover zone to fix up the
duplication by switching the values of the duplicated elements that are outside the crossover
zone. The crossover zone contains |EFG| in the top string and |BCJ| in the bottom string, and the
fix-up rules are derived directly from the correspondence between the elements in those two
crossover zone substrings: E to B, F to C, G to J. To fix the duplication outside the crossover in
the new top string, proceed this way: if there is a duplicated B replace it with E, if there is a
duplicated C replace it with an F, and if there is a duplicated J replace it with a G. To fix the new
bottom string, use the reverse rules: if there is a duplicated E replace it with a B, if there is
duplicated F replace it with a C, and if there is duplicated G replace it with a J. The fixed strings
then are:
 IHD|BCJ|AFEG
 HJA|EFG|IBDC

As you can see, there is now no duplication in the child solution strings. However, note also that
existing substrings (such as ACBJ in the top string) are now also broken up. This may affect the
quality of the child solution strings.

Which operators should you chose for your particular application? This depends on the
application of course (e.g. whether duplication of elements in a string is allowed), but can often
be decided only by some experimentation. Some applications for which genetic algorithms have
been used with great success include VLSI circuit layout, scheduling, machine learning,
optimizing communication link sizes, etc.

Pointers to Success with Genetic Algorithms

How well a genetic algorithm does depends partly on where it starts: i.e. the quality of the initial
population. A randomly-generated initial population is usually of fairly low quality; the genetic
algorithm will do much better if provided with a relatively high quality initial population. But
the initial population must also include a certain amount of diversity. How might we generate a
good quality initial population for the salesperson assignment problem?

One way is to as follows: (i) randomly select a salesperson and randomly assign that salesperson
to a region, (ii) select the best unassigned salesperson-region combination and make that
assignment, (iii) continue with step (ii) until sufficient salespeople have been assigned. This
procedure will give you a semi-random but reasonably good solution, and can be repeated until
you have sufficient solutions for the initial population. It also gives you some diversity. Here’s
another example: (i) randomly choose a region and assign the best salesperson for that region,

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

(ii) randomly choose an unassigned region and assign the best salesperson for that region, (iii)
continue with step (ii) until there are no more regions needing a salesperson.

With some ingenuity, you can usually find a way to generate semi-random solutions that are
relatively good. The genetic algorithm then has a head start. I have used this approach in
devising a method to assign exam proctors to examinations at Carleton University. Interestingly,
the average population fitness for the very first population generated this way was higher than
the average population fitness for the final population generated by a genetic algorithm started at
an entirely random population (though the genetic algorithm had improved the random initial
population considerably).

The second pointer to success is to make sure that your operators are properly chosen. Using a
poorly-chosen operator can slow the process considerably.

Finally, make sure that the values of the other control parameters (such as the population size
and the mutation rate) are well-chosen. Though you can find rules of thumb for setting these
values, sometimes you can only determine the best values by experimentation.

Simulated Annealing

Simulated annealing is another popular heuristic for both discrete and continuous problems. It
was developed before genetic algorithms, and has gradually been superceded by them for many
applications, though it is still much used. It is based on an analogy to the heat-treatment of
metals (known as annealing). When metals are carefully annealed, usually by precise control of
the cooling process, certain very desirable properties such as hardness or flexibility can be
obtained.

In optimization by simulated annealing, when the “temperature” parameter in the heuristic is
high, a great deal of random movement in the solution is tolerated, and as the “temperature”
parameter is lowered, less and less random movement is allowed, until the solution settles into a
final “frozen” state. This allows the algorithm to sample the solution space widely when the
“temperature” is high, and then gradually move towards simple steepest ascent/descent as the
“temperature” cools. The effect is to allow the solution to move out of local optima during the
high temperature phase of the operation.

Here is an outline of this simple algorithm for the case of minimization of a cost function:

0. Start-up. Find an initial solution S, possibly by generating it randomly. Choose an initial
(high) temperature T > 0. Choose a value for r, the rate of cooling parameter.

1. Choose a random neighbour of S and call it S’.

2. Calculate the difference in costs: ∆ = cost(S’) – cost(S).

3. Decide whether to accept the new solution or not: if ∆ ≤ 0 (S’ is better than S, or the same
as S), then set S = S’, else (S’ is worse than S) set S = S’ with probability e-∆/T.

4. If the stopping conditions are met, then exit with S as the final solution, else reduce the
temperature by setting T = rT, and go to Step 1.

Practical Optimization: a Gentle Introduction ©John W. Chinneck, 2006
http://www.sce.carleton.ca/faculty/chinneck/po.html

10

A simple stopping condition is when S is “frozen”, i.e. has not changed value for several
iterations.

The really interesting feature of a simulated annealing algorithm is how it will accept a
worsening move with a certain probability. This probability declines as T declines; by analogy
the randomness in the movements decrease as the temperature falls. When T is small enough the
algorithm accepts only improving moves. This blending of random and purposeful search is
surprisingly effective and has found many practical applications including layout of integrated
circuits, routing and location problems, graph problems, etc. However running times can be
long.

While the inspiration is simulated annealing, the more apt analogy for me is to a fly trying to find
a way out of a container. Initially when it has a lot of energy it buzzes around wildly, but later
when it tires it makes random moves less and less often and gradually settles into walking
towards its goal. This is a blend of exploring widely and following up on promising paths. And
flies are quite good at getting out of containers!

