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Chapter 14:  Heuristics for Discrete Search:  
   Genetic Algorithms and Simulated Annealing 

The branch and bound algorithms that we have studied thus far have one very nice property: they 
guarantee that the optimum solution will be found.  But branch and bound also has one fatal 
flaw: it is combinatorially explosive, and hence will take excessive time (and possibly computer 
memory) for problems that are larger than medium scale.  Further, discrete problems of large 
scale are very common in practice, e.g. scheduling (shift workers, exams, airline flights, etc.).  
But these problems still need to be solved, so we have to give up on finding the optimum 
solution and instead concentrate on finding a pretty good solution within the limits of time and 
computer memory available. 

This means that we need to employ heuristic methods.  A heuristic is a method that is not 
guaranteed to find the optimum, but usually gives a very good solution, though it cannot 
guarantee to do even that every time.  Heuristics are “quick and dirty” methods, generally 
relatively fast and relatively good.  We have actually studied a couple of heuristic methods 
already in Chapter 12: beam search, and stopping branch and bound with a guarantee of 
closeness to optimality.  Here is a rough guide to when to use various discrete search methods: 

Problem Size Methods 

small Enumeration 

medium Branch and bound 
Dynamic programming 
A* search 

large Branch and bound variants: 
• Beam search 
• Guarantee of closeness to optimality 

Problem-specific heuristics 
Controlled random search: 

• Genetic algorithms 
• Simulated annealing 
• Tabu search 

Pure random search 

 

In the rest of this chapter we will look at two popular heuristic methods that are applicable to a 
very wide range of practical problems. 



Practical Optimization: a Gentle Introduction    ©John W. Chinneck, 2006 
http://www.sce.carleton.ca/faculty/chinneck/po.html 

2

Genetic Algorithms 

These are fascinating algorithms.  The name derives from the way in which they loosely mimic 
the process of evolution of organisms, where a problem solution stands in for the organism’s 
genetic string.  Features include a survival of the fittest mechanism in which potential solutions 
in a population are pitted against each other, as well as recombination of solutions in a mating 
process and random variations.  The incredible part is that this heuristic can “evolve” better and 
better solutions without any deep understanding of the problem itself!  Genetic algorithms can be 
applied to any problem that has these two characteristics: (i) a solution can be expressed as a 
string, and (ii) a value representing the worth of the string can be calculated. 

Genetic algorithms have a couple of important advantages.  They are simple to program and they 
work directly with complete solutions: unlike branch and bound, there is no need for estimates or 
for bounding functions. 

As an example, let’s look again at a variation of the person-job assignment problem.  Let me 
stress that in practice the best way to solve this problem is actually by the exact and fast 
assignment problem linear program.  However this is an easy-to-understand problem that we 
have worked with before, so we will see how it can be solved via a genetic algorithm.  In this 
example we are assigning salespeople to regions, and the table below shows the expected 
number of units sold if a salesperson is assigned to a region.   

  Region 
  1 2 3 4 

A 20 37 15 28 
B 25 24 18 29 
C 18 30 14 24 
D 21 33 16 20 

Salesperson 

E 23 31 19 23 
 

Our objective is to maximize the number of units sold.  Further, since there are only 4 regions to 
cover, we must assign just 4 of the 5 salespeople (each salesperson can handle only one region).  
Which of the 4 salespeople should be chosen, and how should they be assigned to the regions to 
maximize the total number of units sold? 

Let’s first check that a genetic algorithm can be applied to this problem.  Can a solution be 
expressed as a string?  Yes: a solution such as CDAB can represent the assignment of 
salesperson C to region 1, salesperson D to region 2, salesperson A to region 3 and salesperson B 
to region 4.  Can a value be assigned to a string to represent its value?  Yes: simply add up the 
expect units sold for the solution; for example the value associated with string CDAB would be 
18 + 33 + 15 + 29 = 95. 

Now we can use this example to explore a very basic genetic algorithm approach to solving this 
problem.  At all times we will have a population consisting of numerous solution strings.  Each 
string is analogous to a genetic string of chromosomes.  The solutions will compete with each 
other in a survival of the fittest contest where their chances of survival are proportional to the 
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relative “goodness” of their solution string value.  Parts of surviving strings are then combined in 
various ways through a process similar to male-female reproduction to create a population of 
new child strings.  Some of these may be randomly changed as happens in real life through e.g. 
bombardment via cosmic rays.  Now we have a new population, and the process repeats.  
Amazingly, after this cycle repeats a number of times, there are usually much better solutions in 
the current population than in the original.  Note however that the process is not entirely random: 
good solutions have a better chance of survival, and a better chance or reproduction, and 
reproduction tends to combine parts of stronger solutions into even better ones.  Good 
characteristics tend to persist in the population and to combine in useful ways. 

There are three main operators in a basic genetic algorithm: reproduction, crossover, and 
mutation.  We will examine each of these in turn.  First, however, it is necessary to establish an 
initial population of solutions.  The simplest (but probably not the best) way to create an initial 
population is generate it randomly.  We will discuss better ways later.  The size of the population 
(i.e. how many solutions there should be) is also an important parameter: it must be large enough 
that it can support sufficient genetic variation, but not so large that calculations take an 
inordinate amount of time.  In practice, the population size is often determined by 
experimentation. 

The Reproduction Operator 

The reproduction is equivalent to the “survival of the fittest” contest. It determines not only 
which solutions survive, but how many copies of each of the survivors to make.  This will be 
important later during the crossover operation.  The probability of survival of a solution is 
proportional to its solution value; also known as its fitness (the function that assigns values to 
solution strings is also known as the fitness function). 

As an example, consider a population of 4 solution strings from our small salesperson 
assignment problem, and the relative fitness of each string: 

String Fitness (solution value) Fitness as % of total 
CDAB 95 95/373 = 25.5% 
BADC 102 102/373 = 27.3% 
BCDA 99 99/373 = 26.5% 
CBAD 77 77/373 = 20.7% 

fitness total 373 373/373 = 100.0% 
 

The first 3 solutions are relatively evenly matched, though the fourth solution is a bit weaker.  
How will we decide which ones survive?  Conceptually, we construct a virtual weighted roulette 
wheel, as shown in Figure 14.1, where the weight of any solution is proportional to the “fitness 
as % of total” shown in the table above.  “Spinning the wheel” by generating a random number 
selects a solution string to reproduce a copy of itself into a new intermediate population known 
as the mating pool for reasons that will be clear soon.  If we chose a population of size n, then 
the wheel is spun n times to create a mating pool of size n.  In our small example since the 
population size is 4, then the wheel is spun 4 times. 
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In reality we “spin the roulette wheel” by generating a 
uniformly distributed random number between 0 and 
100.  The solution is then selected based on the 
cumulative sum of the fitness relative weights.  For the 
example in the table and in Figure 14.1, we spin the 
wheel and select as follows: 

• If the random number is between 0 and 25.5, 
then select CDAB, 

• If the random number is between 25.6 and 
25.5+27.3=52.8, then select BADC, 

• If the random number is between 52.9 and 
25.5+27.3+26.5=79.3, then select BCDA, 

• If the random number is between 79.4 and 
100.0, then select CBAD. 

Note that it is entirely possible for one of the solutions to be selected more than once, and for 
some solutions not be chosen at all.  In general it is most likely that the stronger (most fit) 
solutions will be chosen (i.e. survive) most often, and that the weaker (most unfit) solutions will 
not be chosen (i.e. die).  However, due to the random nature of the process, it is also possible for 
a weak solution to be chosen multiple times and for a strong solution to die, but this is unlikely. 

After the reproduction operation, we have an intermediate population known as the mating pool 
that is ready to mix and mingle, akin to the process of mating and reproducing children that share 
some of the genetic material of each parent.  This is the function of the crossover operator. 

The Crossover Operator 

During crossover, two parent solution strings from the mating pool combine to create two new 
child solution strings.  This happens as follows: 

1. Randomly select two parent strings from the mating 
pool. 

2. Randomly select a crossover point in the solution 
string.  This is the point between any two positions 
in the solution string. 

3. Swap the ends of the two parent strings, from the 
crossover point to the end of the string, to create two 
new child strings. 

This process is illustrated in Figure 14.2, where X and O represent values in the two solution 
strings.    In our example we might see a crossover such as: 
 BC|DA  → BCAD 
 CB|AD   CBDA 
There are numerous variations on the basic crossover operator, for example randomly choosing 
two crossover points and swapping the string contents between those two crossover points. 

Of course, it is entirely possible that crossover will produce infeasible children, as for example: 

 

 

 

 

 

 

 

 

Figure 14.1: A virtual roulette wheel. 

parent       child 
strings       strings 

XXXX|XX    →   XXXXOO 
OOOO|OO          OOOOXX 
           ↑ 
  crossover point 

Figure 14.2: Illustration of 
crossover. 

CDAB
25.5% 

BADC
27.3% 

BCDA 
26.5% 

CBAD 
20.7% 
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 CDA|B  → CDAC 
 BAD|C   BADB 
In this case, both children are infeasible because they both contain repeated salespeople, and 
each salesperson can handle just one region. 

How are we to handle the problem of infeasible child strings?  The best way is to use a different 
variant of crossover that does not allow infeasible children to be created at all: we will describe 
one such variant (partially-matched crossover) later.  If infeasible children are relatively 
infrequent, they can be handled by simply rejecting the infeasible child and applying the 
crossover operator again.  Finally, if there is no better crossover operator and infeasibility is 
relatively frequent then you can accept the infeasible child, but penalize its fitness.  In our 
example, we could adjust the fitness downwards, e.g. by 10 points for every repeated salesperson 
in a solution string (or by a squared factor, or many other ways). 

The new population is now almost ready.  There is one last operator to apply. 

The Mutation Operator 

The mutation operator is used to randomly alter the values of some of the positions in some of 
the strings based on a parameter that determines the level of mutation.  One common choice is a 
1 in 1000 chance of mutation.  This can be implemented as follows.  For each position in each 
string, generate a random integer between 1 and 1000.  If this number is 1, then the position is 
chosen for mutation, and is randomly switched to any other possible value.  In our example, the 
second position in the string CBAD might be chosen for mutation and might randomly switched 
from a value of B to a value of E.  This is an improvement: CBAD has a fitness of 77, while 
CEAD has a fitness of 84.   

Of course it is just as possible that the mutation could worsen the fitness function or even 
generate an infeasible solution.  Given this downside, why do we bother with mutation at all?  
There is a very good reason.  For a clue take a look at the set of solutions that comprised the 
original population in our example (see table on page 3).  What do you notice about that set of 
solutions? 

Salesperson E is not present in any of the solutions in that initial population!  And there is no 
way that salesperson E will be introduced by either the reproduction or crossover operators.  The 
only way that salesperson E might appear in a solution is via mutation.  Now we see the 
motivation behind mutation: to sample the solution space widely.  So where reproduction and 
crossover try to concentrate the solutions that we already have into better solutions, mutation 
works instead to sample the solution space and to broaden the search. 

Mutation is a vital part of the solution process, and the mutation rate can have a big impact on 
the quality of the final solution.  It is even possible (though vastly more inefficient) to solve 
problems using only the mutation operator. 
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Overview of the Basic Genetic Algorithm Process 

Now that we’ve seen the basic genetic algorithm operators, we can put the whole process 
together.  Here are the essential steps: 

0. Design the algorithm: choose the population size n and mutation rate; choose the 
operators and the stopping conditions (more on stopping conditions later). 

1. Randomly generate an initial population (more on generating the initial population later) 
and calculate the fitness value for each string.  Set the incumbent solution as the solution 
with the best value of the fitness function in the initial population. 

2. Apply the reproduction operator to the current population to generate a mating pool of 
size n. 

3. Apply the crossover operator to the strings in the mating pool to generate a tentative new 
population of size n. 

4. Apply the mutation operator to the tentative new population to create the final new 
population.  Calculate the fitness values of the solution strings in the new population and 
update the incumbent solution if there is a better solution in this population. 

5. If the stopping conditions are met, then exit with the incumbent solution as the final 
solution.  Otherwise go to Step 2. 

As you can see, this process generates a series of populations, each of size n.  Unlike the other 
optimization algorithms we have looked at that keep track of a single developing solution, a 
genetic algorithm keeps track of n solutions simultaneously.  Some of these are good solutions 
and others are poor, but the diversity of the population turns out to be important in generating 
good new solutions.  In fact, some genetic algorithm implementations suffer from premature 
convergence, which happens when one solution is so strong that it takes over the whole 
population, often by being almost the only solution to pass through the “survival of the fittest” 
test in the reproduction operator.  This is not a good outcome since the later generations all 
become very similar with very little chance for useful new variations to arise. 

Stopping Conditions 

Evolution of creatures is obviously an ongoing process, so how do we decide when to stop the 
artificial evolutionary process in a genetic algorithm?  This can be done in several ways, 
depending on the problem.  The most obvious way is simply to stop after a prespecified number 
of populations have been created (each population is called a generation).  But perhaps it would 
be better to stop when there is very little change between generations, indicating that the 
evolutionary process has reached a plateau.   



Practical Optimization: a Gentle Introduction    ©John W. Chinneck, 2006 
http://www.sce.carleton.ca/faculty/chinneck/po.html 

7

Popn. 
average 
fitness 

generation 

It is not a good idea to stop when the incumbent solution has not changed for several generations, 
since this does not really measure the amount of ferment going on in the current population.  To 
capture this, the genetic algorithm is sometimes stopped when the average population solution 
value has not changed for several generations.  However even this measure does not always 
represent the amount of change going on in the current population.  This is perhaps better 
represented by a surprising measure: stop when the worst solution string fitness in the population 
has not changed for several generations.  It is the worst solution value that usually changes the 
most between generations; when it settles down it is usually true that the whole population has 
settled down so that more useful new solutions are unlikely to arise. 

A typical solution trajectory is shown in Figure 14.3.  Note how the average population fitness 
varies up and down but generally trends upward.  A plot of the worst solution value would have 
a similar trajectory, but likely with a lot more variation between generations.  A similar plot of 
the incumbent solution value, shown in Figure 14.4, tends to have longer and longer periods of 
stability, but always improves (since by 
definition the incumbent solution is the best 
solution seen so far). 

There are many variations of genetic 
algorithms.  One variant that tends to smooth 
the solution trajectory is as follows: set the 
final new population by looking at the last 
population and the newly-generated 
population together (hence there will be 2n 
solutions).  Select the n best solutions from 
this population and designate this as the final 
new population.  The main difficulty with this 
approach is that some relatively poor solutions that could have developed into very good 
solutions later on are eliminated early. 

Alternative Operators 

Genetic algorithms are under constant 
development and new operators for special 
situations are constantly being developed.  We 
describe two here  as representative examples 
of other operators that could take the place of 
the crossover operators. 

In the inversion operator, two inversion sites 
are randomly chosen on a single solution 
string.  The order of the elements in the 
substring between the two inversion sites is 
then reversed.  For example, ABC|DEF|GH → ABCFEDGH.  You can see how this operator 
would prevent the creation of infeasible child solutions for the salesperson assignment problem 
because duplicate salespeople can never result from the inversion. 

 

 

 

 

 

 

 

 

Figure 14.3: Typical solution trajectory. 

 

 

 

 

 

 

 

 

 

Figure 14.4: Typical incumbent fitness trajectory. 
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The partially matched crossover operator is similar to ordinary crossover with two crossover 
points.  The difference is that special steps are taken to make sure that no duplication occurs in 
the resulting child solution strings.  Consider the following example: 
 IHD|EFG|ACBJ 
 HGA|BCJ|IEDF 
Normal crossover would produce two child solution strings that contain duplication outside the 
crossover zone, as shown in bold: 
 IHD|BCJ|ACBJ 
 HGA|EFG|IEDF 
Now partially-matched crossover uses the correspondence within the crossover zone to fix up the 
duplication by switching the values of the duplicated elements that are outside the crossover 
zone.  The crossover zone contains |EFG| in the top string and |BCJ| in the bottom string, and the 
fix-up rules are derived directly from the correspondence between the elements in those two 
crossover zone substrings: E to B, F to C, G to J. To fix the duplication outside the crossover in 
the new top string, proceed this way: if there is a duplicated B replace it with E, if there is a 
duplicated C replace it with an F, and if there is a duplicated J replace it with a G. To fix the new 
bottom string, use the reverse rules: if there is a duplicated E replace it with a B, if there is 
duplicated F replace it with a C, and if there is duplicated G replace it with a J.  The fixed strings 
then are: 
 IHD|BCJ|AFEG 
 HJA|EFG|IBDC 

As you can see, there is now no duplication in the child solution strings.  However, note also that 
existing substrings (such as ACBJ in the top string) are now also broken up.  This may affect the 
quality of the child solution strings. 

Which operators should you chose for your particular application?  This depends on the 
application of course (e.g. whether duplication of elements in a string is allowed), but can often 
be decided only by some experimentation.  Some applications for which genetic algorithms have 
been used with great success include VLSI circuit layout, scheduling, machine learning, 
optimizing communication link sizes, etc. 

Pointers to Success with Genetic Algorithms 

How well a genetic algorithm does depends partly on where it starts: i.e. the quality of the initial 
population.  A randomly-generated initial population is usually of fairly low quality; the genetic 
algorithm will do much better if provided with a relatively high quality initial population.  But 
the initial population must also include a certain amount of diversity.  How might we generate a 
good quality initial population for the salesperson assignment problem? 

One way is to as follows: (i) randomly select a salesperson and randomly assign that salesperson 
to a region, (ii) select the best unassigned salesperson-region combination and make that 
assignment, (iii) continue with step (ii) until sufficient salespeople have been assigned.  This 
procedure will give you a semi-random but reasonably good solution, and can be repeated until 
you have sufficient solutions for the initial population.  It also gives you some diversity.  Here’s 
another example: (i) randomly choose a region and assign the best salesperson for that region, 
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(ii) randomly choose an unassigned region and assign the best salesperson for that region, (iii) 
continue with step (ii) until there are no more regions needing a salesperson.   

With some ingenuity, you can usually find a way to generate semi-random solutions that are 
relatively good.  The genetic algorithm then has a head start.  I have used this approach in 
devising a method to assign exam proctors to examinations at Carleton University.  Interestingly, 
the average population fitness for the very first population generated this way was higher than 
the average population fitness for the final population generated by a genetic algorithm started at 
an entirely random population (though the genetic algorithm had improved the random initial 
population considerably). 

The second pointer to success is to make sure that your operators are properly chosen.  Using a 
poorly-chosen operator can slow the process considerably. 

Finally, make sure that the values of the other control parameters (such as the population size 
and the mutation rate) are well-chosen.  Though you can find rules of thumb for setting these 
values, sometimes you can only determine the best values by experimentation. 

Simulated Annealing 

Simulated annealing is another popular heuristic for both discrete and continuous problems.  It 
was developed before genetic algorithms, and has gradually been superceded by them for many 
applications, though it is still much used.  It is based on an analogy to the heat-treatment of 
metals (known as annealing).  When metals are carefully annealed, usually by precise control of 
the cooling process, certain very desirable properties such as hardness or flexibility can be 
obtained.   

In optimization by simulated annealing, when the “temperature” parameter in the heuristic is 
high, a great deal of random movement in the solution is tolerated, and as the “temperature” 
parameter is lowered, less and less random movement is allowed, until the solution settles into a 
final “frozen” state.  This allows the algorithm to sample the solution space widely when the 
“temperature” is high, and then gradually move towards simple steepest ascent/descent as the 
“temperature” cools.  The effect is to allow the solution to move out of local optima during the 
high temperature phase of the operation. 

Here is an outline of this simple algorithm for the case of minimization of a cost function: 

0. Start-up.  Find an initial solution S, possibly by generating it randomly.  Choose an initial 
(high) temperature T > 0.  Choose a value for r, the rate of cooling parameter. 

1. Choose a random neighbour of S and call it S’. 

2. Calculate the difference in costs: ∆ = cost(S’) – cost(S). 

3. Decide whether to accept the new solution or not: if ∆ ≤ 0 (S’ is better than S, or the same 
as S), then set S = S’, else (S’ is worse than S) set S = S’ with probability e-∆/T. 

4. If the stopping conditions are met, then exit with S as the final solution, else reduce the 
temperature by setting T = rT, and go to Step 1. 
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A simple stopping condition is when S is “frozen”, i.e. has not changed value for several 
iterations. 

The really interesting feature of a simulated annealing algorithm is how it will accept a 
worsening move with a certain probability.  This probability declines as T declines; by analogy 
the randomness in the movements decrease as the temperature falls.  When T is small enough the 
algorithm accepts only improving moves.  This blending of random and purposeful search is 
surprisingly effective and has found many practical applications including layout of integrated 
circuits, routing and location problems, graph problems, etc.  However running times can be 
long. 

While the inspiration is simulated annealing, the more apt analogy for me is to a fly trying to find 
a way out of a container.  Initially when it has a lot of energy it buzzes around wildly, but later 
when it tires it makes random moves less and less often and gradually settles into walking 
towards its goal.  This is a blend of exploring widely and following up on promising paths.  And 
flies are quite good at getting out of containers! 


