Preprint. Reference for final version:
Computers and Operations Research, vol. 37, no. 9, pp. 1544-1556

Faster MIP Solutions via New Node Selection
Rules

Daniel T. Wojtaszek John W. Chinneck
dtwojtas@sce.carleton.ca chinneck@sce.carleton.ca

Systems and Computer Engineering
Carleton University
Ottawa, Ontario K1S 5B6

Canada

November 12, 2009

Abstract

When a branch and bound method is used to solve a linear mixed integer program
(MIP), the order in which the nodes of the branch and bound tree are explored signifi-
cantly affects how quickly the MIP is solved. In this paper, new methods are presented
that exploit correlation and distribution characteristics of branch and bound trees to
trigger backtracking and to choose the next node to solve when backtracking. A new
method is also presented that determines when the cost of using a node selection method
outweighs its benefit, in which case it is abandoned in favor of a simpler method. Em-
pirical experiments show that these proposed methods outperform the current state of

the art.

1 Introduction

Linear Mized Integer Programs (MIP) can be formulated as follows.
The objective function is defined as:

minimize z = E 0;x; + E 0;T;

jeI jec
The constraints are defined as:

> agri+ Y agr {<,=>}v, i=1,...,m

jel jeC
ljngﬁuj]EIUC
ZL’jGZ jel
r; €R jedl

I is the set of variables constrained to be integer valued (including binary-valued).

C is the set of continuous, real valued variables.

chinneck
Text Box
Preprint. Reference for final version:
Computers and Operations Research, vol. 37, no. 9, pp. 1544-1556

Many methods for solving MIPs employ a branch and bound solution method. The general
procedure of branch and bound is summarized in Algorithm 1. A difficulty with branch and
bound is that it can take an impractical amount of time to solve some MIPs, even when using
the most sophisticated computers. For this reason, the focus of this work is on developing
faster methods for solving MIPs.

The performance of the branch and bound method is greatly affected by the choice of
the branching variable selection method (Step 4), and the node selection method (Step 2).
After solving the LP relaxation of the current node (Step 3), there will be a list of candidate
variables, i.e. variables that are required to take integer values and yet are not integer-valued
in the current LP-relaxation optimal solution. The branching variable selection method
chooses a candidate variable from the list for branching. This produces two child nodes: in
one child node the lower bound of z; is set to the nearest integer value that is greater than
the LP-relaxation solution value of x;, and in the other child node the upper bound is set to
the nearest integer that is less than the value of z;.

In Step 2, if there are two or more unexplored (active) nodes then the node selection
method determines which active node to solve next. As far as possible, the goal is to choose
nodes that are ancestors of a MIP optimal node so that the resulting tree is as small as
possible, though there is no guaranteed method for making an accurate selection. There
are numerous node selection heuristics that try to achieve this goal, or that use some other
strategy of developing the branch and bound tree to achieve a different goal, such as reaching
a first feasible solution quickly. The node selection heuristic can have a dramatic effect on
the solution effort. For example, for the bell4 model from MIPLIB 2.0, GLPK does not
solve this model within 1 hour using its default node selection method, whereas this model
is solved in 10.66 seconds when using one of the new node selection methods developed here.

This paper develops new heuristics for node selection that demonstrate significant im-
provement over state of the art methods in solving MIPs to optimality quickly. There are
three aspects to the new methods: (i) determining when to backtrack, i.e. to select a node
other than a child of the node most recently explored, (ii) determining which node to back-
track to, and (iii) determining when to abandon an advanced but costly backtrack selection
method in favour of simple depth-first search.

1.1 Existing Node Selection Heuristics

Since the LP-relaxation solution is not yet available, the lower bound of an unexplored node
is initially set equal to that of its parent node. The same is true for any other LP solution
characteristics of a node such as the number of candidate variables. Using the available
information, node selection heuristics try to avoid choosing superfluous nodes, i.e. nodes
whose lower bound turns out to be greater than the (unknown) MIP optimal objective
value, z*.

The best-first, or best-bound, node selection method avoids the exploration of superfluous
nodes by choosing the unexplored node having the smallest lower bound over all the unex-
plored nodes. Nodes that are closer to the root node are more likely to be chosen because
their lower bounds are generally smaller than the lower bounds of nodes deeper in the tree.
Since MIP feasible solutions usually occur at leaf nodes that are far from the root node,
best-first search is not a good choice for quickly finding a MIP feasible solution. This is

Algorithm 1 Branch and Bound

Inputs: MIP instance.

Initialize: Incumbent solution, I = ¢. Objective value of incumbent solution, z(/) = oo.
List of unexplored nodes, N = ¢.

Procedure:
1. Add the initial LP-relaxation (the root node) to N.
2. Choose a node from N for exploration and label it currentNode.

3. Solve the LP-relaxation for currentNode.

e [f LP-relaxation is infeasible or it is feasible with a lower bound that is greater
than z(I) then discard currentNode and go to Step 7.

o [f LP-relaxation is MIP feasible then:

— If LP-relaxation objective function value is less than z(I) then replace I with
this solution, else discard currentNode.

— Go to Step 7

4. Choose a candidate variable in current Node for branching.

5. Branch on the selected variable to create two child nodes of current Node; add these
nodes to N. Remove currentNode from N.

6. Go to Step 2

7. If list of unexplored nodes is empty then:

7.1 If I = ¢, then exit with infeasible outcome.

7.2 Optimum is I: exit with optimal outcome.

8. Go to Step 2

also true of the breadth-first node selection method, which chooses the earliest created active
node.

Depth-first node selection always chooses a child of the most recently explored node.
Given the two child nodes created by branching on a variable, a heuristic is used to choose
which one to explore next. Some common methods for making this branch direction decision
include choosing the up branch, the down branch, the branch that has the nearest integer
bound for the branching variable, or the branch that forces the value of the branching variable
away from its value at the root node [22]. If the last solved node is either LP infeasible, MIP
feasible, or worse than the incumbent solution, then the last created active node is explored.
Depth-first node selection is a better choice if the goal is to find a MIP feasible solution as
quickly as possible.

A major advantage of depth-first exploration of the tree is that the LP formulations for a
parent and a child node differ by only a single variable bound, which means that the solution
of the child node can be hot-started, and hence is very quick. Other node selection methods
that do not move from parent to child node in succession cause the solution of dissimilar
LPs in succession, and hence the average number of simplex iterations to solve each node
is usually significantly higher as compared to depth-first node selection |5, 11, 20|. This
assumes that the factorized simplex basis of only the most recently solved node is available
which, due to computer memory limitations, is true for most MIP solvers. Depth-first search
also tends to maintain fewer unexplored nodes in memory, and hence is less likely to exhaust
the available memory. Some MIP solvers, such as SCIP [3|, use a predefined threshold of
memory usage to ensure that the size of the branch and bound tree does not exceed the
available memory by switching to depth-first node selection if this threshold is exceeded.
A number of node selection schemes try to combine the advantages of the best-first and
depth-first methods. One such scheme uses depth-first search until a MIP feasible solution
is found and then switches back and forth between best-first and depth-first strategies [5].

The most-feasible node selection method chooses the node with the smallest sum of frac-
tional values over all candidate variables. This is useful in seeking integer-feasible solutions.

Knowing the value of z of the best possible MIP feasible solution attainable at a descen-
dent of a given node would be useful in selecting which node to explore. Methods which
estimate this value, called estimate based methods, include the best-projection method [16, 23]
and the best-estimate method |6, 14].

The best-projection method uses the change in the value of z between the root node and
the incumbent solution as well as the change in the sum of integer infeasibilities between
the root node and the node for which the estimate is being computed. The best projection
estimate at node ¢ is computed as follows:

Zine — 20
Ei=zi+ | ——]si
S0

where z; is the lower bound of node i, z;,. is the value of z for the incumbent solution, z
is the lower bound of the root node, sy is the sum of integer infeasibilities at the root node,
and s; is the sum of integer infeasibilities at node .

The best-estimate method uses pseudo-costs. Each integer variable has two pseudo-cost
values associated with it, one for the up branch, PV, and the other for the down branch,

j
P]-D . When a variable is branched on, the change in the lower bound between the parent

4

node and the down child node is AZJD = sz - zf where sz is the lower bound for the down
child node and zf is the lower bound for the parent node. Likewise for the up child node
AZY = 2 — 2F'. The pseudo-cost value for the down branch of z; is

D D
Pj :Azj /fy

and similarly for the up branch

PV = A /(1)

where f; is the fractional value of ;. Note that f; is greater than 0 since only variables
that are not integer feasible can be branched on. Updating the pseudo-costs for z; is typically
done by averaging the values from every instance that x; was branched on. The estimate of
the best integer feasible solution attainable from a node i is calculated as follows:

Ei=z+» min{PPf; P/ (1- f)}.
jel

In these methods the active node with the smallest such estimate is explored next.
Linderoth and Savelsbergh [20]| considered the pseudo-cost estimates to be optimistic, so
they proposed an adjusted pseudo-cost estimate. Achterberg [2] proposed interleaving best-
estimate with best-first node selection by performing best-first node selection once for every
by, best-estimate backtracking node selections. It is suggested that by, = 9 should be used.
Forrest et al [14] proposed a method that uses best-estimate node selection until a MIP
feasible solution is found and then chooses nodes according to the percentage error criterion.

Backtracking node selection uses depth-first search until the current node is either MIP
feasible, LP infeasible, has a lower bound that is greater than the value of z of the incumbent
solution, or is considered undesirable to explore, at which point backtracking occurs. A
backtracking node selection method is then used to select the next node to explore instead
of choosing a child of the current node, typically either the best-first, best-projection, or
best-estimate criterion [20]. Many implementations of the branch and bound method use an
estimate Z* of the MIP optimal objective value, called an aspiration value, in an attempt to
avoid the exploration of superfluous nodes by triggering backtracking node selection when
the lower bound of a node exceeds z*. The aspiration value is typically set by the user before
the branch and bound process begins. Various methods have been proposed to compute
z* including best-projection estimates [20] as well as some estimation methods based on
pseudo-costs [15, 20].

Kostikas and Fragakis [17] have experimented with using genetic programming to create
customized node selection rules for a given MIP instance during the branch and bound
solution process of this instance.

1.2 Room for Improvement

We performed a proof-of-concept experiment to test the potential merit of using a good
aspiration value in a branch and bound procedure. We solved a set of MIP instances and
recorded the MIP optimum values. We then re-solved the instances using an aspiration
value equal to the MIP optimal objective value. This reduced the total time to solve all of

the test instances by 15% relative to the best existing aspiration method. It also reduced
the mean ratio to the best time to solve each MIP instance by 48% relative to the best
existing aspiration method. This suggests that it is worthwhile to find ways of generating
good estimates of the MIP optimal objective value for use in triggering backtracking.

2 Backtrack Triggering and Node Selection Heuristics
Based on Frequent Patterns in MIP Solutions

The new methods developed in this paper are:
e the modified best-projection backtracking node selection and aspiration methods;
e the distribution backtracking node selection method;
e the feasibility depth extrapolation aspiration method;

e and the active node search threshold.

2.1 Modified Best Projection Node Selection and Aspiration Method

Our modification to the best-projection method estimates the objective value of the best
MIP feasible solution attainable from any node using nodes that are not MIP feasible. This
eliminates the need to find an incumbent solution before computing an estimate, as in the
original best projection method. The modified version is used both to select a node during
backtracking and to trigger backtracking. The modification is based on Observation 1.

A few definitions are needed. Let ¢; be the number of candidate variables at node 7. Let
co be the number of candidate variables at the root node. Let z; be the objective value at
node i. Let zo be the objective value at the root node. Let z,,(c) be the smallest z; over
all nodes with ¢ candidate variables:

Zmin(C) = miin{zi D¢ = c}.

Observation 1 (Node Infeasibility versus Optimality)
There is an approximately linear correlation between zpy,(c) and ¢ for many MIPs. B

For many MIP instances, plots of z,;,(c) versus ¢ show a trend that indicates the possi-
bility of estimating the value of z* early in the branch and bound process by simple linear
extrapolation. Note that z* occurs at z,,;,(0). For the demulti MIP instance, the trend can
be seen in Figure 1 for 10 < ¢ < 30.

Observation 1 underlies our improvement to the best-projection method. Recall that
in the best-projection method an incumbent solution is required to compute an estimate
of the degradation in objective value per unit MIP infeasibility. At any time during the
branch and bound process, the incumbent solution objective value is z,;,,(0) which is the
minimum objective value found at a node with 0 candidate variables, i.e. a MIP feasible node.
According to Observation 1, a useful estimate of the degradation in objective value per unit

191000 ‘ ‘ ‘
<

190500 | [o MIP Optimum (O
best fit line 2, (10 : 30) ——
190000 eeeeee *00ce, nodes o
189500 | o _
[]
189000 ° . _
Zi b od “‘.. [)

188500 [°° ®eege o 3. © i
188000 |
187500

187000 ®

186500 : : : : ‘
0 10 20 30 40 50 60

Figure 1: Plot of z; and z,,;,(c) versus ¢; for all of the nodes in the tree at the completion of
the branch and bound process for the demulti MIP instance. Also shown is the best fit
line through z,,;,(c) for 10 < ¢ < 30. The BPry— Lf — N node selection configuration
is used (see Section 3.4 for the configuration definitions).

MIP infeasibility can be made using z,,:,(c) for ¢ > 0 thus allowing modified best-projection
node selection to proceed without an incumbent solution.

The following definitions are needed for this algorithm. Let ¢,,;, be the minimum number
of candidate variables over all nodes solved so far. This value is initially equal to the number
of candidate variables at the root node and is updated after each node is solved. Let o, be
the standard deviation of z; over all nodes solved so far. Let o. be the standard deviation
of ¢; over all nodes solved so far.

The estimate of degradation of the objective value per unit change in MIP infeasibility,
m, is computed as follows:

€0 — Cmin
The estimate of the objective value of the best MIP feasible solution attainable from a
node 7, z7, is computed as follows:

vt
Z; = ¢ xm+ oz

The value of —m is the slope of the line through (¢,in, Zmin(Cmin)) and (co, zo). Figure 2
shows an example of this line at a time in the branch and bound process when ¢,,;,, = 23,
¢o = b5 (the number of candidate variables at the root node), zpin(Cmin) = 187,851.53,
and zo = 187,022.36 (the objective value at the root node). The slope of the line through
the points (Cpmin, Zmin(Cmin)) and (co, 20) is —m = —25.91. At this time the value of z; =
Zmin (Cmin) Tor the most recently solved node i. Likewise, the value of ¢; = ¢;,;,. An estimate of
the objective value of the best MIP feasible solution attainable from node i, is 2] = 188, 447.5.
This estimate is the extrapolated value of z,,;,(0) using the line through (c¢;, z;) with a slope
equal to —m.

If at least one of the following conditions is satisfied then this method does not work well.

® Cpin = Co. In this case the denominator in (1) is 0.
e 0. < o™" where ™" is the minimum acceptable value of o.. In this case most nodes
have very similar values of ¢;. This causes the value of m to have little effect on node

selection. We set o™ = 3.

e 0, < o™" where ¢™" is the minimum acceptable value of o,. In this case there is
very little change in z; over all nodes. This causes the value of m to be almost 0 which

then results in ¢; having little effect on node selection. We set o = 0.001.

The thresholds used for the last two conditions were determined empirically. None of the
MIP instances where modified best-projection worked well satisfied any of these conditions.
In most cases where it did not work well, at least one of these conditions was satisified.

2.2 Distribution Node Selection

This backtracking node selection method balances the goals of MIP feasibility and MIP op-
timality. It uses probability distributions of measures of MIP feasibility and MIP optimality
that are based on data taken from all nodes solved so far in the solution process. This

7

188600 ‘ ‘
188400 - nodes o
- line through 2,,;,,(55) and 2, (23)

18820000 o MIP optimum () |

188000 | S oin(@) O -
zi 187800 ¢, _

187600 | _

187400 + [€9] o _

C
187200 | L -
187000 ‘ w Y eee
0 10 20 30 40 50
C;

dcmulti

60

Figure 2: Plot of z; and z,,(c) versus ¢; for all of the nodes in the tree at the time in the
branch and bound process when c¢,,;, = 23 for the demults MIP instance. Most of the
points in the plot overlap because z; = 2z, (c) for most of the nodes at this time. Also
shown is the line through z,,,,(55) (the root node) and 2, (23).

approach weights the MIP feasibility and optimality goals dynamically so that neither can
dominate the other for too long. It favours choosing nodes with lower objective values and
less MIP infeasibility.

The most commonly used measure of a node’s closeness to optimality is its value of z.
The measure of MIP infeasibility used in this method is the number of candidate variables c.
The number of candidate variables is used instead of the sum of the fractional components
of the integer variables because a candidate variable will likely become integer valued if that
variable is branched on regardless of what its fractional value is. For example, suppose one
node has one candidate variable with a fractional value of 0.5 whereas another node has five
candidate variables each with a fractional value of 0.09. If all other integer variables are fixed
for both of these nodes, then choosing the first node will likely lead to a MIP feasible node
more quickly than choosing the second node, which has a lower sum of integer infeasibilities.

Observation 2 (Balancing MIP Feasibility and Optimality)

A characteristic that is typical of many branch and bound trees is that there is a negative
correlation between the objective value and the number of candidate variables of a node; i.e.
z; tends to increase with depth while c; tends to decrease with depth. W

A consequence of Observation 2 is that when trying to balance MIP feasibility and MIP
optimality during node selection, if greater weight is being given to z; than to ¢;, then the
fraction of nodes chosen with small z; will likely be large relative to the fraction of nodes
chosen with small ¢;. The opposite is likely true if greater weight is given to ¢; than to z;.
Note that MIP feasibility is reached when ¢; = 0.

Since it is desirable to choose nodes with both small z; and small ¢;, these values need
to be combined into a single value in order to rank all of the active nodes. This combined
value should be directly proportional to both z; and ¢;. Combining z; and ¢; so that neither
dominates the other can be difficult due to the difference between the range of z; and the
range of ¢; across all of the nodes. For example, Figure 1 shows that the range of z; for
demults is over 3000, whereas the range of ¢; is less than 60. This problem is solved by
assembling the probability distributions of z; and ¢;, respectively, as data becomes available
during the solution process. Note that the range of each distribution is [0, 1] and that each
distribution is a monotonically increasing function of its independent variable.

The distribution function used in this method is suggested by the Central Limit Theorem,
which states that, under certain conditions, the distribution of a sum of random variables
tends to a Normal distribution. Although the underlying process that determines the value
of each variable at a node is not random, it is not usually easy to predict the value of every
variable at a node before it is solved. Therefore the variables can be thought of as random
variables whose values are measured each time an active node is solved. The value of z;
for a node is a weighted sum of these variables, therefore a Normal distribution is used to
estimate the distribution of z; in a branch and bound tree. The value of ¢; can be thought
of as the sum of a set of random variables where each integer variable adds either 0 or 1 to
¢; depending on whether it is integer or fractional valued respectively. Therefore, a Normal
distribution is used to estimate the distribution of ¢;. In addition, the Normal distribution
is well suited for balancing the pursuit of MIP feasibility with optimality since (i) it requires
little more work to compute than the Uniform distribution, (ii) it estimates the values of z;

and ¢; that most frequently appear in the tree using their respective means m, and m,, and
(iii) it uses information on the ranges of z; and ¢; via their respective standard deviations o,
and o,.

Let Fz(z) = P(Z < z) and F(c) = P(C < ¢) be estimates of the Normal cumulative dis-
tribution functions for z; and ¢;, respectively, over all nodes solved so far. The value of F(z;)
is the estimated fraction of nodes with a value of z < z;. Similarly, the value of Fi:(¢;) is the
estimated fraction of nodes with a value of ¢ < ¢;. The distribution backtracking node selec-
tion method chooses an active node with the smallest value of Fizo(2;, ¢;) = Fz(z;) X Fo(c;)
to be explored next. This Fc(z;, ¢;) is used as the comparison criterion because its value is
directly proportional to both F(z;) and Fo(c;), and Fze(z;, ¢;) < min(Fy(z), Fo(e;)) (recall
that 0 < Fz(z) < 1,and 0 < Fi(¢;) < 1) which causes this node selection method to behave
a little like a combination of the best-first and the most-feasible node selection methods.

The following example demonstrates how the pursuit of MIP feasibility and optimality
can be balanced using Normal distributions. Suppose that during backtracking node selection
there are 4 LP feasible nodes in the tree, two of which have 1 unsolved child each. The values
of z; and ¢; for each LP feasible node are given below.

|z ¢; | child
0| 1 |100| nl
1100 1

21100 1

31100 1 n2

In this example, one of the candidate nodes is the unsolved child n1 of node 0, and the
other is the unsolved child n2 of node 3. Recall that the value of z; and ¢; at an unsolved
node is initially set to its parent’s value of z; and ¢; respectively. The choice of which node to
solve next is between node nl which has a small value of z; and a large value of ¢;, and node
n2 which has a large value of z; and a small value of ¢;. To emphasize the optimality goal,
we would like to choose the node ¢ that has the smallest fraction of nodes with z < z;, but to
emphasize the feasibility goal, we would like to choose the node ¢ having the smallest fraction
of nodes with ¢ < ¢;. Estimates of these fractions are computed for our example using Fz(z;)
and Fg(c;), and are given below along with the product of these fractions Fz¢(z;, ¢;) for each
candidate node.

i | Fy(z) | Fole) | Fro(zici)
nl‘ 0.067 ‘ 0.933 ‘ 0.062

n2 | 0.691 | 0.309 0.213

Node n1 has the smallest value of Fzc(z;, ¢;) so it is chosen to be solved next. Node nl is
likely the better choice because three of the nodes have a large value of z; and a small value
of ¢; whereas one of the nodes has a small value of z; and a large value of ¢;. This indicates
that more emphasis has been placed on the pursuit of MIP feasibility than the pursuit of
optimality so the emphasis should be shifted towards the pursuit of optimality by selecting
node nl to be solved next.

The distribution backtracking node selection method computes Fz¢(z;, ¢;) for each active
node i. The node n that will be explored next is chosen as follows:

9

n = argmin Fzco(2;, ¢;).
(2

If there is very little variation in the value of z;, or if ¢; does not change significantly in
proportion to the depth of the nodes in the tree, then this method does not work well since
one of the measures will be given too much weight in node selection. This is summarized in
the following two conditions. Let d be the depth of the latest solved node before backtracking
node selection.

e 0./d < o™ In this case most nodes have very similar values of ¢; over a large range
of depths in the tree. We set o7/™ = 0.1.

e 0, < o™m: In this case there is very little change in z; over all nodes. We set o™ =
0.001.

The thresholds used for these conditions were determined empirically. No instances where
distribution node selection worked well satisfied either condition. Most instances where
distribution node selection did not work well satisfied at least one of these conditions.

2.3 Feasibility Depth Extrapolation Aspiration

This method estimates the MIP optimal objective value by first estimating the depth of the
MIP optimal node via linear extrapolation of the number of candidate variables along the
ancestors of each node in the branch and bound tree. The MIP optimal objective function
value is then estimated based on the node optimum values at that depth. This method is
based on Observations 3, 4 and 5.

Observation 3 (MIP Optimal Depth and Objective Value)
The largest objective value over all nodes at the depth of a MIP optimal node in the
branch and bound tree is greater than or equal to the MIP optimal objective value. B

Observation 4 (Relative Depth of MIP Optimal Node)
The MIP optimal node in the branch and bound tree tends to be closer to the root node
than most other MIP feasible nodes (i.e. less deep than other MIP feasible nodes). B

Observation 5 (Node Infeasibility versus Depth) Extrapolating the rate of decrease
of the number of candidate variables along a dive in the branch and bound tree provides a
reasonable estimate of the depth of the first MIP feasible solution for the dive. B

Figure 3 demonstrates Observation 3 for the bell5 instance. As shown, the largest ob-
jective value over all nodes at the MIP optimal depth is less than the objective values of a
significant number of nodes in the tree. Therefore, if the largest objective value over all nodes
at the MIP optimal depth is known and is used as an aspiration value, then the amount of
effort required to solve this MIP instance will be reduced, without danger of eliminating the
optimal solution. Figure 3 also shows that nodes that are close to a MIP optimal depth tend
to have objective values that are relatively close to the MIP optimal objective value. This
suggests a method of estimating a suitable aspiration value. Finally, Figure 3 shows that

10

bellb
1.02e4-07 ‘ \ T

le4-07 f Zi -) =
9.8e+06 “odes e f i
9.6e+06 E / _

Zi 9.4e+06 -
9.2e+06
9e+06

8.8e+06

8.60-+06 8- | | | | |
0 200 400 600 800 1000 1200

\\

Figure 3: A plot of the objective value versus depth for all nodes for the bell5 MIP instance.
Also shown are lines representing the MIP optimal objective value and depth. The
Dist — Lf — N node selection configuration is used.

in some instances the estimate of the depth of the optimal node does not have to be very
accurate in order to get a useful aspiration value.

To demonstrate Observation 4, all MIP instances were solved to optimality, using default
GLPK with a 1 hour time limit, recording the depth of the optimal node as well as the depth
of the closest MIP feasible node to the root node. Figure 4 shows that for a majority of MIP
instances, the optimal node is close to the shallowest MIP feasible node in the branch and
bound tree.

This pattern exists because fewer changes in variable bounds between the initial LP
relaxation and a MIP feasible solution usually lead to less change in objective values between
the two solutions. Hence a shallower MIP feasible solution tends to have a better objective
function value, so the shallowest MIP feasible solution is often the optimum. Because of
this, the rate of increase of MIP feasibility with depth tends to be greater for the ancestors
of the optimal node than for other MIP feasible nodes.

If the depth d} of the shallowest MIP feasible node attainable by exploring the descen-
dants of node 7 is known, then the shallowest of these depths over all nodes in the tree is likely
a MIP optimal depth. According to Observation 5, an estimate of the value of d; (called
df), may be computed using the correlation between the number of candidate variables ¢;
and the depth d;.

Figure 5 shows an example in which changes in the number of candidate variables as
one progresses along a dive deeper into the tree give some indication of the depth of a MIP
feasible node at the end of this dive. Any node in the branch and bound tree is likely more
MIP feasible than its parent because branching on a candidate variable in the parent node
almost always results in that variable being integer valued in the resulting child node. Thus,
it is expected that MIP infeasibility should decrease as one moves along a path deeper into
the tree.

For many MIP instances, plots of ¢; versus d; of all nodes on a given dive show some
linearity. Figure 6 shows an example for a dive in the vpm2 MIP instance. This plot also
shows that extrapolating a linear best-fit line on ¢; for 0 < d; < d; can result in a good value
of d7. This pattern does not hold for all MIP instances, but it holds frequently enough to
be useful as a heuristic. Linear extrapolation is used to estimate the value of CZ: of a given
node 4, i.e. the depth at which the number of candidate variables reaches zero. Figure 6
shows that d = 44 and d; — d; = —8 for the node at d; = 20. An estimate of the depth of
the optimal solution d*, according to Observation 4, is then taken as the smallest d} over all
solved nodes in the tree.

The aspiration value z*, according to Observation 3 is set to the maximum objective
value over all solved nodes at d*.

The following definitions are needed for this algorithm: m; is the slope of the least squares
best fit line for (¢;, d;) over all ancestors of node 7, and b; is the d-intercept of the least squares
best fit line (d = m; - ¢+ b;) over all ancestors of node i. S is the set of solved nodes in the
current branch and bound tree that are LP feasible but not MIP feasible.

The algorithm proceeds by computing the least squares best fit line of the ancestors for
each solved node with at least 20 ancestors; this ensures that enough information is available
to compute a reasonably accurate best fit line while still being able to compute an aspiration
value early in the branch and bound process. An estimate of the depth of the first MIP

11

MIP feasible depth ratios

7 T
6 ° |
5 F i
d* /dpmin(0) 4 g —
a0 ;
3| :
°
2+ i
1 ! !
0 20 40 60 80 100 120 140

MIP instance ordered by ratio

Figure 4: A plot of the ratio of depth d* of a MIP optimal node to the minimum depth
dmin(0) over all MIP feasible nodes for a set of MIP instances. The BPro— Lf — N
node selection configuration is used.

45@. T T T
40 F o' nodes e |
[}

35 I : . MIP optimum ()
30 s s |
25 s, : |
20 - °s |
15 : e —

10 ®o

Figure 5: A plot of the number of candidate variables versus depth for all ancestors of a
MIP optimal node for the vpm2 MIP instance.

vpm2

45() \ \ - \

40 E MIP optimum () |

35 | best fit line - _

30 I R . nodes o |
4l e :

15 h "' -

° 9 o
10 - Ceg -
5| ‘e .
N J '
0 | | | | | LIPS
0 5 10 15 20 25 30
C;

Figure 6: A plot of the number of candidate variables versus depth for the earliest 20
ancestors of a MIP optimal node for the vpm2 MIP instance along with the best fit
line.

feasible solution attainable from a node ¢ is computed as

d;'k = [bz]

where [b;] represents the rounding of b; to the nearest integer value.
The estimate of the optimal solution depth d* is computed as

d = min d;. (2)
{i€S:d;>20,dr >0}
The aspiration value z*, according to Observation 3, is the maximum value of z; over all
solved nodes with d; = d*:

Z'= max _z.
i€S:d;=d*
The condition that CE‘ > 0 is imposed in (2) because non-positive values would result in
unreasonable values of d*. A value of d* = 0 is unreasonable since the root node is not MIP
feasible. A value of d* < 0 is unreasonable since there are no nodes with d; < 0.

2.4 Active Node Search Threshold

Some backtracking node selection methods can be computationally expensive. The active
node search threshold (ANST) estimates whether or not the cost of using an expensive back-
tracking node selection method outweighs its benefit. If the cost does outweigh the benefit,
then a simpler node selection method is used instead. This idea is based on Observation 6.

Observation 6 (Cost of Node Selection Methods) For some MIPs, the amount of
time required to perform a given backtracking node selection method can become a significant
fraction of the overall amount of time required to solve the problem. This occurs when the
number of active nodes in the tree becomes very large. B

For example, the MIP instance mas76 is solved in 20,609 seconds, requiring 3,186,117
simplex iterations and 1,177,063 nodes, using best-projection backtracking node selection.
The same MIP instance is solved in 1,306 seconds, requiring 3,314,480 simplex iterations and
1,229,699 nodes using depth-first node selection. This MIP is solved in significantly less time
but requiring more simplex iterations and nodes using depth-first versus best-projection.

To verify that the extra time needed to solve MIPs such as mas76 using best-projection
versus depth-first backtracking is due to the node selection method, the maximum ratio, R,
of total time spent performing all of the best-projection backtracking node selections to the
total time spent performing all of the other branch and bound operations was recorded for
this MIP instance as well as for others. The amount of effort needed to solve each MIP
instance in a small set is shown in Table 1 along with the corresponding value of R;. The
values of R; for MIPs that are solved in less time but more simplex iterations using depth-first
versus best-projection are much larger than the values of R; for the remaining MIPs.

For the mas76, pk1, and rani10z10c MIP instances, the cost of using best-projection node
selection outweighs the benefit because this method searches the entire set of active nodes
and the number of active nodes in the tree becomes very large. The cost of using a simple

12

backtracking node selection method does not increase with the number of active nodes in the
tree. In GLPK |21], the depth-first backtracking node selection method is simple and requires
very little computation because it chooses the active node that was last created and resides
at the end of the list of active nodes. A backtracking node selection method that searches
through the entire set of active nodes is not simple because the amount of effort required to
search through the set increases as the number of nodes in the set increases. Examples of
backtracking node selection methods that are not simple include the best-projection, best-
first, and best-estimate methods.

An alternative to putting the last created active node at the end of the list is used in
the SCIP solver [2, 3|. Each node is placed in a list according to its priority with respect
to the node selection criteria. A drawback of this method is that the relative priority of
nodes already in the list may change depending on the node selection criteria used. In the
best-estimate node selection method, for example, the pseudo-cost estimates are updated
after every node is solved. To ensure that the nodes in the list are correctly ordered, the
best-estimate for each node in the list affected by the changed pseudo-cost estimates should
be re-calculated and then all of the active nodes should be re-sorted.

In SCIP, the amount of computation required to place each node in the list according
to its node selection priority increases with the number of nodes already in the list since
a search of these nodes needs to be performed every time a new node is placed in the list.
Therefore it is possible for the cost of node selection methods of this type to become very
large. This issue is noted by Achterberg [2].

The cost of a backtracking node selection method is mainly affected by the number of
active nodes in the tree, the amount of computation required per active node during the
backtracking search, and by how frequently backtracking node selection is performed. If an
aspiration backtrack triggering method is used then backtracking frequency is affected by
the aspiration value. Therefore, if the cost of backtracking node selection is perceived to
outweigh its benefit for a given MIP, and an aspiration method is being used, it may be
better to first reduce the backtracking frequency by increasing or removing the aspiration
value to see if backtracking continues to cost too much. If the backtracking node selection
method continues to cost too much, then it should be changed to a simple method. This is
one way in which an aspiration value that is too small may be detected.

The following definitions are needed for this algorithm. Let tyg be the total amount
of time spent performing all backtracking node selections. Let tzp be the total amount of
time spent performing all of the operations in the branch and bound method. Let ¢ be
the threshold that determines when to switch to a simple node selection method, set at
q = 0.1. Let dq be an increment that is used to determine the effect of the current aspiration
backtrack triggering method on the cost of backtracking node selection. We set dg = 0.01.

The active node search threshold algorithm computes the value of R; after each back-
tracking node selection is performed:

Ro= NS
lpp —tNs

If R; > q then either backtracking is happening too frequently because of an aspiration
backtrack triggering method, or the cost of backtracking outweighs its benefit. If aspiration
backtrack triggering is not being used, then the current backtracking node selection method

13

is too costly, and depth-first backtracking node selection replaces the current node selection
method. If an aspiration backtrack triggering method is in use, then it is discontinued, the
current backtracking node selection method continues, and the value of ¢ is set to the current
value of R; + dg so that now R; < ¢. If the value of R; continues to increase and exceeds
this new value of ¢ then the current backtracking node selection method is too costly and
the depth-first backtracking node selection method is substituted.

Depth-first is used as the simple backtracking node selection method because of its low
cost and efficiency in exploring the branch and bound tree.

Table 1 shows that setting ¢ = 0.1 allows a given node selection method to continue to
be used when it is not too costly but quickly forces a change to the depth-first method when
its cost becomes too great. Although the values of R; for a small number of MIP instances
were used to determine the value of ¢, the chosen value of ¢ = 0.1 is over 4 times larger
than the next smaller value of R;. dgq is set to a small value that, if an aspiration value is
being used, is added to R; to make a new threshold that allows the current backtracking
node selection method to continue to be used without an aspiration value. dq is set to 10%
of the value of ¢ to allow the current backtracking node selection method to continue to be
used a sufficient number of times without an aspiration backtrack triggering method so that
the backtracking node selection method is not mistakenly determined to be too costly.

3 Experimental Setup

3.1 Hardware

The experiments were carried out on a PC equipped with an Intel Core 2 6600 CPU running
at 2.4 GHz and equipped with 4 GB of RAM. The operating system was Linux 2.6.18.
Although the CPU has two processing cores, each MIP instance was solved using only 1
core.

3.2 Implementation

The GLPK 4.9 [21] MIP solver was used in all experiments for a number of reasons. It
is free open source software that has excellent documentation. It uses the depth-first with
backtracking framework, and has most of the standard node selection methods. Most im-
portantly, it is easy to modify to add new backtracking node selection methods, aspiration
methods, and algorithms such as the active node search thresholds. Finally, it is capable of
solving reasonably difficult MIP instances within a reasonable time limit [19].

The GLPK solver has many parameters that do not affect the branch and bound solution
method. Unless otherwise stated, all of these parameters are set to their default values except
for those mentioned here.

LPX K TMLIM, the time limit of the MIP solver in seconds, is set to different values
for different experiments as described later. LPX K MSGLEV is set to 1 so that messages
to the console are limited to error messages in order to reduce the corresponding overhead
and thus reduce the solution time for all MIP instances.

14

The best values for each metric in each row are shown in boldface.

Table 1: Solution time, number of nodes, and number of simplex iterations for best-projection
(BPro— Lf — N) vs. depth-first (DeF — Lf — N) node selection. Also shown is R;.

depth-first best-projection
MIP time (s) itns nodes | time (s) itns nodes | Max R,
bal8x12 4.51 2375 1483 1.73 2592 376 | 0.0185
10teams 1985.79 | 1250128 14258 | 1076.87 | 711067 6043 | 0.00194
fiber 1434.93 | 276720 37298 | 617.71 | 129490 15673 | 0.0060
1152]av 706.34 | 113407 8168 | 515.35 82776 5333 | 0.0025
blend?2 679.12 | 1649444 | 316634 40.27 49393 18186 | 0.0202
pipex 2.32 14695 5701 1.39 9936 3007 | 0.0215
misc07 4171.5 | 1464603 | 131477 | 2937.81 | 1058824 93303 | 0.0142
pp08a 1932.69 | 515883 71946 | 1527.03 | 417930 53975 | 0.0146
bienst1 2673.93 | 4107520 34256 | 2530.14 | 3971433 32621 | 0.0020
mas76 1306.61 | 3314480 | 1229699 | 20609.65 | 3186117 | 1177063 | 0.8790
pkl 4058.23 | 9778734 | 1965503 | 12623.15 | 4329434 | 820924 | 0.7904
ranl0x10c | 930.96 | 1214630 | 566587 | 3095.58 | 907230 | 428535 | 0.6552

For all experiments, the default branching variable selection method in GLPK is used
because an empirical study that we performed suggested that this is the best option. For a
similar reason, the root node cuts available in GLPK are used for all experiments.

If the amount of memory used when solving a MIP instance exceeds 1.5 gigabytes then the
depth-first backtracking node selection method without an aspiration backtrack triggering
method is used until the memory usage drops below 1 gigabyte. This technique is commonly
used to avoid using the extremely slow swap space of memory |3|. This threshold was never
exceeded in our experiments.

3.3 Comparison Metrics

Solution time t,;7 is the most important measure of the effort required to solve a MIP instance
MT and is frequently used to evaluate the performance of a branch and bound method
[1, 2, 7, 8, 20]. The number of nodes solved and the number of simplex iterations are also
commonly used to measure effort [1, 2, 7, 13, 24]. Solution time is used for the experiments
in this paper because the time to solve a MIP instance includes overhead computing time
that is not reflected in the number of nodes and the number of simplex iterations. Section
2.4 shows an example of how the time spent performing node selection may become large
relative to that spent performing the other aspects of branch and bound. Table 1 shows that
although best-projection node selection solves the mas76, pkl and rani10z10c MIP instances
in fewer nodes and simplex iterations than depth-first node selection, these MIP instances
are solved in significantly less time with depth-first node selection. The number of nodes
and simplex iterations do not always accurately reflect the amount of effort required to solve
a MIP instance.

To evaluate the relative performance of a set of branch and bound methods, a set of
many MIP instances should be solved using each method because the heuristic nature of
these methods does not guarantee that the relative performance of each method will be
consistent for every possible MIP instance. A way to combine the solution times for all of
the MIP instances into a single performance measure is needed. A simple approach is to
compute the total solution time over all of the instances:

TOTTM = Z tarr-
MI

TOTTM can be dominated by a small number of very difficult MIP instances. This effect
can be eliminated by using the best solution time ¢,,;5 for M1 over all of the contending
methods to normalize t;;:

"y = taur/tuis.

For a given method, ry;; — 1 is the fraction of extra time required to solve M relative to
the best method for solving M. The geometric mean is used to combine the r;; for every
MT into a single measure M RATFE. The geometric mean is preferable to the arithmetic
mean because it is less sensitive to outlying values of rj;;. For example, the arithmetic
means of each of the sets A = {1,2,3,4,5} and B = {1,1,1,1,11} are both equal to 3

15

whereas the geometric means are 2.61 and 1.62 respectively. The outlying value 11 in set B
has less impact on the geometric mean than on the arithmetic mean.

If a time limit is imposed on solutions, then not all MIP instances will be solved in a
given experiment. The number of MIP instances F'AI L that are not solved to optimality is
a commonly used performance measure for a branch and bound method [8, 20].

The details of computing FAIL, TOTTM and M RATE for a set of MIP instances are
given below.

FAIL: The number of MIP instances used in an experiment that are not solved to optimality
within the time limit. If a MIP instance is not solved using any contending method,
then this MIP instance is excluded from FFAIL. Methods with a smaller value of FFAIL
are better.

TOTTM: The total amount of time required to solve the set of MIP instances. Any MIP
instance that is not solved using any contending method is excluded from this total.
If a MIP instance is not solved using a given contending method but is solved using
at least 1 other contender, then the time limit is added to TOTTM for this instance.
TOTTM is, therefore, a lower bound on the total time required to solve the set of
MIP instances if a method fails on at least one MIP instance (it is exact if the method
solves all instances). Methods with a smaller value of TOTT M are better.

MRATE: The geometric mean of ¢y;;/tyrp over all solved MIP instances for a given con-
tending method. Any MIP instance that is not solved using any contending method
is excluded from this mean. If a MIP instance is not solved using a given contending
method but is solved using at least 1 other contender, then ¢,;; = the time limit.
MRATE is, therefore, a lower bound if a method fails on at least one MIP instance
(it is exact if the method solves all instances). If ;7 is smaller than 10 seconds for
every contending method then M1 is excluded from M RATFE to reduce the effects of
timing error on this measure. Methods with a smaller value of M RATFE are better.

Another way to combine the solution times of MIP instances in order to evaluate the relative
performance of contending methods is to use a performance profile [12]. A performance profile
for a contending method is a plot that displays a point representing each M that is solved.
For a given MIP instance M1 and contending method, the z-axis represents the value of
ry and the y-axis represents the fraction fj;;; of MIP instances in the set that have a
value of ry;; < ry1 for a particular method.

Commonly used performance measures for prematurely halted MIP instances are the best
incumbent solution found and proven optimality gap at termination. To determine how the
competitor methods performed on the more difficult MIP instances, the following scheme is
used to determine the relative ranking of two methods for a given MIP instance. Ties are
allowed.

e If both methods find a MIP feasible solution then the better method is the one that
finds the solution with the best value of the objective function.

e [f both methods find equally good MIP feasible solutions then the method with the
smaller provable optimality gap (see Definition 1) is better.

16

e A method is better if it finds a MIP feasible solution whereas the other method does
not.

Definition 1 (Provable optimality gap)

The provable optimality gap G, measures the proximity of the upper and lower bounds on
the MIP optimal objective value. The value of G, is computed as follows:

G _ |Zinc - Z;mn

¢ |Zznc| + €

where z;”m s the minimum objective value over all active nodes, z;,. is the objective value
of the incumbent solution, and ¢ = 1072 (used to avoid dividing by 0) .

A MIP is solved if G, =0. R

The following measures are based on the ranking scheme described above.

AVGRANK is the average rank of a given method over all MIP instances that are not
solved using any contending method. MIP instances for which no incumbent solution

is found by any contending method are also excluded. Methods with a smaller value
of AVGRANK are better.

NFIRSTS is the number of MIP instances for which a given method is ranked first. MIP
instances that are solved by at least 1 contending method are excluded. MIP instances

for which no incumbent solution is found by any contending method are also excluded.
Methods with a smaller value of NFIRSTS are better.

NINC' is the number of MIP instances for which a given method did not find an incumbent
solution. MIP instances that are solved by at least 1 contending method are excluded.
MIP instances for which no incumbent solution is found by any contending method
are also excluded. Methods with a smaller value of NINC' are better.

3.4 Experiments

The purpose of these experiments is to test all configurations of backtracking node selection,
backtrack triggering, and active node search threshold methods to determine which is the
best to use for solving MIP instances. All possible configurations are tested to assess how
well each option for each component of a configuration performs in conjunction with various
options for the other components.

The options for backtracking node selection method, backtrack triggering method and
active node search threshold are described below.

e Backtracking node selection methods:

— State of the art methods that are available in GLPK.

DeF': Depth-first
BrF': Breadth-first
BPry: Default best-projection (GLPK default)

17

BeF': Best-first
— State of the art methods that were added to GLPK for this experiment.

BeFE: Best-estimate
BeF/BeE: BeF interleaved with BeFE

— New methods that are proposed in this paper.

Dist: Distribution (see Section 2.2)
BPry: Modified best-projection (see Section 2.1)

e Backtrack triggering methods:

— State of the art methods that are available in GLPK.

Lf: Non-aspiration backtracking: trigger backtracking only at leaf nodes (GLPK
default)

— State of the art methods that were added to GLPK for this experiment.

E: Perform backtracking node selection after every node solution
BPrAg: Default best-projection aspiration
PCA: Pseudo-cost (best-estimate) aspiration

— New methods that are proposed in this paper

DEzA: Linear feasibility depth extrapolation aspiration (see Section 2.3)
BPrA;: Modified best-projection aspiration (see Section 2.1)

e Active node search threshold (see Section 2.4) options:

N: Do not use ANST (GLPK default)
Y: Use ANST

State of the art methods not listed above are excluded because (i) there are no documented
empirical studies in which the method outperforms all of the above methods, (ii) the principal
behavior of the method relies on user defined parameters, or (iii) the details required to
properly implement the method are not documented.

An example of a node selection configuration is BPrqg — Lf — N. In this configuration
best-projection backtracking node selection is used whenever a leaf node is reached, and the
ANST method is not used. This is the default configuration in GLPK.

There are 79 possible configurations. Due to the impractical amount of time required to
evaluate the performance of every configuration on a sufficiently large set of MIP instances,
this experiment is carried out in two stages. Experiment 1 is used to reduce the list to
a small subset of the most promising configurations. The set of MIP instances used in
Experiment 1 allows the performance of all of the competitor configurations to be evaluated
within a reasonable amount of time, i.e. these are the models that tend to be solved within
a shorter time frame. Experiment 2 then evaluates the performance of the most promising
configurations identified in Experiment 1 on a larger and more difficult set of MIP instances.

18

3.5 Test Models

The set of MIP instances used in the experiments includes a wide variety of MIP formulation
characteristics. All 116 MIP instances from MIPLIB 2003 (MIPLIB 2003 [4|, MIPLIB 3.0
[10], and MIPLIB 2.0 [9]) and all 156 MIP instances from CORAL [18] are used, for a total
of 272 MIP instances. These are problems from industry, theoretical problems, or problems
submitted to the NEOS server. These MIP instances are commonly used in testing branch
and bound methods [2, 19].

4 Empirical Results

4.1 Experiment 1

This experiment tests all configurations of backtracking node selection, backtrack triggering,
and active node search threshold methods on a small set of MIP instances to identify the
most promising configurations for further testing in Experiment 2.

A solution time limit of 30 minutes is imposed for all methods. The 79 MIP instances
that were solved within 30 minutes using the default GLPK node selection configuration
BPro— Lf — N are used in this experiment. This biases the results to favor BPro— Lf — N
by removing any instances that are not solved within the time limit using BPro — Lf — N
even though they may be solvable within the time limit using a different configuration.

To determine how each configuration ranks compared to the others, we combine the three
performance measures, TOTTM, MRATE and FAIL, into a single measure. Towards this
end, the following definitions are used to rank each configuration.

TR: Time rank is the rank of a configuration according to TOTTM.
RR: Ratio rank is the rank of a configuration according to MRATE.

SR: Sum rank is the measure used to determine the overall rank of each configuration.
SR = FAIL+ TR+ RR. Configurations with smaller values of SR are better.

R: The rank of each configuration according to SR.

Configurations are ranked according SR because it is desirable for a configuration to have
the smallest value of FAIL, TR, and RR. Addition is used to prevent one of these measures
from dominating the others. Table 4 shows that the largest difference either between T'R
and R, or between RR and R, is 11 for BeF'/BeE — PC A — N which has R = 43, TR = 52,
and RR = 32. The average of this difference over all configurations is 3.2. FAIL is added
to SR instead of the ranking according to F'AIL because (i) FAIL is integer valued, and
(ii) if the FFAIL rank is added to SR, the difference between the values of FAIL for two
configurations is lost if this difference is greater than the difference in their ranks. In this
experiment, the ranking of each configuration according to FFAIL is equal to FAIL + 1 for
all but the worst 3 configurations, therefore either method of computing SR gives similar
results.

This experiment required nearly 3 weeks of computation time to complete. For brevity,
we summarize the results for just 12 of the 79 possible configurations: those that were chosen

19

for testing in Experiment 2. These 12 configurations consist of the top seven in the combined
ranking described above, and five state-of-the-art methods for comparison. The complete
set of results is available online [26]. Further relevant analyses are also available in [25].
Tables 2 and 3 show the ranking of each configuration according to MRATE and TOTTM
respectively.

Table 4 shows the rank measures for the 12 configurations. Standard node selection
methods such as depth-first (DeF — Lf — N), best-first (BeF — Lf — N), and breadth-first
(BrF — Lf — N) ranked 76, 64, and 71 respectively. FAIL is 0 for BPro — Lf — N because
the MIP instances were selected based on the success of this method. The top 21 ranked
configurations all involve at least one method out of those developed in this paper. The top
ranked configuration, BPr; — BPrA; — Y, consists solely of methods developed here. Each
of the new methods proposed in Sections 2.1 through 2.4 is used at least once in the top 7
configurations. For this reason, the top 7 ranked configurations are tested in Experiment
2. The best state of the art configuration, BPro — BPrAy — N, is ranked 22 whereas the
default GLPK configuration, BPro — Lf — N, is ranked 39. These two configurations are
also tested in Experiment 2 to provide a comparison to the best state of the art and to the
baseline GLPK.

The rankings for configurations with a given backtracking node selection method tend to
be closer to each other than those for a given backtrack triggering method, which indicates
that the backtracking node selection method has a much greater influence on the performance
of a given configuration. For example, the difference in ranks between the best and worst
configurations with BPry is 14. For BPrA,, this difference is 77.

To determine the overall effect of using ANST, the arithmetic means of each of the
performance measures (TOTTM, MRATFE and F'AIL) are computed over all configurations
with ANST and compared to the corresponding means taken over all configurations that do
not use ANST. All configurations with BrF and DeF' are excluded from the means since
neither of these methods is combined with ANST in this experiment. Table 5 shows that
on average, ANST improves performance for all three of these measures. With respect
to FAIL, ANST improves performance by about 29%. With respect to TOTTM, ANST
improves performance by about 5%. With respect to M RATE, ANST improves performance
by about 1.7%.

Table 6 shows TOTTM, MRATE and FAIL over all of the configurations grouped by
backtrack triggering method. The performance of any given backtrack triggering method
varies greatly depending on the choice of backtracking node selection method. For example,
although BPry — BPrA; — Y is the best ranked configuration, Table 6 shows that, on
average, BPrA; is inferior to BPrAy. Similarly, BPry — DExA — Y ranks better than
the highest ranked configuration with BPrA, but DFExA is inferior to BPrA, on average.
Table 7 shows that the DEx A backtrack triggering method outperforms the state of the art
backtrack triggering methods when either the BrF or BeF'/ BeE backtracking node selection
method is used. It also shows that the BPrA; backtrack triggering method outperforms the
state of the art backtrack triggering methods when either the BrF', Dist or BPr; node
selection method is used.

20

Table 2: Performance of each competitor configuration with respect to MRATE. The con-
figurations that are available in the original GLPK solver are in boldface.

RR | Configuration MRATE || RR | Configuration MRATE
1 | Dist— E—N 1.27133 || 27 | BPro — BPrAy— N | 1.62144
2 | BPry— BPrA;—Y | 1.31598 || 44 | BPro — Lf — N 1.82184
3 | BPri— BPrA;— N | 1.32779 || 65 | BeF — Lf — N 1.98177
4 | Dist — BPrA; —Y 1.34052 71 | BrF —Lf — N 2.02911
5 | BPry — BPrAy—Y | 1.34057 | 76 | DeF — Lf — N 2.69916
6 | BPri— DExzA-Y | 1.34315
7 | BPri—PCA-Y 1.35208

Table 3: Performance of each competitor configuration with respect to TOTTM. The con-
figurations that are available in the original GLPK solver are in boldface.

TR | Configuration TOTTM | TR | Configuration TOTTM
1 | BPry— PCA-Y 16812.65 || 21 | BPro— BPrAy— N | 19042.51
2 | BPri— PCA—-N 16861.29 | 36 | BPro — Lf — N 20584.63
3 | BPri— BPrA; =Y | 17115.24 | 62 | BeF — Lf — N 24472.94
4 | BPry — BPrA;,— N | 17393.7 | 71 | BrF —Lf — N 25816.53
6 | Dist— BPrA; —Y | 17695.79 | 76 | DeF —Lf — N 30570.64
7 | Dist— E— N 17776.13
8 | BPry— DExzA—-Y | 17906.25

Table 4: Performance of each competitor configuration and their rankings. The configu-
rations that are available in the original GLPK solver are in boldface. The smallest
values of FAIL, TR, and RR are also in boldface.

R | Configuration FAIL | TR | RR || R | Configuration FAIL | TR | RR
1| BPry— BPrA;-Y 1 3 2 ||22| BPro— BPrAg— N | O 21 | 27
2 | BPry — BPrA; — N 1 4 3 139| BPro—Lf —N 0 36 | 44
3| BPri—PCA-Y 1 1 7 | 64| BeF —Lf — N 6 62 | 65
4 | Dist— F— N 2 7 1 |71 | BrF-Lf-N 6 71| 71
5 | Dist — BPrA; —Y 1 6 4 |76 | DeF — Lf — N 7 76 | 76
5| BPry— PCA—N 1 2 8

7| BPri— DExA-Y 2 8 6

Table 5: Average performance of configurations with ANST. Configurations with BrF and
DeF are excluded. The best values of each metric are in boldface.

FAIL | TOTTM | MRATFE
Not using ANST | 3.33 21684.53 | 1.72
ANST 2.58 |20574.42 | 1.69

Table 6: Average performance of each aspiration method. DeF — Lf — N is excluded. The
best values of each metric are in boldface.

Aspiration | FAIL | TOTTM | MRATE
BPrA, 2.92 21221.98 | 1.7
DExA 3.23 21252.01 | 1.73

Lf 2.85 | 2143244 | 1.76
PCA 3.69 22010.78 | 1.8
BPrA; 3.69 22221.9 1.76

E 4.62 23705.7 1.94

Table 7: Rank of configurations with the same backtracking node selection option.

BP?"l—BPTAO—Y
BPT’l—BPTAO—N

20
21

Dist — BPrAy—Y
Dist — DExA — N

25
33

R Configuration R Configuration R Configuration

1 | BPry—BPrA, =Y |4 | Dist—E—-N 9 | BeF/BeE — BPrA, —Y
2 | BPry—BPrA,—N |5 | Dist—BPrA, =Y | 17| BeF/BeE — DExA—-Y
3 | BPry—PCA-Y 15 | Dist — BPrA, — N || 23 | BeF/BeE — E—-Y

5 | BPry — PCA—-N 17 | Dist — BPrAy— N || 24 | BeF/BeE — PCA-Y

7 | BPry—DExA-Y | 17 | Dist —Lf =Y 25 | BeF/BeE — BPrAy—Y

BeF/BeE — Lf —Y
BeF/BeE — DExA — N

BPT‘O—BPT’AO—Y
BPro— E-Y
BPro—Lf-Y
BPro— DExA— N
BPro—Lf—N
BPro— PCA-Y
BPro— DExA—-Y
BPro— PCA— N
BPro— BPrA; —Y
BPro— E— N
BPTU—BPT’Al—N

45
45
49
20
ol
o8
99
63
67
68
70

BeE — BPrA, -Y
BeE — PCA-Y
BeE — BPrAg—Y
BeE — Lf —-Y
BeE — DExA—-Y
BeE — BPrAyg— N
BeE — BPrA, — N
Bell — DExA— N
BeE — PCA—- N
BeE — FE— N

BeE — Lf — N

o6
a7
60
60
62
64
64
66
69
74
75

10 | BPri—Lf—N 28 | Dist — DExA—Y || 34 | BeF/BeE — BPrA; — N
12| BPry — DEzA—N |30 | Dist—Lf — N 38 | BeF/BeE — E — N

13| BPrM—FE-Y 30 | Dist — PCA— N 40 | BeF/BeE — Lf — N

14| BPri—Lf-Y 32 | Dist — PCA-Y 43 | BeF'/BeE — PCA — N
15| BPry—E—-N 34| Dist—E-Y 44 | BeF'/BeE — BPrAy — N
22 | BPro —BPrA, N |45 | Beb —E Y 55 | BeF — PCA Y

Bel' — DExA— N
BeF — DExA-Y
BeF — BPrA,—Y
BeF — Lf-Y
BeF — BPrAy — N
BeF — Lf — N
Bel'— PCA—- N
BeF — BPrA, —Y
BeF — BPrA;, — N
BeF — E-Y
Bel'— E— N

BrF — DExA— N
BrF —Lf—N
BrF — BPrAy— N
BrF — PCA—-N
BrF"— BPrA; — N
BrF — FE—N

4.2 Experiment 2

This experiment is a more thorough test to determine which of the most promising config-
urations identified in Experiment 1 is best. Both the time limit and the number of MIP
instances are larger than those used in Experiment 1.

The configurations tested in this experiment are the top 7 ranked configurations from
Experiment 1 as well as the top ranked state of the art and GLPK baseline configurations.
Each of the new methods developed in this paper appears in at least one of the seven top
ranked configurations. These configurations are listed in Table 8.

The entire set of MIP instances is used in this experiment, including the MIP instances
from Experiment 1. The time limit for each MIP solution is 1 hour. This experiment required
over 9 weeks of computation time to complete. The complete set of results is available online
[27].

e 272 MIP instances are used in this experiment.

e 109 MIP instances were solved using at least 1 of the tested configurations.

130 MIP instances were not solved to optimality using any configuration, but a MIP
feasible solution was found by at least one configuration.

33 MIP instances were not solved to optimality and no MIP feasible solution was found
using any configuration.

Table 9 shows the performance of each tested configuration. All but one of the new configu-
rations have fewer unsolved MIPs than the state of the art configurations. The configurations
with the fewest unsolved MIPs are Dist — BPrA;—Y, BPri— DExA-Y, BPri— PCA-Y
and BPr; — BPrA; —Y. These all use ANST whereas all of the others do not, showing that
using ANST increases the chances of solving difficult MIPs within a stated time limit.

The TOTTM and MRATE for each of the new configurations is significantly better
than for the state of the art configurations. The TOTTM for the worst new configuration,
BPri—PCA—N, is 8% less than the best state of the art configuration, BPro— BPrAy—N.
In the case of the best new configuration, BPry — BPrA; —Y, TOTTM is 26% less than
BPrq—BPrAy—N. With respect to MRATE, the worst new configuration, BPri—PCA—N,
is 17% better than the best state of the art configuration, BPro — BPrAg — N. The best
new configuration, BPr; — BPrA; — Y, has a value of MRATE that is 32% better than
BPrq— BPrAg— N. The TOTTM for the second best new method, Dist — BPrA; — Y,
is 0.001% worse than BPr, — BPrA; —Y and the MRATE for Dist — BPrA; —Y is 3.2%
worse than BPry — BPrA; —Y which indicates that the performance of Dist — BPrA; —Y
is very similar to BPr; — BPrA; —Y.

Figure 7 shows the performance profiles of the state of the art configurations: BPry —
Lf — N and BPry — BPrAy — N, and the two best new configurations with respect to
TOTTM: BPry — BPrA; — Y and Dist — BPrA; — Y. This plot shows that for any
given value of ty;;/tyrp, the fraction of MIP instances with a ratio less than this value for
BPry — BPrA; —Y and Dist — BPrA; —Y is greater than that for BPro — Lf — Y and
BPro— BPrAg—Y. For example, t;/typ for BPry — BPrA; —Y is less than 2 for about
85% of the MIP instances; for Dist—BPrA;—Y, this ratio is less than 2 for about 83% of MIP

21

Performance Profile

% _O
|

% MIPs 0.5
BPry— BPrA; —Y-¢--- A
Dist — BPrA; — Y —e— -
BPTO—BPT’AO—N"O"' n
BPro—Lf — N ——
| L L L L Lo

1 10 100

ratio to best time

Figure 7: The performance profile comparing the two best new configurations with the two
state of the art methods.

Table 8: Node selection configurations for Experiment 2. Rank R from Experiment 1 and
reasons for inclusion are shown.

R Configuration Description

39| BPro— Lf—N Default GLPK: included as a baseline for GLPK
22 | BPro — BPrAy— N | Top ranked state of the art configuration

1 | BPry — BPrA; —Y | Top ranked proposed configuration

2 | BPry — BPrA; — N | Second ranked proposed configuration

3 | BPri— PCA-Y Third ranked proposed configuration

4 | Dist— E— N Fourth ranked proposed configuration

5 | Dist — BPrA; —Y | Fifth ranked proposed configuration

5 | BPry— PCA—-N Fifth ranked proposed configuration

7 | BPri — DExA—Y | Highest ranked proposed configuration with DEzA

Table 9: Performance Experiment 2 configurations. The smallest values of each metric are
shown in boldface.

Solved MIPs Unsolved MIPs
Configuration FAIL | TOTTM | MRATE | AVGRANK | NFIRSTS | NINC
BPri— BPrA, —-Y | 6 86653.72 | 1.33 4.54 8 75
Dist — BPrA, —Y 6 86654.38 1.37 2.89 34 21
BPri— PCA-Y 6 88560.12 1.34 4.34 11 72
BPri—DEzA-Y |6 91509.11 1.4 4.18 17 57
Dist — FE— N 15 97340.26 1.34 2.48 67 17
BPr; — BPrA; — N | 13 99798.67 | 1.43 4.62 7 81
BPri — PCA—- N 12 100752.39 | 1.5 4.6 9 82
BPry— BPrAg— N | 14 109239.58 | 1.75 3.74 21 15
BPrq— Lf—N 15 109579.06 | 1.78 3.47 25 15

instances; for BPro — BPrAy — N, this ratio is less than 2 for about 71% of MIP instances;
for BPrq — Lf — N, this ratio is less than 2 for about 69% of MIP instances. Over all of
the instances not solved within 10 seconds for every contending method BPry — BPrA; —Y
performed best for solving 11% of these instances, Dist — BPrA, — Y performed best for
solving 22% of these instances, BPro — BPrAgy — N performed best for solving 7% of these
instances, and BPro—Lf—N performed best for solving 0% of these instances. Over all of the
MIP instances not solved within 10 seconds for every contending method: BPri—BPrA,—-Y
and Dist — BPrA; —Y solved 92% of these instances, BPrq — BPrAg — N solved 81% of
these instances, and BPro — Lf — N solved 79% of these instances.

130 MIP instances were not solved to optimality within 1 hour using any tested con-
figuration, but a feasible solution was found by at least one configuration. With respect
to AVGRANK and NFIRSTS, Dist — E — N is the best configuration, the second best is
Dist— BPrA; —Y. These results suggest that the Dist backtracking node selection method
performs better than the other methods for either finding good MIP feasible solutions to the
more difficult MIP instances or reducing the optimality gap of these MIP instances.

The best configurations with respect to NINC are BPro—BPrAy,—N and BPro—Lf—N
because both use the most-feasible backtracking node selection method without an aspiration
value until an incumbent solution is found. The goal of the most-feasible backtracking node
selection method is to quickly find a MIP feasible solution.

The results of this experiment suggest that Dist — BPrA; — Y is the best configuration
for solving MIPs. It has the smallest number of unsolved MIPs (the same as 3 other config-
urations) and it outperforms the state of the art configurations with respect to all but one
of the metrics FAIL, TOTTM, MRATE, AVGRANK, and NFIRSTS. Dist — BPrA; — Y
is only marginally worse than the only configuration, BPr; — BPrA; — Y, that performs
better with respect to TOTTM. Similarly, Dist — BPrA; — Y is marginally worse than the
best two configurations, BPry — BPrA; —Y and BPry— PCA—Y with respect to MRATE.
Finally, Dist — BPrA; —Y performs significantly better than both BPr; — BPrA; —Y and
BPr; — PCA —Y with respect to AVGRANK and NFIRSTS.

5 Conclusions

The backtracking node selection, backtrack triggering, and ANST methods developed in this
paper reduce the amount of effort required to solve MIPs to optimality when compared to
the current state of the art methods.

The best configuration for solving MIPs quickly is modified best-projection backtracking
node selection with modified best-projection backtrack triggering, and with ANST. Distri-
bution backtracking node selection with modified best-projection backtrack triggering and
ANST solves MIPs nearly as quickly and performs better than the current state of the art
with respect to finding good incumbent solutions and closing the optimality gap for the very
difficult MIP instances that were not solved within the time limit.

We conclude that the methods developed in this paper show significant promise for solving
MIPs quickly. Further research may bring even further improvements.

22

5.1

Future Research

There are a number of ideas that may improve the methods developed in this paper:

The modified best-projection method may be improved by adaptively selecting the
points (z;, ¢;) used to estimate the degradation in objective value per unit MIP infea-
sibility. The change in the gradient of 2™"(c) may be useful towards this end.

The distribution method may be improved by using distribution functions that are
better suited for modeling the objective values and the numbers of candidate variables
of nodes in the tree. These distribution functions may account for the correlation of
these values. Other node characteristics, such as depth, may also be used.

The distribution method may be improved by combining correlation information on
the paths from the root node to each active node with global information such as the
averages and variances of the objective values, numbers of candidate variables, and
depths of nodes.

The parameters of the distribution functions used in the distribution method are com-
puted using the assumption that the objective value of a node is independent of the
objective value of any other node. This is not true for nodes that are ancestors or
descendants of each other so it may be better to use only nodes that are not ancestors
or descendants of each other in the computation of the parameters of the distribution
functions.

The ANST threshold value may be improved if it is computed for each MIP instance
based on some features of that instance and its branch and bound tree. Features that
may be useful are the number of variables, the number of constraints, the number of
active nodes, the optimality gap, the number of times backtracking has been performed,
the number of MIP feasible nodes, and the number of LP infeasible nodes. It may be
possible to set the threshold value adaptively as the branch and bound method proceeds
based on these features.

The modified best-projection aspiration algorithm updates the aspiration value by
searching through all of the active nodes after each node has been solved. If the
number of active nodes becomes large then it may be better to reduce the frequency
at which the aspiration value is updated.

The feasibility depth extrapolation aspiration algorithm estimates the depth of an
optimal node as the smallest extrapolated depth of a MIP feasible node over all solved
nodes. This estimate may become much too small without any way of increasing it.
It may be better to increase this estimate using information such as the depths of all
active nodes, or to use a different method of choosing the MIP optimal depth from all
of the extrapolated depths of MIP feasible nodes.

In Section 2.4 two methods of storing the active nodes in a branch and bound tree are
discussed: the last active node created is placed at the end of the list; or each node is placed
in the list by priority according to the node selection criteria. An empirical study comparing

23

these methods has not been found in the literature. Such a comparative study should be
conducted to determine which method is better.

References

1

2|

13l
4]

5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33:42-54, 2005.

Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitét
Berlin, 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

Tobias Achterberg. Scip 1.0.0. http://scip.zib.de/, 2007.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):1-12, 2006. See http://miplib.zib.de.

A. Atamtiirk and M. Savelsbergh. Integer-programming software systems. Research
Report BCOL.03.01, IEOR, University of California at Berkeley, 2005.

M. Bénichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiére, and O. Vincent.
Experiments in mixed-integer linear programming. Mathematical Programming, 1:76—
94, 1971.

Timo Berthold. Primal Heuristics for Mized Integer Programs. PhD thesis, Fachbereich
Mathematik der Technische Universitat Berlin, 2006.

R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mip: Theory and
practice — closing the gap. In M. Powell and S. Scholtes, editors, Systems Modelling
and Optimization: Methods, Theory, and Applications, pages 19-49. Kluwer Academic
Publisher, 2000.

Robert E. Bixby, Sebastian Ceria, Cassandra M. McZeal, and Mar-
tin W.P. Savelsbergh. Miplib 2.0 - mixed integer problem library.
http://miplib.zib.de /miplib3 /miplib _prev.html, 1996.

Robert E. Bixby, Sebastian Ceria, Cassandra M. McZeal, and Martin W.P. Savelsbergh.
Miplib 3.0 - mixed integer problem library. http://miplib.zib.de/miplib3/miplib.html,
1996.

R. J. Dakin. A tree search algorithm for mixed programming problems. Computer
Journal, 8:250-255, 1965.

Elizabeth D. Dolan and Jorge J. More. Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91(2):201 — 213, 2002.

N. J. Driebeek. An algorithm for the solution of mixed-integer programming problems.
Management Science, 12:576-587, 1966.

24

[14] J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale mixed
integer programming problems with umpire. Management Science, 20:736-773, 1974.

[15] J. M. Gauthier and G. Ribiére. Experiments in mixed-integer linear programming using
pseudocosts. Mathematical Programming, 12:26-47, 1977.

[16] J. P. H. Hirst. Features required in branch and bound algorithms for (0-1) mixed integer
linear programming. Privately circulated manuscript, December 1969.

[17] Konstantinos Kostikas and Charalambos Fragakis. Genetic programming applied to
mixed integer programming. In Genetic Programming, 7th European Conference, Eu-
roGP2004, Proceedings, volume 3003 of Lecture Notes in Computer Science. Springer,
2004.

[18] J. Linderoth. Coral - mixed integer programming instances.
http://coral.ie.lehigh.edu/mip-instances/, 2006.

[19] J. T. Linderoth and T. K. Ralphs. Noncommercial software for mixed-
integer linear programming. Technical report, Department of Indus-
trial and Systems FEngineering, Lehigh University, Bethlehem, PA, 2004.
http://www.lehigh.edu/ tkr2/research/papers/MILP04.pdf.

[20] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies
for mixed integer programming. INFORMS Journal on Computing, 11(2):173-187, 1999.

[21] A. Makhorin. Glpk 4.9. http://www.gnu.org/software/glpk /glpk.html, 2006.

[22] A. Martin. Integer programs with block structure. Techni-
cal report, Habilitations-Schrift, = Technische = Universitdt Berlin, 1998.
http://www.zib.de/Publications/abstracts/SC-99-03 /.

[23] G. Mitra. Investigation of some branch and bound strategies for the solution of mixed
integer linear programs. Mathematical Programming, 4:155-170, 1973.

[24] J. Patel and J. W. Chinneck. Active-constraint variable ordering for faster feasibility
of mixed integer linear programs. Mathematical Programming Series A, 110:445 — 474,
2007.

[25] D.T. Wojtaszek. Faster MIP Solutions via New Node Selection Rules. PhD thesis,
Carleton University, 2008.

[26] D.T. Wojtaszek. Faster mip solutions via new node selection rules: Experiment 1 data.
www.sce.carleton.ca/faculty /chinneck /students/Wojtaszek /data-exp-1.pdf, 2009.

[27] D.T. Wojtaszek. Faster mip solutions via new node selection rules: Experiment 2 data.
www.sce.carleton.ca/faculty /chinneck /students/ Wojtaszek /data-exp-2.pdf, 2009.

25

