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Infeasibility is often encountered during the process of initial
model formulation or reformulation, and it can be extremely
difficult to diagnose the cause, especially in large linear pro-
grams. While explanation of the error is the domain of humans
or artificially intelligent assistants, algorithmic assistance is
available to isolate the infeasibility to a subset of the con-
straints, which helps speed the diagnosis. The isolation should
be infeasible, of course, and should not contain any constraints
which do not contribute to the infeasibility. Algorithms for find-
ing such irreducible inconsistent systems (lISs) of constraints
have been proposed, implemented, and tested in recent years.
Experience with IISs shows that a further property of the isola-
tion is highly desirable for easing diagnosis: the isolation
should contain as few model rows as possible. This article
addresses the problem of finding liSs having few rows in infea-
sible linear programs. Theory is developed, then implemented
and tested on a range of problems using a modified version of
MINOS 5.4 called MINOS(IIS).

Infeasibility is frequently encountered during the initial
formulation or reformulation of linear programs (LPs), and
it is often extremely difficult to explain the cause. This has
become more of a problem in recent years as computing
technology has advanced to the point that very large LPs are
routinely formulated and solved. Automated assistance in
analyzing infeasibility is needed. Although the diagnosis of
the error (i.e., the explanation in human terms) is the domain
of humans or artificially intelligent assistants such as expert
systems, algorithmic methods can help by isolating the in-
feasibility to a subset of the constraints (both row and col-
umn bounds) defining the model. This speeds the diagnosis.

This article addresses the problem of isolating a subset of
constraints in an infeasible linear program that is useful for
further analysis leading to a diagnosis of the cause. “Useful”
in this context means an isolation which accelerates the
process of arriving at a diagnosis of the infeasibility. A
useful isolation should be infeasible, of course, and should
not contain any constraints which do not contribute to the
infeasibility. Algorithms for finding such minimal sets,
known as Irreducible Infeasible Systems (IISs), have been
proposed, implemented, and tested in recent years (see [7]
and the review in Section 1). Greenberg!'®! performed an
empirical comparison of three methods of LP infeasibility
analysis and concluded that the isolation of minimal infea-
sible sets “performed consistently above midrange, and it
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never failed to provide useful information. It frequently
gave an immediate diagnostic.” See also Greenberg!*®! for
further analysis of the value of isolating IISs during the
diagnostic process. The ability to isolate IISs is now available
in at least three commercial LP solvers, including LINDO, ¢!
CPLEX,""® and IBM’s OSL.P*"

Experience with IIS methods on a range of infeasible LPs
has shown that numerous different IISs can usually be iso-
lated for a single modeling error. Further, which of the
several IISs is reported to the user often has a major impact
on the speed of diagnosis. Experiments with users show
clearly that the IIS having the smallest number of rows is the
most useful. For example, one LP showed two IISs: one
involving 12 rows (of 2393 bounded rows) and 68 columns,
and another involving one row and 93 columns. Although
the first IIS is smaller in terms of the total number of bounds
involved, the second is much easier to interpret and to
diagnose. In another example, one IIS involved all 323 of the
bounded rows, whereas another involved only 76, effec-
tively confining further analysis to about one quarter of the
original model.

It is not surprising that analysts prefer IISs having few
rows. Column bounds are easy to understand, but rows tie
together both variables and other rows in complicated ways.
Limiting the number of rows reduces the complexity of the
subsequent analysis. A small number of rows helps to pin-
point part of the model or a class of constraints for further
analysis, e.g., the blending units, or perhaps the crude oil
supply limits. The IIS identifies a set of constraints that all
contribute mutually to the infeasibility; the analyst must
decide which of the constraints is in error, or if none is in
error, must conclude that the model really is infeasible for
physical reasons. Fewer rows to examine makes this task
much easier. Variable bounds are rapidly verified and are
therefore of less consequence to the analysis process. The
analyst would rather accept more variable bounds in the IIS
in return for fewer rows. In general, minimizing the number
of rows in an IIS also tends to reduce the number of variable
bounds involved because the smaller number of rows inter-
acts with fewer variables. A secondary effect of minimizing
the number of rows is thereby to minimize the total size of
the IIS.

The issue of finding [ISs having a small row-cardinality
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was first raised by the author in a 1993 technical report.
Delayed in publication, this paper updates that 1993 report,
taking into account further developments in the intervening
years, notably the introduction of two new methods of iso-
lating 11Ss which show promise in finding IISs having few
rows. In addition, a recent article by the author partially
addresses the issue of finding IISs having few rows in the
context of an empirical comparison of computer codes for
infeasibility analysis.!®! Before the 1993 work, IIS isolation
algorithms were undirected: the first IIS found was re-
ported, regardless of its row cardinality. Worse, the initial
emphasis in the research was on finding IISs quickly, but as
this article shows, the quickest algorithms for finding IISs
most often return IISs having many rows.

One approach to finding the minimum row-cardinality
IIS is to enumerate all of the IISs in the model, then choose
the one having the fewest rows. Unfortunately, Chakra-
varti’® shows that the number of IISs in an infeasible LP
could be exponential in the worst case. This means that, in
general, the minimum row-cardinality IIS cannot be found
in polynomial time by enumeration methods. This article
takes a different approach, abandoning any attempt to guar-
antee the isolation of the minimum row-cardinality IIS in
favor of heuristic methods which try to directly isolate a
single IIS having few rows.

The design of the methods, and their implementation in
MINOS(IIS) version 4.0, is described in Section 2. A range of
methods is applied to a set of test problems in Section 3, and
their relative effectiveness in finding IISs having few rows is
evaluated. Both the number of rows in the ISs and the
solution times are considered in arriving at recommenda-
tions.

Some basic definitions follow.

Constraint is a generic term referring to any limitation
placed on the model, including both rows (also known as
functional constraints) and column bounds. The term Irreducibly
Inconsistent System (IIS) of constraints, introduced by Carver!?
and subsequently used by van Loon,”®! means a set of
constraints which is infeasible, but which becomes feasible if
any one constraint is removed. It is minimal in that sense.
Chinneck and Dravnieks™ extended the theory of IISs in a
series of further definitions. An Irreducibly Inconsistent Sys-
tem of Functional constraints (IISF) is the complete subset of
functional constraints (rows) in an IIS. In other words, delete
the listing of column bounds in the IIS to find the IISF. If the
complete IS contains column bounds, then the IISF derived
from it is not infeasible. An IIS is overlapped if it shares at
least one constraint with another IIS. A cluster of IISs is a
maximal set of IISs constructed from a single IIS by itera-
tively adding all other IISs that overlap at least one other IIS
in the set.

1. Isolating liSs

For a complete review of the theory and history of isolation
of IISs in all types of mathematical programs, see Chin-
neck.””] We review here only the methods that have been
implemented to date, and thus are available for empirical
evaluation.

Algorithm 1 The Deletion Filter

INPUT: an infeasible set of linear constraints.
FOR each constraint in the set:
1. temporarily drop the constraint from the set.
2. test the feasibility of the reduced set:
IF feasible THEN
return dropped constraint to the set.
ELSE (infeasible)
drop the constraint permanently.
END FOR.
OUTPUT: constraints constituting a single IIS.

1.1 The Filtering Algorithms for Isolating lISs

The filtering algorithms for isolating IISs are briefly re-
viewed below; see Chinneck and Dravnieks!®! and Chin-
neck®™! for full details. Characteristics of the algorithms rel-
evant to finding IISs having few rows are elucidated.

The deletion filter presented in Algorithm 1 guarantees that
only the members of a single IIS are isolated. It requires the
solution of a phase 1 LP for each finite bound in the model,
including variable bounds. Because the final basis of the
previous deletion iteration is used as the initial basis for the
next iteration, this is not as slow in practice as might be
expected. Table II gives some results.

For our purposes, it is important to note that the order in
which the constraints are tested affects which IIS is found.
Consider a set of constraints denoted by {A, B, C, D, E, F} in
which there are two IISs: {A, B} and {C, E, F}. If the con-
straints are tested in the order A to F, then the IIS {C, E, F}
will be found. If the constraints are tested in the order F to
A, then the IIS {A, B} will be found. The rule is: the IIS whose
first constraint is tested last will be identified. This is because
the other IISs can be removed en route and the LP will
remain infeasible.

The sensitivity filter is applied to the final basis of an
infeasible phase 1 LP and helps accelerate the isolation. Any
nonbasic variable having a reduced cost or shadow price of
zero identifies a constraint which does not contribute to the
phase 1 objective function, i.e., does not contribute to the
infeasibility. These constraints can then be eliminated be-
cause they are not part of the IIS being isolated. The sensi-
tivity filter is highly effective in rapidly eliminating numer-
ous constraints, but the deletion filter must be applied to the
output to guarantee the identification of a single IIS.

The sensitivity filter selects from among the IISs in the
model, regardless of the constraint ordering. Which IIS is
selected depends on the details of the phase 1 method in the
LP solver, but the underlying dynamics are the same. All
phase 1 LPs operate by allowing extra degrees of freedom to
the constraints, either by the addition of artificial variables
(as in a textbook phase 1) or by allowing literal bound
violations (as in MINOS). This can be viewed as a constraint
shift (or stretch) in the original variable space. In minimizing
a phase 1 objective function, the minimum sum of constraint
stretches is sought. If the sum is zero, then the LP is feasible.

However, if the sum is not zero, then the LP is infeasible,
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a) before: two lISs, b) after: one IIS,
{A,B} and {B,C,D}. {B',C,D}.

Figure 1. The sensitivity filter may bypass smaller IISs.
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and the final phase 1 basis has some stretched constraints. A
sensitivity filter applied to this final basis identifies any
stretched constraints and the constraints which are forcing
them to stretch, because these are the constraints to which
the phase 1 objective is sensitive. Because some constraints
have stretched out of their original positions, other IISs,
perhaps with smaller row cardinality, may be bypassed as
illustrated in Figure 1. Fig. 1b shows how constraint B has
stretched to minimize the phase 1 objective. The subsequent
sensitivity filter applied to the final basis illustrated in Fig.
1b removes constraint A entirely because the phase 1 objec-
tive is not sensitive to it. The IIS {B, C, D} will be found
instead of the smaller IIS {A, B}.

As shown empirically in Section 3, where there is more
than one IIS, the sensitivity filter regularly isolates the IISs
with more rather than fewer rows. This is probably because
the overlapped constraints in a cluster are the cheapest to
stretch because they eliminate more than one IIS at a time,
and the larger IISs require a larger stretch on average, so the
smaller IISs are bypassed.

A good acceleration of the IIS-isolation process is
achieved by the deletion/sensitivity filter which combines the
two by applying a sensitivity filter to the infeasible deletion
filter iterations, as shown in Algorithm 2. This is the default
algorithm used in MINOS(IIS) version 3.2.

The reciprocal filter applies where rows or variables have
distinct upper and lower bounds and relies on the following
simple theorem: In the absence of simple upper and lower
bound reversal, if a row or column has distinct upper and
lower bounds and one of the bounds is involved in an IIS,
then the other bound cannot be involved in the same IIS.
Thus as soon as one of the bounds is identified as belonging
to an IIS, then the other bound can be discarded. MINOS(IIS)
version 3.2 (and earlier) counted this as a special case of the
elastic filter, but version 4.0 enumerates reciprocal filter
eliminations explicitly.

The elastic filter uses the constraint-stretching concept of
“elastic programming”™! which is closely related to phase 1
ideas. Nonnegative “elastic variables,” ¢, are added to the
constraints to provide elasticity,

Algorithm 2 The Deletion/Sensitivity Filter

INPUT: an infeasible set of linear constraints.
FOR each constraint in the set:
1. temporarily drop the constraint from the set.
2. test the feasibility of the reduced set:
IF feasible THEN
return dropped constraint to the set.
ELSE (infeasible)
i. drop the constraint permanently.
ii. apply the sensitivity filter.
END FOR.
OUTPUT: constraints constituting a single IIS.

Algorithm 3 The Elastic Filter

INPUT: an infeasible set of linear constraints.
1. Make all constraints elastic by adding nonnegative elastic
variables.
2. Solve LP using elastic objective function.
3. IF feasible THEN
Enforce the constraints in which any ¢,>0 by
permanently removing their elastic variable(s).
Go to step 2.
ELSE (infeasible)
Exit.
OUTPUT: the set of enforced constraints contains at least one
IIS.

elastic constraint
E]ax/x] te= bx

E,a,,xJSb, Eja,]x,—e,Sb,

2,a,,x,= b, E,u,,x,

Constraints stretch against the resistance provided by the
elastic objective of minimizing the sum of the nonnegative
elastic variables, which replaces the original objective func-
tion. As shown in Algorithm 3, the elastic filter solves the
elastic LP (which will of course be feasible), and then re-
moves the elastic variables from any constraint in which the
elastic variables are positive (i.e., enforces the constraint) in a
process of gradually “tightening” the LP. The cycle of solu-
tion and enforcement continues until the LP becomes infea-
sible, and the algorithm terminates. The output set of en-
forced constraints contains at least one IIS.

Because of the elastic objective function, constraints will
stretch only if they must (i.e., they are part of an infeasibility)
in order to achieve the minimum elastic objective function
value. For this reason, the maximum number of iterations of
the elastic filter is limited by the cardinality of the smallest
IIS because at least one constraint from the smallest IIS must
stretch in each elastic iteration. This property is important to
finding small row-cardinality IISs.

If exactly one constraint in each IIS stretched in each
iteration of the elastic filter, then the number of elastic

nonelastic constraint
EI u’}x} = b'

(1)

+e —el=1b,
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iterations would exactly equal the cardinality of the smallest
IIS. The elastic filter output set would then contain this
minimum-cardinality IIS plus parts of larger IISs which
would subsequently be eliminated by deletion and/or sen-
sitivity filtering, leaving the minimum-cardinality IIS as the
final result.

In practice, the attainment of the minimum value of the
elastic objective function in an elastic filter iteration can
stretch more than one constraint per IIS. However, experi-
mentation (see Section 3) shows that the number of con-
straints stretched per elastic iteration is relatively small, and
that the elastic filter is a remarkably effective heuristic for
finding small-cardinality IISs.

1.1.1 The MINCS(IS) Software

MINOS(IIS) is a version of MINOS 5.4*%] modified at Car-
leton University to incorporate the filtering algorithms for
isolating IISs. See [5] for details. MINOS(IIS) operates ex-
actly like MINOS 5.4, unless infeasibility is detected, in
which case the IIS-isolating routines are called. MINOS con-
verts the input LP to a bounded variable form, so constraint
removal is easily accomplished by removing the bounds on
the variables. The repeated phase 1 solutions needed by the
deletion filter are considerably speeded by built-in facilities
for basis reuse.

The phase 1 in MINOS is nonstandard. Two progress
variables are tracked: the sum of the infeasibilities (i.e., the
usual phase 1 objective function), and the number of infea-
sibilities (i.e., the number of violated constraints). Infeasibil-
ity is determined when MINOS recognizes that the number
of infeasibilities cannot be made zero, even though another
basis with a lower value of the sum of infeasibilities may
exist. Nazareth®* shows that this kind of phase 1 (known as
“FORMC”) has reduced costs which reflect the rate of
change of the sum of infeasibilities when a nonbasic variable
is introduced into the infeasible basis. In other words, the
sensitivity filter operates correctly.

Version 3.2 of MINOS(IIS) incorporated the deletion, sen-
sitivity, deletion/sensitivity, and reciprocal filters. The
method could be selected under user control, with deletion/
sensitivity as default. The user could also select the direction
of the deletion filter, either forward (variable bounds fol-
lowed by row bounds) or reverse (vice-versa), with reverse
as default. Version 3.2 also included user-specifiable codes
for guiding the search by placing constraints in categories,
notably “encouraged to drop” and “discouraged from drop-
ping.” These codes were used internally to, in effect, reorder
the deletion filter, placing the “encouraged to drop” con-
straints early in the list and placing the “discouraged from
dropping” later in the list and protecting them from sensi-
tivity filtering.

MINOS(IIS) version 4.0 was developed specifically for the
research in this article and included various algorithms for
isolating IISs having few rows. This included the first im-
plementation of the elastic filter, and various column pro-
tection options, as described in Section 2. MINOS(IIS) is
currently at version 5.0, which adds the ability to identify
small-cardinality IIS set covers.[®!

Algorithm 4 The Additive Algorithm

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
Step0: Set T =1= ¢.
Step 1: Set T = L.
FOR each constraint ¢, in C:
SetT=TUc,
IF T infeasible THEN
Set] =1Uc,
Go to Step 2.
END FOR.
Step 2: IF I feasible THEN go to Step 1.
Exit.
OUTPUT: I is an IIS.

1.2 The Additive Algorithm

Tamiz et al.*”} introduced a method whose main feature is
the adding in of constraints as the algorithm proceeds, ex-
actly the opposite of the approach taken in the deletion filter.
For this reason, it is referred to here as the additive algorithm,
though Tamiz et al. refer to it as GPIIS because the original
statement of the algorithm features the use of ideas from
goal programming. However, the algorithm is easily simpli-
fied, as shown in Algorithm 4. See Chinneck!™ for a proof
that the additive algorithm returns a single IIS.

As described by Tamiz et al.,*”] the additive algorithm is
applied solely to the rows in the LP (column bounds are
never removed), so the output of the procedure is an IISF
rather than an IIS. In theory, however, the method could
easily be extended to find complete 1ISs (see [7] for further
details).

The additive algorithm isolates the IIS whose last member
is tested first. This is because the loop in Step 1 of Algorithm
4 is exited the first time that T becomes infeasible, or equiv-
alently, the first time that a complete IIS is in T. Thus,
although parts of various IISs may be added to T as it builds
up, the process exits only when the last member of any IIS is
added to T. Thus, as for the deletion filter, which IIS is
isolated by the additive method is affected by the ordering
of the constraints.

Compared to the deletion filter, the additive method may
require fewer tests of feasibility, and tests of smaller sets of
constraints, especially when the IIS that is isolated is small
relative to the cardinality of C. Tamiz et al.*”) report good
results in finding IISs having few rows; their results are
included in Table II for comparison.

1.3 Simplex Piveting to Isolate lISs

Gleeson and Ryan!'?! describe an algorithm for isolating IISs
that uses a transformation of the problem to obtain a poly-
tope in which, in the absence of degeneracy, each new pivot
gives a new IIS. Their method is based on an efficient algo-
rithm by Dyer!™ for enumerating all of the bases of a
polytope. Parker and Ryan!*®! develop modifications of
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Gleeson and Ryan’s method by showing that IISs can be
identified based on the extreme rays of a conical construc-
tion. Parker and Ryan also implement both methods. These
methods could be used to find the minimum row-cardinality
IIS by enumerating all IISs and choosing the one having the
fewest rows.

Parker and Ryan developed and implemented their
method for the purpose of finding the minimum-cardinality
IIS set cover (the minimum cardinality set of constraints
which, when removed from the model, renders it feasible).
Their method requires the identification of numerous IISs en
route to finding the minimum cardinality IIS set cover, and
they report the number of rows in the smallest row-cardi-
nality IIS found during this process. These results are in-
cluded in Table II for comparison. Better results could likely
be obtained were their method tuned to the problem of
finding the minimum row-cardinality IIS, but this has not
yet been done.

1.4 Greenberg’s Diagnostic Heuristics

Greenberg!'**71 described a set of manipulations of the
model (such as bound tightening, path and cycle tracing,
removal of redundancies, etc.) which can then be traced if
infeasibility is found. The goal of the heuristic procedures is
to provide a diagnostic explanation of the cause of the
infeasibility. The process sometimes isolates an IIS, but can-
not guarantee such a result. The method has been incorpo-
rated in Greenberg’s ANALYZE software.['® ') ANALYZE
is an ideal tool for use in concert with LP solvers which
isolate IISs, since the effectiveness of the diagnostic proce-
dures in ANALYZE is boosted by applying them to an IIS
rather than to the entire model.

2. Isolating lISs Having Few Rows

Given that the enumeration of IISs to find the minimum
row-cardinality IIS is combinatorially explosive, we concen-
trate below on heuristic methods for directly isolating a
single IIS having few rows. The filtering algorithms are
modified and extended for this purpose.

2.1 Simple Constraint Ordering in Deletion Filtering

Because the order of the constraints in the deletion filter list
affects which IIS is found, simple constraint ordering can be
used to influence the isolation. Because we wish to find IISs
having few rows, we should try to eliminate rows first. For
this reason, reverse-deletion filtering is preferred in
MINOS(IIS) because this tests the row constraints first. Sec-
tion 3 shows that reverse-deletion filtering is much more
successful than forward-deletion filtering in identifying IISs
having few rows.

2.2 Column Bound Protection in Deletion/Sensitivity Fiitering

The simple constraint ordering discussed above works by
making it easier to eliminate rows than column bounds. An
extension of this idea is to provide specific protection to the
column bounds, regardless of what other filtering methods

are in operation. Two versions of column protection were
first implemented in MINOS(IIS) version 4.0:

e CP1: all of the column bounds are protected from sensi-
tivity filtering at all times, and the column bounds are
automatically inserted at the end of the deletion filtering
list, regardless of the order in which the row bounds are
deletion tested.

® CP2: identical to CP1 except that the sensitivity filter is
enabled for the column bounds after all of the rows have
been deletion tested. The sensitivity filter is then applied
to the column bounds regardless of whether it was ap-
plied to the rows.

CP1 is a very conservative strategy. CP2 recognizes that
the number of rows in the IIS has been established by the
time the column bounds are to be deletion tested, so the
sensitivity filter can be used to speed the isolation without
affecting the number of rows in the IIS. CP2 is used exclu-
sively in the tests in Section 3.

2.3 Elastic Filtering

The tendency of elastic filtering to find small-cardinality I1ISs
can be used to find IISs having few rows by restricting the
elasticity to the row constraints. Only row constraints are
elasticized and subsequently enforced; all column bounds
are in force at all times, a form of column protection. The
elastic filter is applied to the model first, before any other
method, particularly the sensitivity filter which tends to
bypass IISs having few rows.

The implementation of this strategy in MINOS(IIS) ver-
sion 4.0 required the user to request space for the additional
columns and elements needed by the elastic variables
through the PHANTOM COLUMNS and PHANTOM ELEMENTS fa-
cility in MINOS. One elastic column is needed for each
inequality row, and two for each row with both an upper
and a lower bound, including equality rows. The number of
new elements needed is twice the number of elastic columns
(i.e., one element for the row, one element for the elastic
objective function). The elastic objective function overwrites
the original objective.

Deelasticization (enforcement) is achieved by setting both
the upper and lower bounds on the appropriate elastic vari-
ables to zero. On exit from the elastic filter, all rows that are
still elastic are eliminated from the model, and the columns
associated solely with those elastic rows are removed from
the remainder. The remaining rows and columns are then
simply a portion of the original model and can be processed
in the usual way.

The elastic filter is most effective if a minimum number of
constraints stretch in each iteration. Because the elastic ob-
jective function weights each constraint equally, there is no
penalty for stretching more than the minimum number
where all contribute equally to the elastic objective function
value. A heuristic for minimizing the number of stretched
constraints is outlined below.

The idea is to use a different elastic objective function
parameter for the elastic variable(s) for each row. This makes
it better to stretch some constraints than others. Where there
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is a tie, this should encourage only one constraint in each IIS
to stretch in a single elastic filtering iteration, i.e., the con-
straint having the smallest objective function parameter.

One simple way to assign distinct elastic objective func-
tion parameters is to increment each parameter by a small
step, such as 0.1, giving values of 1.0, 1.1, 1.2, etc. Tests in
Section 3 compare this heuristic with the baseline method in
which all elastic objective function parameters are 1.0 (i.e.,
an increment of 0.0). Random assignment of distinct objec-
tive function parameters is probably preferable, but was not
implemented. Preliminary tests with a variation in which
the parameters were incremented by 0.1 but reset to 1.0 after
every hundred increments were not promising.

The elastic filter as implemented in MINOS(IIS) version
4.0 is likely to be relatively slow because a conservative
strategy is used in which the availability of an advanced
basis to begin each iteration of the elastic filter is not as-
sumed due to the increased “tightness” of the bounds as
each iteration begins.

2.4 Complete Methods

To guarantee the positive identification of a single IIS, all
complete methods must include the deletion filter, however
various combinations of deletion-list ordering, column-pro-
tection options, and inclusion or exclusion of the sensitivity
and elastic filters are possible. On theoretical grounds, the
reverse-deletion list ordering, the column-protection op-
tions, the inclusion of the elastic filter, and the exclusion of
the sensitivity filter are most likely to help isolate IISs with
few rows. These theories are tested below.

3. Experiments

Ten IIS-isolation methods were applied to 14 test problems
to determine their relative effectiveness in isolating IISs
having few rows. In addition, results obtained by Tamiz et
al.'*”! using the additive algorithm and Parker and Ryan'**!
using their simplex pivoting method are included for com-
parison. The number of rows in the IISs and the time taken
to find them are evaluated in the tests.

Where the column protection options are tested, CP2 is
used exclusively because it is faster than CP1 and the num-
ber of column bounds included in the IIS is irrelevant after
the number of rows is set.

3.1 NiS-Isolation Methods Tested
A brief rationale for the inclusion of each method in the test
set is given below.

* Forward-Deletion Filter: Expected to give the worst perfor-
mance, this method is included as a baseline.

* Reverse-Deletion Filter: Expected to show the value of sim-
ple constraint ordering by giving better results than the
forward-deletion filter.

* Forward-Deletion Filter with CP2: Because the column
bounds are protected, this should give results comparable
to the reverse-deletion filter, even though a forward-de-
letion direction is used.

® Reverse-Deletion Filter with CP2: Included for comparison

with forward-deletion filter with CP2. Results expected to
be similar. Results should be identical to reverse-deletion
filtering because the CP2 option adds no extra column
protection in this case.

o Reverse-Deletion/Sensitivity Filter: The default method
used in MINOS(IIS) version 3.2.

® Reverse-Deletion/Sensitivity Filter with CP2: To provide col-
umn protection within a very quick method. Should im-
prove the reverse-deletion/sensitivity filter results.

® Elastic Filter (0.1) followed by Reverse-Deletion/Sensitivity
Filter: Test of the elastic filter including the 0.1 objective
function parameter increment to discourage constraint
stretches during elastic filtering. The elastic filter is cou-
pled with the standard method used in MINOS(IIS) ver-
sion 3.2 to complete the positive identification of a single
1IS.

® Elastic Filter (0.1) followed by Reverse-Deletion/Sensitivity
Filter with CP2: As above, plus a test of the effect of
including the second-column protection option.

 Elastic Filter (0.0) followed by Reverse-Deletion/Sensitivity
Filter: Here, the elastic filter has no incrementing of the
objective function parameters (i.e., an increment of 0.0).
This method is included for comparison to the 0.1-incre-
ment heuristic for minimizing constraint stretches during
elastic filtering.

¢ Elastic Filter (0.0) followed by Reverse-Deletion/Sensitivity
Filter with CP2: As above, for comparison with the heu-
ristic for minimizing constraint stretches during elastic
filtering.

3.2 Test Problems

The test problems cover a range of sizes and complexities, as
summarized in Table I, which is arranged in order of in-
creasing total number of MINOS bounds. The total number
of rows (columns), bounded rows (columns), and MINOS
row (column) bounds are listed, as are the total number of
MINOS bounds, the total number of elements, and the num-
ber of seconds required to first determine infeasibility. The
last column in Table I gives a lower bound on the total
number of different IISs in the model; the exact number can
be found only by a complete enumeration of all of the IISs in
the model. The bound is found by choosing the largest from
among the following numbers: (i) the maximum number of
IISs generated by Parker and Ryan® using any of their
three methods, and (ii) the number of distinct IIS row car-
dinalities given in Table II.

These test problems are a subset of the current netlib set of
infeasible test problems (in the lp/infeas directory). The
netlib set was originally established by the author using the
models in Table I collected for this research, and later aug-
mented by other models. As shown in Table II, with the
exception of cplexl, all of the models have IISs of various
row-cardinalities, so the set should provide a reasonable test
of the ability of the methods to distinguish among IISs of
different row-cardinalities.
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Table 1.

Test Problem Characteristics

Number of Number

Number Number of

Lower Bound

Number of Bound of Row Number of of Bound Column Total Number of Phase 1 on Number
Problem Rows Rows Bounds Columns Columns Bounds Bounds Elements (secs) of IISs
itesté 12 11 13 8 8 8 21 23 0.4 6
galenet 9 8 10 8 8 16 26 16 04 3
woodinfe 36 35 70 89 89 103 173 209 1.0 2
foresté6 67 66 96 95 95 100 196 270 14 5
refinery 324 323 646 464 464 714 1360 1694 354 38
qual 324 323 646 464 463 714 1360 1714 49.7 8
voll 324 323 646 464 464 714 1360 1714 42.1 13
chemcom 289 288 552 720 720 864 1416 2190 42.1 3
reactor 319 318 465 637 637 1187 1652 2995 25.3 2
mondou?2 313 312 624 604 604 1208 1832 1623 5.3 14
pilotdi 411 410 697 1000 912 1189 1886 5145 215.6 2
cplexl 3006 3005 4007 3221 3221 3439 7446 10664 565.1 1
greenbea 2505 2393 4595 5405 5401 5807 10402 35159 1183.8 4
3.3 Results so may find IISs having few rows. Parker and Ryan examine

The results obtained on the test problems using the various
[IS-isolation methods are summarized in Table II. The top
number in each cell is the number of rows in the IIS (smallest
number in each row is in boldface). The bottom number in
the cells for the 10 filter-based methods is the ratio of the
number of seconds to find the IIS to the number of seconds
to complete the phase 1 solution which originally signaled
infeasibility (smallest time ratio in each row is in boldface).
Use of the time ratio assists in comparisons between imple-
mentations of the algorithms in different solvers and on
different platforms. All time measurements are approximate
only, due to disk-access and screen-write times. Note also
that the absolute times for the solutions of a number of the
smaller models are very small (tenths of a second), so the
timing measures and ratios are not very accurate in these
cases. The filtering methods were tested using a 25 MHz
80386/80387 PC clone (80486 PC clone for cplexl and
greenbea problems). MINOS(IIS) was compiled using La-
hey Fortran version 3.01.

The results for the additive algorithm are as reported by
Tamiz et al.””! using an implementation of their algorithm
in the FortLP solver'*? and solved on a 486/33 MHz PC. A
forward ordering of the set of constraints is used. Tamiz et
al. report on three variations of their method; the results for
the best of the methods (called the implicit method) are given
in Table II. Recall that Tamiz et al. find only IISFs in their
experiments. For this reason, their time-ratio results are
reported in Table II, but are not compared with the time
ratios for the other methods, which reflect the time needed
to isolate complete IISs.

The results for the method of Parker and Ryan are as
reported in [25] using an implementation in the OSL solv-
er,?! though insufficient information to calculate the time
ratio is provided. Recall that the intent of Parker and Ryan’s
method is to find IIS covers, rather than to find IISs having
few rows; however their method enumerates many IISs, and

three variations of their method; the number of rows in the
IIS having the fewest rows for each method is reported.

The next to last row in Table II reports, for each method,
the average deviation from the smallest number of IIS rows
found for each model. This is a measure of the effectiveness
of the method in finding IISs having few rows. For example,
forward-deletion filtering finds IISs having, on average over
this test set, 37.1 more rows than the number of rows found
by the best method. The last row in Table II reports, for each
of the filtering methods, the average deviation from the
smallest time ratio reported for each model. This is a mea-
sure of the speed of the method.

Using the next to last row in Table II, the methods can be
rank-ordered on their ability to find IISs having few rows
over the test set, as shown in Table III, which is subordered
on the average deviation from the least-time ratio for each
model (i.e., subordered on speed). Table III has four clear
divisions:

Class A: methods ranked 1-5 having average deviations
from the least rows of only 0.4-0.6.

Class B: methods ranked 6 and 7 having average devia-
tions from the least rows of 1.1 and 1.3.

Class C: methods ranked 8 through 12 having average
deviations from the least rows of 4.2 to 5.7.

Class D: methods ranked 13 and 14 having average de-
viations from the least rows of 26.3 and 37.1, clearly far
worse than the other methods.

Table IV shows a ranking of the filtering methods by
average deviation from the least-time ratio (i.e., ranked by
speed, fastest to slowest). The implicit additive method and
Parker and Ryan’s methods are not included in Table IV
because time-ratio data for these procedures is unavailable.
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Table II. Number of Rows in IIS and Time Ratio
Testing Methods* Implicit
Additive  Parker and
Model 1) (2) (3) 4) (5) (6) (7) (8) (9 (10) Method Ryan
itest6 3 2 3 2 4 2 3 3 2 2 2 3/3/3
0.3 0.5 0.3 0.3 0.1 0.3 15 1.1 1.3 1.1 1.0
galenet 7 2 2 2 3 2 3 2 2 2 2 3/%/3
04 04 0.3 0.3 0.3 0.2 1.0 0.8 1.0 0.7 1.0
woodinie 1 1 1 1 1 1 1 1 1 1 1 111
32 34 0.9 1.0 0.2 0.2 1.0 1.1 1.1 1.0 02
forest6 66 55 59 55 66 55 64 58 55 55 55 59/59/64
8.5 7.8 5.3 5.8 3.5 57 125 134 131 126 11.1
refinery 158 47 55 47 67 57 78 50 51 52 47 61/63/62
8.0 6.3 3.0 2.6 0.9 15 5.5 5.6 5.3 54 14
qual 323 78 76 78 125 94 96 82 78 79 78 92/82/90
41 5.3 2.1 2.3 1.1 1.9 4.9 49 4.8 5.0 2.7
voll 122 83 84 83 134 106 84 81 80 80 83 91/91/104
6.2 51 21 22 1.8 1.7 5.0 5.1 5.3 5.5 25
chemcom 45 7 7 7 153 7 7 7 7 7 7 15/13/15
59 6.7 2.3 2.0 14 0.7 1.6 1.6 13 1.5 1.0
reactor 1 1 1 1 1 1 1 1 1 1 1 1/111
111 114 25 2.6 0.2 0.3 0.7 0.8 0.7 0.7 0.0
mondou?2 31 15 15 15 15 15 15 15 15 15 15 17/17/17
416 440 106 103 1.1 14 7.5 7.7 6.4 8.8 19
pilotdi 1 1 1 1 37 1 1 1 1 1 1 1/1/1
25 34 0.8 1.0 0.3 0.2 0.3 0.3 04 0.4 0.9
cplexl 5 5 5 5 5 5 5 5 5 5 5 5/%/5
32 3.2 14 1.6 0.2 0.3 1.1 1.1 1.0 1.2 15
greenbea 12 1 1 1 24 1 1 1 1 1 1 2/211
25 32 0.8 0.8 0.1 0.1 0.2 0.2 0.2 0.2 0.1
avg. dev. from least 37.1 04 1.3 0.4 26.3 42 51 1.1 0.5 0.6 0.4 45/4.3/57

rOWs
avg. dev. from least 6.7 7.0 1.7 1.8 0.1
time ratio

0.3 25 25 25 2.6

*(1) Forward-deletion filter; (2) Reverse-deletion filter; (3) Forward-deletion filter with CP2; (4) Reverse-deletion filter with CP2;
(5) Reverse-deletion/sensitivity filter; (6) Reverse-deletion/sensitivity filter with CP2; (7) Elastic filter (0.1) followed by
Reverse-deletion/ sensitivity filter; (8) Elastic filter (0.1) followed by reverse-deletion/ sensitivity filter with CP2; (9) Elastic filter
(0.0) followed by reverse-deletion/ sensitivity filter; (10) Elastic filter (0.0) followed by reverse-deletion/sensitivity filter with

CPr2.
*Method not applied.

3.4 Discussion

Table II shows that the best result for each model provides a
very good localization of the infeasibility. On average, the
best result includes only 15% of the rows in the entire model,
an elimination of 85% of the model from further consider-
ation. However, it is not known whether the best result
found for each model has the minimum row-cardinality, so
it is possible that these results can be improved even further.

Table III shows that several methods, those in Class A,
give excellent results over the test set. The methods ranked
1-3 have identical deviations from the least number of rows,
so the ordering shown in Table Il is based on the speed
subordering.

In particular, Table Il shows that the top three methods in
Table III give identical numbers of IIS rows over all of the
models in the test set. Because the implicit additive method
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Table III. Methods Ordered by Average Deviation from
Least Rows

Average Average

deviation deviation

from least from least

Method rows time ratio
1. reverse-deletion CP2 0.4 1.8
2. reverse-deletion 04 7.0
3. implicit additive method 0.4 nr.
4. elas (0.0) rev-de/se CP2 0.5 25
5. elas (0.0) rev-del CP2 0.6 2.6
6. elas (0.1) rev-de/se CP2 1.1 25
7. forward-deletion CP2 1.3 1.7
8. reverse-de/se CP2 42 0.3
9. Parker and Ryan 2 4.3 nr.
10. Parker and Ryan 1 4.5 nr.
11. elastic (0.1) rev-de/se 5.1 25
12. Parker and Ryan 3 5.7 n.r.
13. reverse-de/se 26.3 0.1
14. forward-deletion 37.1 6.7

n.r.: not reported

Table IV. Methods Ranked by Average Deviation
from Least Time Ratio

Average Average

deviation deviation

from least from least
Method time ratio ToWSs
1. reverse-de/se 0.1 26.3
2. reverse-de/se CP2 03 4.2
3. forward-deletion CP2 1.7 1.3
4. reverse-deletion CP2 1.8 0.4
5. elas (0.0) rev-de/se CP2 2.5 0.5
6. elas (0.1) rev-de/se CP2 25 1.1
7. elas (0.1) rev-de/se 25 5.1
8. elas (0.0) rev-del CP2 2.6 0.6
9. forward-deletion 6.7 371
10. reverse-deletion 7.0 0.4

proceeds with the rows from 1 to m (where there are m rows
in the model) while leaving the column bounds intact, this is
easily explained. Because the reverse-deletion filter proceeds
with the rows from m to 1, followed by the column bounds,
the first complete IIS seen by the additive method will be the
same as the last complete IIS seen by the reverse-deletion
filter. In addition, the reverse-deletion and the reverse-dele-
tion CP2 method both operate on the rows in the same
manner, so both will return IISs having the same number of
rows.

All of the top three methods in Table I are affected by the
ordering of the constraint rows. The question then remains
as to whether some other ordering of the row constraints
would permit these methods to find an IIS having fewer

rows. In contrast, the elastic filtering variations ranked 4 and
5in Table III are unaffected by the ordering of the constraint
rows and give results that are almost identical to those
returned by the top three methods. Their lower ranking may
be an artifact of the test set which consists mainly of small
models likely having relatively few IISs. In fact, the elastic
filter gives better results as compared with the reverse-
deletion filter with CP2 when applied to a different selection
of models taken from the netlib set.”®! The elastic filtering
variations will probably give better results when applied to
very large models having many IISs. In such a case, the fixed
ordering of the testing of the row constraints may prove
disadvantageous for the additive algorithm and the deletion
filter.

Table IV shows that the fastest method returns IISs having
among the most rows. The speed is due to the use of sensi-
tivity filtering, both directly after the initial detection of
infeasibility, and thereafter in the deletion/sensitivity filter.
Because of the initial emphasis on algorithm speed in IIS
isolation research, the reverse-deletion/sensitivity filter was
the default method in MINOS(IIS) version 3.2.

Some conclusions relative to the initial hypotheses can
also be drawn:

¢ Simple constraint ordering is indeed effective, as shown
by the much better results given by the reverse-deletion
filter (best results over test set) as compared with the
forward-deletion filter (worst results over test set).

¢ The column protection option CP2 is effective, always
reducing the average number of rows in the IISs returned
when compared with the same method without column
protection. As predicted, CP2 makes no difference in the
quality of the solution returned by the reverse-deletion
filter, because it provides no extra column-bound protec-
tion in this case. However CP2 makes both the reverse-
and the forward-deletion filters much quicker because the
sensitivity filter is applied to the column bounds after the
rows have been examined.

¢ The elastic filter (with objective parameter increment of
0.0) is very effective in finding IISs with few rows. The 0.1
objective parameter increment heuristic for improving the
performance of the elastic filter is not effective, and is
dominated in all cases by the elastic filter without the
heuristic. Some ideas for speeding the elastic filter are
given in Section 4.

¢ The sensitivity filter generally increases the number of
rows in the IIS found by a method, unless the elastic filter
has first been applied to ameliorate this effect by elimi-
nating any large IISs. If the elastic filter is applied first,
then the sensitivity filter can safely be used to speed the
final isolation.

4. Conclusions

The experimental results presented here show that the heu-
ristic methods for isolating IISs having few rows are ex-
tremely effective relative to the previous state of the art. Five
methods give almost uniformly excellent results over the
test set: (i) the reverse-deletion filter with CP2, (ii) the re-
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verse-deletion filter, (iii) the implicit additive method, (iv)
the elastic reverse-deletion/sensitivity filter with CP2 and
no increment, and (v) the elastic reverse-deletion filter with
CP2 and no increment.

Of the best methods, the reverse-deletion CP2 method is
recommended for small to medium LPs due to the combi-
nation of effectiveness in finding IISs having few rows and
speed. Another possibility is the implicit additive method
since it gives excellent results and finds IISFs quickly, show-
ing promise for quick results when extended to find full IISs.
For larger LPs, the elastic filter followed by a reverse-dele-
tion/sensitivity filter with CP2 and no increment is sug-
gested because this is likely to prove much faster and pos-
sibly more effective on very large LPs. Though this
hypothesis remains to be tested on a set of very large infea-
sible models, there is some empirical evidence supporting
this idea.[®

The five best methods all use a similar idea: discourage
the elimination of column bounds while encouraging the
elimination of rows. Simple constraint ordering during de-
letion filtering and in the additive algorithm ensures that
rows are eliminated in preference to column bounds. The
column protection options CP1 and CP2 act similarly in
conjunction with other filtering methods. Elasticization of
only the rows during elastic filtering has a similar purpose.
In addition, all of the five best methods avoid the use of the
sensitivity filter, which tends to isolate IISs having many
rows, except when the elastic filter is applied first. The
elastic filter tends to remove the IISs having many rows, so
the sensitivity filter can be safely applied thereafter to speed
the isolation.

The elastic filter is slowed by the conservative strategy for
basis reuse. One promising avenue for speed improvement
is the incorporation of the elastic filter directly into the
MINOS phase 1 procedure. At present, once a variable
bound has been satisfied, MINOS never again allows the
bound to be violated during phase 1. Some alteration of
these rules to incorporate the elastic filter would speed the
process and also eliminate the extra memory needed by the
current MINOS(IIS) implementation. The reverse-deletion
filter with the CP2 column-protection option is the default
method used in MINOS(IIS) version 5.0 because it does not
require the user to request additional space for columns and
elements.

There are several avenues for further research:

e How much speed-up of the elastic filter can be obtained
by integrating it with the MINOS phase 1?

* How do the top five methods compare in effectiveness
when applied to very large infeasible LPs?

e What is the time performance of the implicit additive
algorithm when extended to find complete IISs?

* How fast and effective are the methods of Parker and
Ryan®! when tuned to find IISs having few rows?

The recommended methods for finding IISs having few
rows are easily incorporated into LP solvers, requiring only
added LP solutions and, for the elastic filter, extra columns
and elements and a rewritten objective function. Facilities

for the isolation of IISs having few rows should be a stan-
dard part of any commercial LP code, and a standard first
step in the analysis of LP infeasibility. Narrowing the prob-
lem in this way greatly speeds the diagnosis.
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