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Abstract The Constraint Consensus method moves quickly from an initial
infeasible point to a point that is close to feasibility for a set of nonlinear con-
straints. It is a useful first step prior to launching an expensive local solver,
improving the probability that the local solver will find a solution and the
speed with which it is found. The two main ingredients are the method for
calculating the feasibility vector for each violated constraint (the estimated
vector to the closest point that satisfies the constraint), and the method of
combining the feasibility vectors into a single consensus vector that updates
the current point. We propose several improvements: (i) a simple new method
for calculating the consensus vector, (ii) a predictor-corrector approach to ad-
justing the consensus vector, (iii) an improved way of selecting the output
point, and (iv) ways of selecting subsets of the constraints to operate on at
a given iteration. These techniques greatly improve the performance of bar-
rier method local solvers. Quadratic feasibility vectors are also investigated.
Empirical results are given for a large set of nonlinear and nonconvex models.
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1 Introduction

Constraint Consensus (CC) methods [1–3] very quickly find approximately
feasible solutions for sets of nonlinear constraints. The CC output point is
passed to a full-scale nonlinear local solver, which is usually able to proceed
quickly to a fully feasible and locally optimum solution [2]. Using CC to provide
a good launch point improves the probability that the local solver will find a
feasible and optimal point, and reduces the overall time to do so (including
both the CC time and the local solver time).

There are two main steps in a Constraint Consensus algorithm. The first
step is the calculation of the feasibility vector for each violated constraint,
which estimates the vector from the current point to the closest point that
satisfies the constraint. The second step is combining the feasibility vectors into
a single consensus vector that updates the current point. This cycle repeats
until the stopping conditions are satisfied.

This paper presents a number of improvements to Constraint Consensus
with the specific goal of providing better starting points for barrier method
local solvers for nonlinear models. Barrier method solvers are the focus of
interest for two reasons: (i) solvers using a barrier method are among the best
of the local nonlinear solvers (see e.g. [4]), and (ii) existing CC methods provide
less advantage when paired with barrier method solvers than with solvers based
on other algorithms, so improvement is needed. Four new techniques provide
advantages relative to the current state of the art in CC algorithms:

– The SUM method: a new way of combining the feasibility vectors to create
the consensus vector.

– Augmentation: a predictor-corrector method for adjusting the length of the
consensus vector.

– A better way of selecting the CC output point (the last calculated point is
not necessarily the best one to return).

– Rules for selecting subsets of the violated constraints to operate on. Op-
erating on particular subsets provides CC output points that are better
suited for use in barrier method solvers.

We also examine the use of quadratic feasibility vectors, which are less
successful. All of these new techniques are extensively tested on a large set of
nonlinear models.

1.1 Background

A nonlinear program (NLP) consists of an objective function and a set of
constraints such that at least one of the objective or constraint functions is
nonlinear. When the goal is only to find a feasible solution the objective func-
tion is ignored, leaving the following feasibility problem:

Find x such that : (1)
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Fig. 1: The method of successive orthogonal projections (figure inspired by [5],
p. 82).

gi(x){≤,=}0, (i = 1, ...,m) (2)

`j ≤ xj ≤ uj , (j = 1, ..., n). (3)

Linear constraints are a special case of nonlinear constraints. The con-
straints functions gi(x) are continuously differentiable. The gradient of a con-
straint function is represented by the vector ∇gi(x) and the Hessian is repre-
sented by the matrix ∇2gi(x).

The violation of an equality constraint is defined as the absolute value of
the constraint

vi = |gi(x)|, (4)

and the violation of an inequality constraint is the greater of the constraint
function value and 0

vi = max{0, gi(x)}. (5)

The maximum constraint violation at some point xk is represented by

V(xk) = max (vi(xk), ..., vm(xk).) , (6)

A successful solution of the feasibility problem will find a point at which V is
less than a small tolerance, typically 10−6 or smaller.

There are numerous projection algorithms [5] for seeking feasible solutions
for sets of constraints, typically sets of linear or convex nonlinear constraints.
Projection algorithms assume that the feasibility vector for a violated con-
straint is the orthogonal projection of the current infeasible point onto the
closest point that satisfies the constraint. In sequential projection algorithms
a single feasibility vector is used as the consensus vector: each iteration uses
the feasibility vector from a different violated constraint. A control sequence
governs the order in which the constraints are selected. There are numerous
choices for the control sequence, including simple cyclic control, and most vio-
lated constraint control which uses the longest feasibility vector at the current
point. The length of the consensus vector may also be adjusted by a scalar
relaxation factor, λ, which could be smaller or greater than 1. The Sequential
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Orthogonal Projection method [6] is the most basic form of sequential pro-
jection algorithm. The control sequence is a simple cycle and the relaxation
factor is equal to 1. This method is illustrated in Fig. 1. The consensus vector
at each iteration is the feasibility vector for the next violated constraint in the
cycle.

In fully simultaneous projection algorithms, the consensus vector is formed
by combining all of the feasibility vectors in some manner, an idea first sug-
gested for the linear case by Cimmino [7]. Block-iterative projection algorithms
[8] are simultaneous algorithms in which the consensus vector is constructed
by combining a subset of the feasibility vectors using a weighting system. Vari-
ations include how the feasibility vectors are selected and how the weights are
chosen.

The calculation of an exact feasibility vector for a violated nonlinear con-
straint can be extremely time-consuming, in general requiring the solution of
an entire nonlinear program. For this reason, most projection methods substi-
tute an estimated feasibility vector, often using a linear approximation based
on the gradient of the violated constraint at the current point. Methods in
this class include the Method of Cyclic Subgradient Projections [9], and gen-
eralizations of Kaczmarz’s Algorithm [10] to solve systems including nonlinear
equations [11–13].

The linear feasibility vector moves in a direction parallel to the gradient
of the violated constraint. The step size is determined by using a first order
Taylor series expansion of the constraint function around the current location.
Consider a first order Taylor series expansion of some constraint function g(x) :
Rn → R

g(xk+1) ≈ g(xk) +∇g(xk)(xk+1 − xk). (7)

The search direction is chosen to be parallel to the gradient of g at xk, therefore

(xk+1 − xk) = ρl∇g(xk)T (8)

where ρl is some scalar step size for this linear approximation. ρl will be
negative for violated inequality constraints and for equality constraints with
g(xk) > 0, but will take a positive value for violated equality constraints with
g(xk) < 0. The step size is determined by setting g(xk+1) = 0 and solving for
ρl

0 = g(xk) +∇g(xk)(xk+1 − xk)

0 = g(xk) +∇g(xk)(ρl∇g(xk)T )

0 = g(xk) + ρl||∇g(xk)T ||2

ρl =
−g(xk)

||∇g(xk)T ||2
. (9)

Therefore, the linear feasibility vector is

(xk+1 − xk) =
−g(xk)

||∇g(xk)T ||2
∇g(xk)T . (10)



Improved Constraint Consensus Methods 5

Fig. 2: Example of Basic Constraint Consensus. The gray arrows are the fea-
sibility vectors and the black arrow is the resulting consensus vector.

1.2 Constraint Consensus Methods

Much of the theoretical development of projection algorithms relates to solv-
ing the feasibility problem for sets of convex constraints, including proofs
of convergence [5]. Constraint Consensus methods, on the other hand, use
various forms of projection algorithms as heuristic methods for finding near-
feasible points for general sets of nonlinear constraints, including nonconvex
constraints. The original Constraint Consensus method [1] (hereafter Basic
Constraint Consensus) is a block-iterative algorithm with λ = 1 and uniform
weighting in which the consensus vector is formed component-wise. That is,
each element of the consensus vector is formed as the average of the elements
in the feasibility vectors for violated constraints that include that variable
at the current point. This is the same as the Component Averaging projec-
tion method proposed by Censor et al. [14]. The Basic Constraint Consensus
method is illustrated in Fig. 2.

Constraint Consensus methods are distinguished from other block-iterative
algorithms by the way they select the subset of feasibility vectors used to form
the consensus vector. Specifically, Constraint Consensus filters the feasibility
vectors using a feasibility tolerance (denoted α). Only feasibility vectors with
a length greater than the feasibility tolerance are selected to help form the
consensus vector. The algorithm terminates successfully when all feasibility
vectors are shorter than the feasibility tolerance.

The linear feasibility vectors are exact for linear constraints, but are only
estimates for the nonlinear constraints. The general idea is that a few inac-
curate feasibility vectors for nonlinear constraints are usually outvoted by a
larger number of well-directed feasibility vectors when the consensus vector
is constructed, so the update usually moves in a useful direction. Most CC
methods make very rapid initial progress towards a feasible point for a general
set of nonlinear constraints, but progress may slow significantly as a feasible
region is approached. For this reason CC methods are generally used to quickly
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Fig. 3: The linear feasibility vector calculation.

provide only an approximately feasible point, however this is highly valuable
because launching a local solver from such a point greatly improves its success
and speed [2]. CC methods have very useful properties as heuristics for sets
of general nonlinear constraints: they are very fast because they do not rely
on time-consuming line searches or matrix inversions. Since they are so fast, a
failed CC run is easily replaced by a simple restart at a different initial point.

A numerical example of the construction of the feasibility vectors and the
consensus vector in the Basic Constraint Consensus method is provided in
Fig. 3. Grey arrows are feasibility vectors and black arrows are the resulting
consensus vectors. There is a feasible point near x = [1.216 3.104]

T
. The

constraint violations at the intial point x0 are va = 4.320 and vb = 234.0.
Note the exact feasibility vector (x1a − x0) for the linear constraint, and the
approximate feasibility vector (x1b − x0) for the nonlinear constraint. The
consensus vector (x1−x0) is also shown. The point x1 is closer to the feasible
region but still violates the constraints, so the cycle repeats using x1 as the
starting point. At the point x2 the violations of constraints ga and gb are
significantly reduced at 1.476 and 77.479 respectively.

Constraint Consensus iterations continue until certain stopping conditions
are met. Three conditions are normally used [2]: (i) stop successfully when
every feasibility vector is shorter than α (e.g. 10−6), (ii) stop when the con-
sensus vector is shorter than β, which indicates stalling, or (iii) stop when
more than µ iterations have been completed. The last two conditions indi-
cate unsuccessful termination and are triggered when convergence is too slow.
It is also possible to exit unsuccessfully when the consensus vectors are not
shortening between iterations at a fast enough rate [3]. Slow convergence can
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result from ill-conditioning which causes feasibility vectors that almost cancel
out, resulting in a very short consensus vector. Slow convergence can also be
caused by consensus vectors that zig-zag as they alternately satisfy one set
of constraints and then another [1]. Another source of difficulty is poor linear
feasibility vector approximations to highly nonlinear constraints.

A number of other Constraint Consensus methods have been developed,
varying in the way that the consensus vector is constructed [2]. The Feasi-
bility Distance far (FDfar) algorithm is a sequential method that chooses the
longest feasibility vector as the consensus vector. The Direction Based average
(DBavg) algorithm constructs the consensus vector component-wise. For each
element, the direction of movement (positive or negative) is determined by the
most common sign among the elements for that component in the feasibility
vectors. The distance of movement is given by the average of the magnitudes
of the elements in the winning direction for that component in the feasibil-
ity vectors. Direction Based maximum (DBmax) is similar to DBavg except
that the largest element determines the distance of movement in the winning
direction in each component. A number of other consensus schemes are also
available, though empirical testing shows the superiority of the DBmax and
FDfar variants [2].

2 New Constraint Consensus Techniques

Ibrahim and Chinneck [2] show that CC can improve solver success in reaching
feasibility. Specifically, they provide numerical evidence showing how different
combinations of initial point placement routines and CC variants improve the
success rates of the local NLP solvers MINOS 5.5, SNOPT 6.1-1, KNITRO 4.0,
DONLP2, and CONOPT 3.13. Performance is significantly improved for all
non-barrier method solvers, but improvement is only moderate in the case of
the KNITRO barrier method solver. Since barrier method solvers are among
the best NLP solvers available, it is especially important that CC methods
provide useful launch points for solvers in this class.

The issue with barrier method solvers appears to be that CC tends to
move points directly onto the limiting values of inequality constraints, which
can cause difficulties for the barrier algorithm. The barrier algorithm prefers a
starting point that is very close to satisfying the equality constraints but which
oversatisfies the inequality constraints. Some of the new CC methods devel-
oped here (the SUM method and augmentation) more often provide points
that are better suited to barrier methods, while the other new techniques
generally improve the performance of all types of solvers.

Note that while the feasibility vectors are identical in all CC methods, the
update step applied to the current point differs between methods because the
feasibility vectors are combined in different ways to calculate the consensus
vector. In general, both the update direction and the step size differ between
methods.
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Fig. 4: The SUM consensus calculation.

2.1 The SUM Consensus Method

The FDfar variant is one of the most successful CC methods [2], however it
sometimes cycles between the constraints that provide the longest feasibility
vector. The new SUM consensus method helps CC avoid cycling while still
taking advantage of long feasibility vectors. As its name suggests, the SUM
method forms the consensus vector by summing all the feasibility vectors at
the current iterate. This allows longer feasibility vectors to have more influence
than shorter vectors as in FDfar, but every violated constraint still provides
some input to the consensus vector. The method is block-iterative; a feasibility
tolerance is used to select the subset of feasibility vectors at each iterate.

The SUM method is illustrated using the model presented previously. Both
constraints ga and gb are violated at the initial point x0 = [8 −8]T . The linear
consensus vectors are

(x1a − x0) =

[
2.160
2.160

]
(11)

and

(x1b − x0) =

[
−4.488
4.167

]
. (12)

The SUM method calculates the next point x1 by adding the feasibility vectors
to the previous point, x0

x1 =

[
8
−8

]
+

[
2.160
2.160

]
+

[
−4.488
4.167

]
=

[
5.672
−1.673

]
(13)
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Two iterations of the SUM consensus method are depicted in Fig. 4. The
constraint violations are much smaller after the two iterations than after the
two iterations of the Basic CC method depicted in Fig. 3.

2.2 Augmentation

Augmentation uses a predictor-corrector approach to find an adjustment to
the length of the last consensus vector. This is similar to the Secant method for
root finding [15], and is in the spirit of a number of algorithms that adjust the
length of the consensus vector automatically via a relaxation factor (see Sec.
5.10 in [5] or [16] for some examples). The predictor step is the usual consen-
sus vector constructed as in Basic CC. A correcting relaxation factor for the
consensus vector is then calculated independently for each violated constraint.
The average of the relaxation factors found for each violated constraint is then
applied to form the consensus vector.

Note that our augmentation corrector is simply an adjustment of the length
of the predictor vector, without any change in direction. This is in contrast
to the classical predictor-corrector scheme for interior point methods [17] in
which the corrector is a separate vector that has both a different length and
a different direction.

Each violated constraint is initially approximated by a first order Taylor
series expansion

g(xk+2) ≈ g(xk+1) +∇g(xk+1)(xk+2 − xk+1). (14)

The length of the initial consensus vector (xk+1 − xk) (the predictor) is ad-
justed by an augmentation relaxation value ρa (the corrector), i.e.,

(xk+2 − xk+1) = ρa(xk+1 − xk). (15)

Substituting Eqn. 15 into Eqn. 14, the equation approximating the violated
constraint becomes

g(xk+2) ≈ g(xk+1) + ρa∇g(xk+1)(xk+1 − xk). (16)

Start again with the Taylor series expansion about xk+1

g(xk) ≈ g(xk+1) +∇g(xk+1)(xk − xk+1) (17)

and rearrange such that

∇g(xk+1)(xk+1 − xk) ≈ g(xk+1)− g(xk), (18)

then substitute the result into Eqn. 16 to give

g(xk+2) ≈ g(xk+1) + ρa(g(xk+1)− g(xk)). (19)
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Fig. 5: The augmented feasibility vector calculation.

The goal is to find the root of the violated constraint function, i.e., g(xk+2) = 0,
so the step size is determined by setting Eqn. 19 to zero and solving:

ρa =
−g(xk+1)

g(xk+1)− g(xk)
. (20)

The final augmentation relaxation factor for the consensus vector is the average
of the relaxation factors for the violated constraints.

An example of augmentation is shown in Fig. 5. The first step (x1 − x0)
is the predictor, i.e. the consensus vector calculated previously for this model.
The second step (x2 − x1) is the corrector, i.e. the consensus vector formed
using the predictor consensus vector multiplied by the average of the relaxation
factors found for the violated constraints. For example, given points x0 and
x1, the augmented step size for constraint gb is

ρa =
−gb(x1)

gb(x1)− gb(x0)
(21)

=
−134.2

134.2− 234.0
(22)

= 1.345 (23)

and the augmented feasibility vector is

(x2a − x1) = ρa(x1 − x0) (24)

=

[
−1.565
4.254

]
. (25)
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The same operation is applied to the other constraint ga and then the consen-
sus vector is formed using Basic consensus. Fig. 5 illustrates the result. After
two iterations (one linear iteration and one augmenting iteration) the viola-
tions of the constraints ga and gb at x2 are 0.185 and 51.653, respectively. The
augmented method requires fewer calculations and finds a point with smaller
constraint violations as compared to Basic CC.

Re-correcting a corrected step is not productive, so it is not useful to aug-
ment every CC step. In fact, performing an augmentation only every several
steps is more effective. We study this issue in depth in the Online Appendix.
For the numerical experiments reported later, one CC variant uses an aug-
mented consensus vector every third step, a recurrence period that worked
well in our experiments.

2.3 Selecting the Subset of Constraints

Many nonlinear local solvers linearize the nonlinear constraints and manipu-
late this linear system as a main step, so the original linear constraints are
dealt with exactly. For this reason, it is more important for CC to reduce
the violation of the nonlinear constraints prior to starting the local solver.
This is especially important when the amount of time allowed for Constraint
Consensus is limited. Limiting CC to operating on only the violated nonlinear
constraints provides higher-quality launch points for the local solver. Section 4
provides empirical evidence of this.

2.4 Choosing the CC Output Point

Experimental data shows that a positive correlation exists between local solver
launch points with low V and solver success [2]. However CC methods may
not monotonically reduce the violation at each iteration; it may fluctuate. For
this reason, we record the violation after each CC iteration and then launch
the local solver at whichever point has the lowest V.

MacLeod [18] studied related ideas, in his case for measuring CC progress
in order to decide when to terminate. He used consensus vector length as the
measure of progress, terminating the algorithm when this failed to decrease,
and returning this final point. In contrast, we allow the algorithm to proceed
until it meets one of the original termination conditions proposed by Chinneck
[1]. All of the CC iterates are candidate points, and the one with the lowest V
is chosen as the launch point for the local solver.

2.5 Quadratic Feasibility Vectors

Using a similar Taylor series expansion of each violated constraint function,
it is possible to derive feasibility vectors that are exact for quadratic con-
straints (and hence also exact for linear constraints). We show how to do this
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Table 1: Summary statistics for test models

Avg. Min. Max.
Linear Constraints 661.1 0 12000
Quadratic Constraints 853.7 0 13798
General Nonlinear Constraints 686.5 0 5001
All Constraints 2201.3 11 14000
Variables 2486.8 2 20008
Nonzeros in Jacobian 13113.3 39 128004

in the Online Appendix. However the calculation load is significantly higher
than for linear feasibility vectors and our experimental results show that the
added complexity does not pay off in faster or more accurate solutions. Sev-
eral less accurate linear iterations can be carried out in the time taken for one
quadratic iteration, with greater overall accuracy on average. The complete set
of experimental results, including all methods using both linear and quadratic
feasibility vectors, is given in the Online Appendix.

3 Experimental Setup

3.1 Hardware and Software

The experiments were run on a machine with an Intel R©CoreTM2 Duo Proces-
sor E6600 (4M Cache, 2.40 GHz, 1066 MHz FSB) and 3GB of memory. The
operating system was Linux Fedora Core 6.

The Constraint Consensus algorithms were written in the C language and
compiled using gcc 4.1.2. Ipopt 3.9 [19] was used as the local solver. This barrier
method solver performs very well in independent testing [4], and is free and
open source, an important consideration given that we frequently ran several
IPOPT solutions in parallel in order to handle a long list of experiments and
test models.

3.2 Test Models

The models used in the experiments were taken from the COntinuous CON-
straints - Updating the Technology (COCONUT) benchmark [20], a collection
of over 1000 problems from a variety of fields, including computational chem-
istry, robotics, operations research, and economics. All the models are in the
AMPL modelling language format [21].

Models with 10 or fewer nonlinear constraints were removed from the test
set. The argauss and grouping models were removed because they caused
Ipopt to return the runtime exception message Too few degrees of freedom.
The models argtrig, bratu2d, bratu2dt, bratu3d, camcge, catenary, cbratu2d,
ex8 3 13, ex8 3 14, ex8 6 1, oet7, pindyck, and polak3 were removed because
they caused the AMPL interface function conval() to return an error.
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The models were separated into three subsets based on the number of
nonlinear constraints:

– Problem Set I (PS I) has 79 models with more than 10 nonlinear constraints
and fewer than 101 nonlinear constraints.

– Problem Set II (PS II) has 62 models with more than 100 nonlinear con-
straints and fewer than 1001 nonlinear constraints.

– Problem Set III (PS III) has 72 models, each with more than 1000 nonlinear
constraints.

The statistics of the selected test models are presented in Table 1.

3.3 Starting Points

Every algorithm is run ten times for each model (2130 runs in total). Sug-
gested start points provided with the models were ignored and each of the ten
start points was chosen randomly. This increases the difficulty of the problem
set because the provided start points are often very promising. All of the al-
gorithms are launched from the same randomly selected start points for each
model to ensure fair starting conditions.

The random start points were chosen within the variable bounds. If bounds
are not provided, the start point is randomly chosen within±104, a range found
useful in previous research [18].

3.4 Performance Metrics

The main metric used to judge CC performance is the maximum constraint
violation V. The CC algorithms try to find a point for which V is less than
a specified tolerance such as 10−6, a typical value. CC does not have to find
a point that is completely feasible to be effective but lower values of V are
usually better.

Each algorithm variant was run 10 times for every model. The average
time, average number of iterations, and median violation of the best points
found are reported in Table 2. The median violation is an important metric
that helps measure quality of the solutions found by the algorithms.

When CC is paired with a local solver, relevant metrics include:

– feasibility fraction: the fraction of models for which Ipopt found a fea-
sible solution,

– infeasibility fraction: the fraction of models for which Ipopt converged
to an infeasible solution,

– timeout fraction: the fraction of models for which Ipopt ran out of time,
– fail fraction: the fraction of models for which Ipopt returned another re-

turn code (e.g., Restoration Failed see [22] for a complete list of possibilities
and full definitions).
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3.5 Constraint Consensus Variants

The CC algorithms tested in the experiments are the Basic, FDfar, and SUM
variants. These are augmented or not augmented, and use either linear or
quadratic feasibility vectors. The naming convention is a b c d where a is L
or Q (for linear or quadratic feasibility vector), b is the name of the CC algo-
rithm variant, c is either A or blank for augmentation or not, and d is present
only if c is A and represents the recurrence period (T ) of augmentation. For
instance, if T = 2 then linear feasibility vectors are used for the first itera-
tion of constraint consensus and the augmented feasibility vectors are used
for the second iteration. Then the whole process is repeated. If T = 3 then
two iterations with linear feasibility vectors and one iteration with augmented
feasibility vectors are used for a cycle of the algorithm. For consistency the
augmented calculations always take place in the second iteration of a cycle.

Results are reported here for the following algorithm combinations:

– L Basic: linear feasibility vector, Basic Consensus, no augmentation.
– L FDfar: linear feasibility vector, FDfar Consensus, no augmentation.
– L SUM: linear feasibility vector, SUM Consensus, no augmentation.
– L Basic A 3: linear feasibility vector, Basic Consensus, augmented with

recurrence period 3. This augmentation recurrence period returned the best
results among numerous periods tested as shown in the Online Appendix.

Results for numerous other algorithm combinations, mainly with different aug-
mentation recurrence periods and including quadratic feasibility vectors, are
given in both the Online Appendix and in [23].

3.6 Experiments and Constraint Consensus Parameter Settings

Four experiments were conducted. Experiment A examines the relative ability
of the algorithms to find points close to feasible regions given a short pre-set
maximum run time and maximum number of iterations. A very tight feasibility
tolerance of α = 10−16 and movement tolerance of β = 10−16 insure that
the CC variants will not terminate unless they find a feasible point or have
stopped making progress. The maximum number of iterations is µ = 100. The
time limit (max time) varies by problem set, allowing more time for models
having more nonlinear constraints. For PS I max time = 0.05s, for PS II
max time = 0.5s, and for PS III max time = 5.0s. These time limits are
based on preliminary experiments not reported here.

Experiment B tests how often a CC intermediate point has a lower violation
than the CC end point. Two sets of CC parameters were used: α = 10−16

and β = 10−16, and α = 10−3, β = 10−6. These settings were chosen to
determine whether using intermediate CC points is advantageous over a wide
range of tolerances. All other relevant parameters settings were the same as in
Experiment A.

Experiment C examines which CC variant improves the performance of the
barrier method solver the most. Each randomly selected start point is used to
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Table 2: Finding approximately feasible points.

Results for PS I (max time = 0.05s).
The median V for the start points is 1, 710, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 0.01 87.47 117
L FDfar 0.01 88.40 125
L SUM 0.01 87.69 323
L Basic 0.01 93.07 29,800

Results for PS II (max time = 0.5s).
The median V for the start points is 1, 255, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 0.24 77.14 140
L FDfar 0.24 79.62 1,075
L SUM 0.24 76.82 1,315
L Basic 0.27 76.66 280,500

Results for PS III (max time = 5.0s).
The median V for the start points is 1, 580, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 3.87 52.24 1,765
L SUM 3.77 51.80 3,760
L FDfar 3.80 52.56 8,965
L Basic 4.03 46.87 531,500

launch CC. The point having the lowest violation during the CC run is then
used as a launch point for the barrier method solver. For this experiment the
feasibility tolerance was set at α = 10−3 and the movement tolerance was set
at β = 10−6 to ensure that the barrier method solver is invoked quickly if the
CC variants either find a point close to feasibility or stop making progress.
The maximum number of CC iterations is 100. The maximum time allowed
for CC is the same as in Experiment A. Parameter settings for Ipopt were:
honor original bounds = yes, bound relax factor = 0, max iter = 9999999,
constr viol tol = 10−6, and max cpu time = 60.

Experiment D compares the performance of the local solver when the CC
algorithm constructs feasibility vectors for only the violated nonlinear con-
straints. The parameters settings are the same as in Experiment C.

4 Numerical Results

4.1 Experiment A: Finding Approximately Feasible Points

The results for Experiment A are reported in Table 2. The four tested al-
gorithm variants are listed in increasing order of median V. The number of
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Fig. 6: Performance Profile (PS III)

iterations and the average times do not show significant variation between the
methods.

The original L Basic method has the worst median V in all three problem
sets by a significant margin. L FDfar provides significantly better results as
expected [2], as does the new SUM method. However L Basic A 3 provides
the smallest median V in all three problem sets, showing the power of the
augmentation technique. The relative peformances of the four CC variants are
not greatly affected by the number of nonlinear constraints.

Figure 6 provides a more detailed look at the relative performance of the
CC variants on the large models in PS III that are of greatest interest, via a
performance profile [24]. Figure 6 shows that L Basic A 3 dominates the other
methods, providing the smallest median violation for about two-thirds of the
models, and having the largest fraction of models below any given ratio to
best median violation.

4.2 Experiment B: The CC Output Point

This experiment examines the median violation of the CC end points and the
median violation of the point having the lowest violation at any iteration in
the CC run (the best point). There are several conclusions to be drawn from
the data in Table 3:

– The median violation is considerably less for all algorithms when they use
the best point rather than the end point.
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Table 3: Using Best and End Points. 213 models.

Tight Parameter Settings (α = 10−16, β = 10−16)

Median Violation Fraction of Runs
CC Type Best End with Best < End
L Fdfar 2155.0 2875.0 0.38
L SUM 1985.0 5075.0 0.49
L Basic A 3 961.0 1980.0 0.61
L Basic 198500.0 225000.0 0.14

Loose Parameter Settings (α = 10−3, β = 10−6)

Median Violation Fraction of Runs
CC Type Best End with Best < End
L Fdfar 2196.3 2935.9 0.41
L SUM 2154.9 6474.8 0.52
L Basic A 3 1088.1 3089.1 0.69
L Basic 195445.0 225930.0 0.16

– The fraction of runs for which the best point offers an advantage is sub-
stantial for the three new algorithms, especially L Basic A 3. The fraction
is much smaller for L Basic. This shows the extent to which the more ag-
gressive movements of the new algorithms lead to a less monotonic pattern
of improvement.

– The results are consistent for both the tight and the loose parameter set-
tings.

Since the best point is defined as the point with the lowest violation it is not
surprising that these points return a lower median violation on average. What
is interesting is the percentage of runs for which using the best point offers an
advantage. For L Basic A 3 approximately 2 in 3 runs are improved by simply
taking the best intermediate point. The advantage is greater for all algorithms
when the feasibility and movement tolerances are loosened.

4.3 Experiment C: Constraint Consensus Paired with a Barrier Method
Solver

The purpose of Experiment C is to identify which CC variant most improves
the results for the barrier method solver. The L FDfar, L SUM, L Basic A 3
and the original L Basic are compared, along with a base case in which Ipopt
is run without CC. The results are summarized in Table 4. The average times
are in seconds.

The first section of Table 4 lists the results for the 175 models that did
not cause Ipopt to timeout or return a failure. The second section of Table 4
contains results for the 25 models for which Ipopt exceeded the maximum
time limit in at least one of the 10 runs and did not report an failure. The



18 Laurence Smith et al.

Table 4: Using Constraint Consensus with Ipopt

No timeouts or failures (175 models)

CC None L FDfar L SUM L Basic A 3 L Basic
Avg.Time per run 0.53 0.53 0.55 0.59
Median Violation 9.36× 102 1.59× 103 4.90× 102 4.60× 104

Feasibility Fraction 0.012 0.031 0.038 0.009

Ipopt
Avg.Time per run 10.71 9.52 8.97 7.80 10.21
Avg. Iterations 401.23 323.39 307.57 246.07 372.60
Feasibility Fraction 0.726 0.758 0.761 0.779 0.738
Infeasibility Fraction 0.274 0.242 0.239 0.221 0.262

Total
Avg.Time per run 10.71 10.06 9.50 8.35 10.80

Timeouts (25 Models)

CC None L FDfar L SUM L Basic A 3 L Basic
Avg.Time per run 2.36 2.34 2.34 2.41
Median Violation 2.68× 105 6.89× 105 4.66× 105 1.29× 105

Feasibility Fraction 0.00 0.00 0.00 0.00

Ipopt
Avg.Time per run 56.84 52.24 52.64 46.62 55.03
Timeout Fraction 0.824 0.820 0.800 0.732 0.856
Feasibility Fraction 0.152 0.156 0.164 0.248 0.128
Infeasibility Fraction 0.024 0.024 0.036 0.020 0.016

Total
Avg.Time per run 56.84 54.60 54.99 48.97 57.45

Failures (13 Models)

Ipopt
Fail Fraction 0.92 0.86 0.71 0.52 0.72
Timeout Fraction 0.00 0.01 0.05 0.10 0.04
Feasibility Fraction 0.03 0.08 0.09 0.26 0.08
InFeasibility Fraction 0.05 0.05 0.15 0.12 0.16

third section of Table 4 reports the results for the 13 models for which Ipopt
returned at least one error during one of the 10 runs. The best results are
shown in boldface.

The first section of Table 4 confirms the results from Experiment A, that
L Basic A 3 is the most effective CC variant. L Basic A 3 increases Ipopt’s
feasibility fraction by more than 5 percentage points while reducing the aver-
age combined total run time by 22%. The average number of Ipopt iterations
is also reduced substantially. L FDfar and L SUM also improve the perfor-
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mance of Ipopt by smaller margins. L Basic improves the feasibility fraction
but increases average overall runtime slightly.

L Basic A 3 also provides the best performance for the 25 timeout mod-
els in Table 4, achieving the lowest Ipopt timeout fraction and highest Ipopt
feasibility fraction. L Basic A 3 is again the the most effective for the 13 mod-
els for which Ipopt returned an error during one of the 10 runs. It improved
Ipopt’s feasibility fraction substantially while decreasing Ipopt’s fail fraction.

The two new methods L Basic A 3 and L SUM provide improvements over
the two existing methods L Basic and L FDfar. L Basic A 3 has the best
results over all categories of outcomes, while L SUM has the next best re-
sults. Paired with L Basic A 3, Ipopt was successful for 1451 of the 2130 runs
((175+25+13)×10). The next most successful pairing was Ipopt with L SUM
which achieved success for 1382 of the runs. These are noteworthy increases
in performance compared to Ipopt by itself which was successful in only 1311
of the runs.

Considering each of the 2130 runs, the total time taken by Ipopt paired
with L Basic A 3 is the same as for Ipopt alone for 115 models, and is smaller
than the time taken by Ipopt alone for 1255 models. Thus the L Basic A 3
with Ipopt combination provides an advantage (or at least no disadvantage) in
terms of speed for about two-thirds of all runs (1370 of 2130 runs, or 64.3%).

4.4 Experiment D: Constraint Consensus Applied to Nonlinear Constraints
Only

Experiment D tests whether a local solver performs better if CC is applied only
to nonlinear constraints. The 117 models that have a mixture of linear and
nonlinear constraints were used in this experiment (the omitted models con-
sist entirely of nonlinear constraints and hence would return the same output
points in either case).

Table 5 shows the results, and uses the same definitions as for Table 4. The
top section gives the results when CC operates on all violated constraints, and
the bottom section lists the results when CC is applied to only the violated
nonlinear constraints. Table 5 shows that the nonlinear solver is able to find
a feasible solution for more models in all cases when CC is applied to only
the violated nonlinear constraints. The feasibility fraction is increased for all
methods, and the total time is reduced for all methods except L Basic A 3,
which sees a small increase.

5 Discussion

5.1 Constraint Consensus and Barrier Method Solvers

As mentioned earlier, the barrier method algorithm prefers a launch point
that is close to satisfying the equality constraints and that oversatisfies the
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Table 5: Applying CC to nonlinear constraints only. Results from the 117
models having both linear and nonlinear constraints.

Constraint Consensus Applied to all Constraints

CC None L FDfar L SUM L Basic A 3 L Basic
Avg.Time per run 0.83 0.83 0.85 0.87
Median Violation 3.83× 103 5.64× 103 1.99× 103 5.15× 105

Feasibility Fraction 0.01 0.03 0.04 0.00

Ipopt
Avg.Time per run 16.75 15.37 13.97 11.78 16.33
Avg. Iterations 436.68 318.75 323.69 257.67 416.09
Feasibility Fraction 0.65 0.68 0.70 0.70 0.65

Total
Avg.Time per run 16.75 16.21 14.80 12.62 17.20

Constraint Consensus Applied Only to Nonlinear Constraints

CC None L FDfar L SUM L Basic A 3 L Basic
Avg.Time per run 0.73 0.72 0.75 0.81
Median Violation 3.39× 103 2.60× 103 2.28× 103 2.73× 105

Feasibility Fraction 0.00 0.00 0.01 0.00

Ipopt
Avg.Time per run 16.75 14.04 12.75 12.42 15.06
Avg. Iterations 436.68 295.33 274.51 295.98 407.76
Feasibility Fraction 0.65 0.71 0.73 0.71 0.67

Total
Avg.Time per run 16.75 14.76 13.47 13.18 15.87

inequality constraints. In particular, a launch point that exactly satisfies an
inequality constraint can lead to a blow-up in the barrier function. With this
as a working hypothesis, we examine the characteristics of the launch points
furnished by the CC methods and the success of the barrier method solver as
reported in Experiment C.

In the subsequent analysis, each CC output point is categorized by the
degree to which it satisfies each equality and inequality constraint in the model.
The statistics reported are as follows:

– Viol: The average number of violated constraints.
– OverSat: The average number of inequality constraints satisfied by at

least 1 (i.e., vi(xk) ≤ −1).
– JustSat: The average number of inequality constraints satisfied by less

than 1 (i.e., −1 < vi(xk) ≤ 0).
– Wtol: The average number of inequality constraints within the tolerance

(i.e., 0 < vi(xk) ≤ 10−6).
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– Close: The average number of equality constraints close to being satisfied
(i.e., |vi(xk)| ≤ 1).

Note that in Table 6, the number of inequalities is the sum of Viol, OverSat,
JustSat, and Wtol, but the number of equalities is not equal to the sum of
Viol and Close. This is because some of the equalities in the Close category
actually violate the strict feasibility tolerance and hence are counted as both
Viol and Close.

The characteristics of the output points returned by the CC algorithms
for the 175 models having no timeouts or failures in Experiment C are given
in Table 6, which uses the categories given above. The analysis distinguishes
nonlinear constraints from linear constraints and equality constraints from
inequality constraints. Equality constraints predominate in the test models
(87% of constraints are equality) and nonlinear constraints outnumber linear
constraints by a large margin (61% of the constraints are nonlinear). Over 75%
of the models have at least one nonlinear equality constraint.

The data in Table 6 show that L Basic A 3 excels at both satisfying and
oversatisfying nonlinear inequality constraints. L Basic A 3 decreases the num-
ber of violated nonlinear inequality constraints the most. The same observa-
tions can be made about the linear inequality constraints. None of the methods
are particularly good at reducing the number of violated equality constraints,
however, L Basic A 3 does the best job of finding points that are relatively
close to satisfying nonlinear equality constraints.

We know from Experiment C that the barrier method solver is the most
successful when paired with the L Basic A 3 CC variant. As shown by the
data in Table 6, L Basic A 3 more often produces output points that have the
characteristics preferred by the barrier method algorithm. Its output points
satisfy or oversatisfy more of the nonlinear inequalities and come close to
satisfying more of the nonlinear equality constraints. The output points from
L Basic A 3 also perform relatively well on the linear constraints, but this is
much less important due to way in which linear constraints are handled in the
barrier algorithm.

5.2 Why Augmentation Works

Experiment A showed that augmentation generally improves the performance
of CC variants that use Basic consensus. Fig. 7 analyzes the COCONUT model
airport, composed of 84 variables and 42 quadratic constraints, to provide
some insight as to why augmentation works. Fig. 7a and Fig. 7b depict the
results for the L Basic and L Basic A 3 algorithms, respectively. ||Cvec|| is
the length of the consensus vector. Fig. 7a shows that the measure of step size
(log(||Cvec||)) for L Basic is constantly small so it is unable to find a location
with a substantially lower constraint violation (log(V)). In contrast, Fig. 7b
shows that L Basic A 3 takes a relatively large step at every augmentation
iteration causing V to decrease rapidly. In 27 iterations the L Basic A 3 algo-
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Table 6: Characteristics of Constraint Consensus Output Points

Nonlinear
Inequality (Avg. 173.30) Equality (Avg. 812.11)

CC Viol OverSat JustSat Wtol Viol Close
None 86.50 29.80 57.00 0.00 812.02 5.94
L FDfar 30.40 69.67 73.01 0.22 810.55 51.73
L SUM 33.61 79.11 51.60 8.98 806.27 59.33
L Basic A 3 24.95 71.31 76.29 0.74 810.80 94.18
L Basic 52.75 58.35 62.19 0.00 811.66 9.02

Linear
Inequality (Avg. 31.71) Equality (Avg. 582.31)

CC Viol OverSat JustSat Wtol Viol Close
None 20.85 10.25 0.59 0.01 582.31 10.88
L FDfar 14.24 16.52 0.93 0.03 582.02 31.26
L SUM 20.35 9.10 1.20 1.05 582.04 8.91
L Basic A 3 13.10 16.76 1.83 0.01 582.27 15.22
L Basic 15.25 15.42 1.03 0.01 582.28 11.04

rithm decreases V from 3.35 × 102 to 4.16 × 10−17, as compared to L Basic
which has made little progress.

As shown in the results in the Online Appendix, augmentation generally
improves the algorithms using Basic consensus. The L Basic A 3 variant uses
augmentation the most frequently and it achieves the lowest median violation.
Augmentation had mixed results for the methods using FDfar and SUM con-
sensus. This has to do with how the consensus vector is formed in the first
place. The FDfar and SUM consensus calculations are both much better at
estimating step size than Basic consensus, so augmentation may often be re-
dundant, or at least of little use for these consensus methods. For instance,
FDfar is designed to approximately satisfy a single violated constraint at each
iteration. If the approximation is reasonably accurate, then the augmenting
step will not make a significant improvement, if any. The Basic consensus
method is designed to try and satisfy all the violated constraints at each iter-
ation using an averaging scheme. The approximations it makes are likely less
accurate than the FDfar method and hence have more potential for improve-
ment from augmentation.

5.3 Quadratic Feasibility Vectors

While quadratic feasibility vectors are exact for quadratic constraints, the re-
sults in the Online Appendix make clear that the additional calculation effort
does not pay off. It may take several iterations using linear feasibility vectors
to match the accuracy using quadratic feasibility vectors, but the linear it-
erations are so much faster that they take less time in total. The asymptotic
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(a) L Basic. (b) L Basic A 3.

Fig. 7: The effect of augmentation on the airport model. The value of the
violation V and length of the consensus vector ||Cvec|| are shown at each
iteration.

time complexities of the linear and quadratic feasibility vector calculations are
O(n) and O(n2), respectively, for a single constraint having n variables. The
average times for the Constraint Consensus variants using quadratic feasibil-
ity calculations are much higher than the other algorithms. As a result, the
algorithms that use quadratic feasibility vector calculations are less successful
on average at decreasing V in a short period of time.

5.4 SUM Consensus

Experiment C shows that SUM consensus works relatively well compared to
the FDfar and Basic consensus methods. There are several explanations. First,
FDfar moves to satisfy the most violated constraint at each iteration, but
requires the same amount of computation time as the SUM and Basic methods
because feasibility vectors for each violated constraint must be calculated in
order to determine the most violated constraint. However FDfar may end
up cycling between the same subsets of constraints because it uses only one
constraint when forming the consensus vector whereas the SUM method uses
all the feasibility vectors at every iteration, and so is less likely to cycle.

Second, Basic consensus averages the feasibility vectors. Although the di-
rection of the Basic consensus vector may be accurate, the step size is less
than ideal (as shown in Fig. 7). The SUM method adds the feasibility vectors
together, and thus effectively takes more aggressive steps. Experiment C shows
that this generally leads to better performance.
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5.5 The Impact of Time Limits

The feasibility fractions achieved in the experiments are generally well below
100%. This is mainly because the algorithms (both the CC algorithms and
the barrier method solver) were restricted to relatively short run times so
that we could examine a large number of algorithm variants (see the Online
Appendix) over a large number of test models. The short time limits have an
impact because the models are nonlinear and large-scale, and hence inherently
difficult to solve. Longer time limits for both CC and the local solver would
likely result in higher feasibility fractions.

6 Conclusions and Future Research

Our experiments showed that the new Constraint Consensus techniques de-
veloped in this paper improve CC itself (in terms of finding points that are
closer to feasibility in less time), and also improve the results returned by a
barrier method local NLP solver. In particular:

– The SUM method is better than the existing Basic and FDfar CC algo-
rithms.

– Augmentation can greatly improve the results of the Basic algorithm. In
fact, the L Basic A 3 method returned the best overall results on all mea-
sures.

– Using the lowest violation point found after any iteration of a CC method
is generally better than using the final point.

– Applying CC to only the nonlinear constraints in the model provides better
performance. This allows for greater progress towards satisfying the diffi-
cult nonlinear constraints and leaves the linear constraints to be handled
by the standard matrix methods included in nonlinear solvers.

We also observed that using quadratic feasibility vectors does not pay off
in practice. It may be that in certain situations the added complexity is war-
ranted, e.g. if the nonlinear constraints have particular properties, but it is
not known what these properties might be. This is a topic for future research.

Based on these results, we recommend the use of the following CC al-
gorithm for generating launch points for barrier method local solvers: the
L Basic A 3 method applied to only the nonlinear constraints, and returning
the point with the lowest violation found during the CC run. This will im-
prove the probability that the barrier method solver is able to find a feasible
solution, and will reduce the effort it expends in doing so.

An interesting result is the extent to which the success of a barrier method
local solver is influenced by the characteristics of its launch point. We ob-
served that the barrier method solver does best when the initial point satisfies
or oversatisfies more of the nonlinear inequality constraints and comes close
to satisfying more of the nonlinear equality constraints, as would be expected
based on theory. This observation may be useful in the design of future Con-
straint Consensus methods or other launch point generators.
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We plan to continue our development of Constraint Consensus methods.
One direction is new methods of augmentation, perhaps based on a superposi-
tion of the last several consensus vectors. Dynamic stopping conditions based
on measures of progress are also under consideration. In the same vein, if slow
progress is detected it may be a signal to switch to a different CC algorithm
or a different starting point.
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1 Quadratic Feasibility Vectors

The formula for a quadratic feasibility vector can be derived based on a second
order Taylor series expansion in a manner similar to the derivation of the linear
feasibility vector formula using a first order Taylor series expansion. We expand
the constraint function g at the location xk:

g(xk+1) ≈ g(xk)+∇g(xk)(xk+1−xk)+
1

2
(xk+1−xk)T∇2g(xk)(xk+1−xk). (1)

The desired movement direction is parallel to the gradient of the violated
constraint at xk

(xk+1 − xk) = ρq∇g(xk)T , (2)

therefore, g(xk+1) is approximately

g(xk+1) ≈ g(xk) + ρq||∇g(xk)T ||2 +
ρ2q
2
∇g(xk)∇2g(xk)∇g(xk)T . (3)

The step size ρq is determined by setting g(xk+1) = 0 and solving

ρq =
−b±

[
b2 − 4ac

] 1
2

2a
, (4)
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where

a =
1

2
∇g(xk)∇2g(xk)∇g(xk)T (5)

b = ||∇g(xk)T ||2 (6)

c = g(xk). (7)

The resulting feasibility vector is defined as

(xk+1 − xk) = ρq∇g(xk)T (8)

with the definition of ρq as shown in Eqn. 4.
Due to the quadratic nature of the solution, there may be two distinct

step sizes, and the step size may be complex. Both issues are related to the
discriminant term of Eqn. 4

γ = b2 − 4ac. (9)

Three possibilities exist for the step size

1. γ > 0: There are two distinct real solutions because the quadratic approx-
imation to the constraint function (Eqn. 3) is equal to zero at two points.
For instance, the parabola f(x) = x2 − 1 crosses zero at x = ±1.

2. γ = 0: There is one distinct real solution because the quadratic approxi-
mation to the constraint function is equal to zero at only one point. An
example is the parabola f(x) = x2 which equals zero only at x = 0.

3. γ < 0: There are two distinct complex solutions because the quadratic
approximation to the constraint function does not equal zero in the real
space. An example is the parabola f(x) = x2 + 1.

When γ > 0 we choose the real root with the smallest magnitude in order
to reduce the possibility of cycling between multiple solutions. When γ < 0
there are no real roots xk+1 such that g(xk+1) = 0. In this case we try to
find a critical point of the quadratic approximation to the constraint function
g(xk+1) instead. This is achieved by setting the derivative of Eqn. 3 with
respect to the step size to zero, i.e.

0 = ||∇g(xk)T ||2 + ρq∇g(xk)∇2g(xk)∇g(xk)T , (10)

and solving

ρq =
−||∇g(xk)T ||2

∇g(xk)∇2g(xk)∇g(xk)T
. (11)

This is the same as taking the real part of Eqn. 4 when γ < 0, so we use this
simpler approach.

The quadratic feasibility vector calculation can be used in place of the
linear feasibility vector calculation in the CC algorithm, though the linear fea-
sibility vector should be used when the constraint is linear. There is nothing
to be gained using the quadratic feasibility calculation for linear constraints
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Fig. 1: The quadratic feasibility vector calculation.

because the Hessian is zero. The quadratic method also requires more com-
putations per iteration. This should be taken into account when applying the
quadratic feasibility calculation to fully simultaneous or block-iterative meth-
ods such as CC that may require many feasibility vector calculations per iter-
ation. Although the quadratic feasibility vector is more accurate for quadratic
constraints than the linear calculation, it is not necessarily more accurate for
higher order nonlinear constraints.

As an example, consider again the example model in the main paper. The
Hessian matrix for the nonlinear constraint is

∇2gb(x) =

[
2 −1
−1 2

]
. (12)

Given the initial point x0 = [8 − 8]T the quadratic parameters are:

a =
1

2
∇gb(x0)∇2gb(x0)∇gb(x0)T (13)

=
1

2
[28 − 26]

[
2 −1
−1 2

] [
28
−26

]
(14)

= 2188, (15)

b = ||∇gb(x0)T ||2 (16)

= [28 − 26]

[
28
−26

]
(17)

= 1460, (18)

c = gb(x0) (19)

= 234. (20)
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In this case, γ = 83632 > 0 so there are two real roots and therefore two possi-
ble values for ρq (−0.400 and −0.268). The step size with smallest magnitude,
ρq = −0.268, is chosen. Therefore the quadratic feasibility vector is

(x1b − x0) = ρq∇gb(x0)T (21)

=

[
−7.492
6.956

]
. (22)

The quadratic feasibility vector is shown in Fig. 1. In this case both of the
feasibility vectors are exact, however, the consensus vector (x1−x0) is still an
estimate. At the point x2 in Fig. 1 the violations of constraints ga and gb are
1.669 and 32.138, respectively.

2 Additional Experimental Results

2.1 Additional Constraint Consensus Variants

In addition to the four CC variants tested in the main paper, we developed and
analyzed eight other variants with different augmentation recurrence periods:

– L Basic A 11: linear feasibility vector, basic consensus, augmented with
recurrence period of 11.

– L Basic A 17: linear feasibility vector, basic consensus, augmented with
recurrence period of 17.

– L FDfar A 3: linear feasibility vector, FDfar consensus, augmented with
recurrence period of 3.

– L FDfar A 11: linear feasibility vector, FDfar consensus, augmented with
recurrence period of 11.

– L FDfar A 17: linear feasibility vector, FDfar consensus, augmented with
recurrence period of 17.

– L SUM A 3: linear feasibility vector, SUM consensus, augmented with
recurrence period of 3.

– L SUM A 11: linear feasibility vector, SUM consensus, augmented with
recurrence period of 11.

– L SUM A 17: linear feasibility vector, SUM consensus, augmented with
recurrence period of 17.

The periods of 3, 11 and 17 are chosen to gauge performance over a wide range
of recurrence periods.

We also examined CC variants that use quadratic feasibility vectors. Vari-
ants denoted with q apply the quadratic feasibility calculation only to quadratic
constraints and use linear feasibility vector calculations for all other con-
straints. Variants denoted with n apply the quadratic feasibility calculation
to any nonlinear constraint that is violated. In all cases, linear feasibility vec-
tors are used for all linear constraints. Six variants using quadratic feasibility
vectors were tested:
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Table 1: Results for PS I (max time = 0.05s). The median V for the start
points is 1, 710, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 0.01 87.47 117
L FDfar 0.01 88.40 125
L SUM 0.01 87.69 323
L FDfar A 17 0.01 87.01 390
L Basic A 11 0.01 90.23 537
L FDfar A 11 0.01 86.80 723
L Basic A 17 0.01 90.76 742
L SUM A 11 0.01 86.55 857
L SUM A 17 0.01 86.83 1,525
L SUM A 3 0.01 90.31 1,740
L FDfar A 3 0.01 87.20 2,140
Q SUM q 0.03 68.90 3,197
Q FDfar q 0.03 69.23 5,114
Q FDfar n 0.03 65.39 7,914
Q SUM n 0.03 64.65 8,212
L Basic 0.01 93.07 29,800
Q Basic q 0.03 71.47 67,987
Q Basic n 0.04 66.80 148,440

– Q Basic q: Feasibility vector: quadratic, basic consensus, no augmenta-
tion, quadratic constraints only.

– Q Basic n: Feasibility vector: quadratic, basic consensus, no augmenta-
tion, all nonlinear constraints.

– Q FDfar q: Feasibility vector: quadratic, FDfar consensus, no augmenta-
tion, quadratic constraints only.

– Q FDfar n: Feasibility vector: quadratic, FDfar consensus, no augmenta-
tion, all nonlinear constraints.

– Q SUM q: Feasibility vector: quadratic, SUM consensus, no augmenta-
tion, quadratic constraints only.

– Q SUM n: Feasibility vector: quadratic, SUM consensus, no augmenta-
tion, all nonlinear constraints.

We distinguish between quadratic and nonlinear constraints because of the
tradeoff between time and accuracy. The quadratic feasibility vector calcula-
tion requires more time than the linear feasibility vector calculation, but is
more accurate for nonlinear constraints.

2.2 Additional Numerical Results

The complete results for Experiment A, including all tested methods, are re-
ported in Tables 1-3. The goal of the algorithms in this experiment is to reduce
the maximum violation as much as possible given the time and iteration re-
strictions.
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Table 2: Results for PS II (max time = 0.5s). The median V for the start
points is 1, 255, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 0.24 77.14 140
L FDfar A 17 0.24 78.82 455
L FDfar A 11 0.24 78.78 456
L SUM A 17 0.23 73.18 501
L SUM A 11 0.23 74.36 502
L FDfar A 3 0.22 80.18 1,065
L FDfar 0.24 79.62 1,075
L Basic A 11 0.27 77.08 1,275
L SUM 0.24 76.82 1,315
L SUM A 3 0.22 81.67 1,540
L Basic A 17 0.27 76.64 1,725
Q SUM q 0.42 45.71 4,023
Q FDfar q 0.43 46.07 5,351
Q SUM n 0.46 29.67 20,609
Q FDfar n 0.47 29.26 174,120
L Basic 0.27 76.66 280,500
Q Basic q 0.44 42.74 412,720
Q Basic n 0.47 28.61 768,010

Table 3: Results for PS III (max time = 5.0s). The median V for the start
points is 1, 580, 000.

Variant Avg. Time(s) Avg. Its Median V
L Basic A 3 3.87 52.24 1,765
L SUM A 11 3.78 53.78 2,540
L SUM 3.77 51.80 3,760
L SUM A 17 3.79 53.49 3,760
L SUM A 3 3.67 58.87 4,110
L Basic A 11 3.96 48.13 5,595
L FDfar 3.80 52.56 8,965
Q SUM q 4.50 24.82 19,170
L Basic A 17 3.99 47.90 91,400
L FDfar A 3 3.71 59.70 251,000
L FDfar A 11 3.80 54.28 335,000
L FDfar A 17 3.81 53.73 481,000
L Basic 4.03 46.87 531,500
Q FDfar q 4.52 25.36 679,260
Q SUM n 4.88 8.51 935,445
Q FDfar n 4.96 6.25 971,490
Q Basic q 4.61 22.39 1,034,500
Q Basic n 4.97 6.32 1,163,200
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Algorithms using Basic consensus and linear feasibility vectors improve
as augmentation is used more frequently. Table 1 shows that L Basic A 3
performed the best on PS I while the original L Basic was the worst. A similar
trend is seen for PS II and PS III, found in Table 2 and Table 3, respectively.
The L Basic A 3 variant was the top algorithm for each problem set and it
uses augmentation the most frequently.

There is no clear trend for the frequency of augmentation for FDfar and
SUM with linear feasibility vectors.

Tables 1-3 show that the quadratic feasibility vector calculations are much
more expensive than the linear feasibility vector calculations: the average num-
bers of iterations completed within the time limit are always much smaller for
the quadratic versions of the algorithms. As a consequence, the median viola-
tions of the quadratic methods are substantially higher than most of the linear
variants. Applying quadratic feasibility vectors only for quadratic constraints
is slightly better than finding quadratic feasibility vectors for all nonlinear
constraints. The best performing quadratic variant in all three problem sets is
Q SUM q, but its relative peformance is much worse than many linear vari-
ants.


