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It is usually not known in advance whether a nonlinear set of constraints has zero, one,
or multiple feasible regions. Further, if one or more feasible regions exist, their locations
are usually unknown. We propose a method for exploring the variable space quickly using
Constraint Consensus to identify promising areas that may contain a feasible region. Multiple
Constraint Consensus solution points are clustered to identify regions of attraction. A new
inter-point distance frequency distribution technique is used to determine the critical distance
for the single linkage clustering algorithm, which in turn determines the estimated number
of disjoint feasible regions. The effectiveness of multistart global optimization is increased
due to better exploration of the variable space, and efficiency is also increased because the
expensive local solver is launched just once near each identified feasible region. The method
is demonstrated on a variety of highly nonlinear models.
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1. Introduction

When a model has one or more nonlinear constraints it can be very difficult to find a
feasible point in a nonlinear program (NLP). It may not be known a priori whether
the model is feasible, or if it is, how many discontiguous feasible regions there are
and where they are located. In addition, some nonlinear optimization algorithms
require a feasible starting point, and many others are much more efficient and
effective if started at a point that is either feasible or close to feasibility. In fact the
problem of finding a feasible point is just as hard as the global optimization problem
in that it is equivalent to finding a global minimum of an objective that expresses
the sum of the constraint violations. The global minimum of this objective is zero,
i.e. a feasible point.

The Constraint Consensus (CC) algorithm rapidly and inexpensively moves an
infeasible initial point that may be very far away from feasibility to a final point
that is close to feasibility in large nonlinear models [3]. Running the CC algorithm
prior to launching an NLP solver greatly reduces the total solution time in most
cases, and improves the probability that a nonlinear solver will find a feasible
point [10]. CC calculates a feasibility vector for each constraint that is violated at
the current point; this vector estimates the smallest update needed to satisfy the
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violated constraint. The feasibility vectors for all of the violated constraints are
then combined into a single consensus vector that is added to the current point to
move it closer to feasibility. The process is repeated until the stopping conditions
are met, and the output point is passed to a full-scale NLP solver as its launch
point.

We combine CC with a clustering technique to rapidly identify the disjoint fea-
sible regions in a constrained NLP. A multistart method generates a population
of initial points. CC is started at these points and outputs final points that are
closer to feasibility. The CC final points cluster near regions of attraction (local
minima of the sum of absolute constraint violations), which are frequently feasible
regions. The clusters are identified by a single linkage clustering technique. The
critical distance used to separate the clusters is determined by a new automated
inter-point frequency distribution technique.

The clusters are identified as the first step in a probabilistic global optimization
algorithm. The intent is to identify disjoint feasible regions so that a multistart
method can launch a local solver near each of them. This allows a very large
solution space to be explored inexpensively. Overall speed and efficiency is increased
by launching the expensive local solver only at points that are in or near probable
feasible regions, and by launching the local solver only once near each of them.

Our focus is on the development of multistart methods for global optimization
that are effective and efficient for very large nonlinearly constrained optimization
models. The methods must scale well. The main contributions are the development
of an inexpensive method to explore the variable space in a complex high-dimension
nonlinear program to identify disjoint feasible regions, and the invention of a way
to automatically determine the critical distance for the clustering method that
is used. The new methods are empirically evaluated on a large number of highly
nonlinear models.

2. Background

2.1. Nonlinear Programming and Notation

The general NLP problem is formulated as:

min
x

f(x) (1a)

s.t. gi(x){≤,=}0, (i = 1, ...,m) (1b)

`j ≤ xj ≤ uj , (j = 1, ..., n) (1c)

where x = (x1, ..., xn) ∈ Rn is an n dimensional solution vector, f(x) : Rn →
R is the continuously differentiable objective function, gi(x) : Rn → R are the
continuously differentiable constraints, and `j and uj are the lower and upper
bounds on the jth element of vector x. The search space S is defined as

S .
= {x ∈ Rn | ∀j : `j ≤ xj ≤ uj} (2)

and the feasible region F is defined as

F .
= {x ∈ S | ∀i : gi(x){≤,=}0} . (3)

An optimal solution vector, x∗ ∈ F , is a solution in the feasible region with the
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lowest objective function value.
The violation of an equality constraint is defined as the absolute value of the

constraint

vi = |gi(x)|. (4)

The violation of an inequality constraint is the greater of the constraint function
value and 0

vi = max{0, gi(x)}. (5)

Solvers are algorithms that attempt to find an optimal solution vector. Alterna-
tively, constraint satisfaction algorithms attempt to find any solution vector within
the feasible region.

2.2. Constraint Consensus Methods for Constraint Satisfaction

A variety of iterative procedures move points towards locations where they satisfy
the constraints. Variations on Newton’s method [5, 7, 9, 12] are popular, but require
the calculation of an inverse matrix. For example, the method of Chootinan and
Chen [5] requires the calculation of a pseudo-inverse matrix at every iteration. The
inverse calculation is not suitable for large models having many constraints and
variables because it is very time consuming.

Constraint Consensus is an alternative approach that is very fast because it
avoids time-consuming inverse calculations and line searches [3, 10]. The first step
is to construct a feasibility vector for each violated constraint, given by

w =
−g(x)

||∇g(x)T ||2
∇g(x)T , (6)

where ∇g(x) is the gradient of the violated constraint. w is the estimated vector
from the current point to the closest feasible point for that constraint. It is exact
for linear constraints.

The next step combines the feasibility vectors into a single consensus vector that
updates the current point. In the Basic CC method, the consensus vector is calcu-
lated by a component-wise averaging of the elements of the feasibility vectors. For
each variable, the averaging calculation considers only the feasibility vectors that
include that variable. There are a variety of other ways to combine the feasibility
vectors to create a consensus vector.

Pseudocode for the Basic Constraint Consensus method [3] is given in Alg. 1.
NINF is the number of infeasibilities, wij is the value of the feasibility vector
element corresponding to the jth variable in the ith constraint.

In the algorithms developed here, CC is used for concentrating points near regions
of attraction. We use the Basic consensus [3] and the new Augmented feasibility
vector [22] variants of CC in this paper. The augmented version is a predictor-
corrector style algorithm that adjusts the length of the feasibility vectors.

2.3. Multistart Heuristics for Global Optimization

The most efficient possible multistart method for global optimization would launch
a local solver exactly once in the vicinity of each local optimum. For this reason,
a variety of multistart heuristics try to identify disjoint feasible regions so that
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Algorithm 1 Basic Constraint Consensus [3]

INPUT: (i) a set of constraints, (ii) an initial point x, (iii) feasibility distance
tolerance α, (iv) movement tolerance β, (v) maximum number of iterations µ.
k ← 0
while k < µ do
NINF ← 0; for all j: nj ← 0, sj ← 0
for every constraint gi do

if gi is violated then
Calculate wi and ||wi||
if ||wi|| > α then
NINF ← NINF + 1
for every variable xj in gi do
nj ← nj + 1; sj ← sj + wij

end for
end if

end if
end for
if NINF = 0 then

Exit successfully
end if
for every variable xj do
tj ← sj

nj

end for
if ||t|| ≤ β then

Exit unsuccessfully
end if
x← x + t
Reset x to respect any violated variable bounds
k ← k + 1

end while

the local solver can be launched exactly once near each one, thereby reducing the
number of redundant launches [4]. Two of the main concepts are concentration and
acceptance/rejection.

Multistart-NLP (MSNLP) is a heuristic multistart algorithm composed of two
phases [13]. The first phase generates a set of random candidate points, which are
stored along with their calculated measure of merit. The second phase applies a
distance filter and a merit filter that reject points according to their criteria. The
distance filter tries to ensure that the starting points are diverse, i.e., that none
of the starting points are within a basin of attraction of the same local optimum.
MSNLP approximates the basins of attraction as spheres around the best known
solutions. Additional proposed starting points within the approximated basins are
rejected. The merit filter tries to ensure that starting points exceed a certain quality
level. In MSNLP the merit filter is an L1 exact penalty function. A candidate point
is rejected if its merit function value fails to meet a certain threshold. A candidate
point that passes both filters is passed to a local NLP solver for use as the launch
point. If the solver returns a feasible and locally optimum solution, then its value
is stored. Upon termination the best feasible solution yet discovered is returned
as the global optimum point. An issue is that the hypersphere approximations of
basins of attraction are not always accurate, as can be seen in Fig. 1.

GLOBALm is another two-phase multistart method [19]. It takes a uniform sam-
ple of points from the variable space in the first phase. These candidate points are
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(a) 50 points. (b) 1500 points.

Figure 1. Basin visualization via CC for the Branin1 model: (a) CC start-end pairs for 50 random start
points. (b) CC start-end pairs for 1500 random start points.

assigned merit values with an L1 exact penalty function. The initial points with
the worst merit values are immediately rejected. In the second phase, points are
selected from the remaining set of candidate points and run through a single link-
age clustering algorithm. If a point cannot be assigned to an existing cluster, it is
used to launch a local solver to begin the formation of a new cluster. This process
is repeated until all of the candidate points are assigned to clusters.

The GLOBALm scheme makes no attempt to improve any of the points prior
to the solver launch. Another issue is the way in which the critical distance is
determined for the single linkage clustering step. GLOBALm uses a formula based
on the number of samples and the dimension of the problem to calculate the critical
distance (Eqn. 10 in [19]). This approach may not be dependable since problems and
their respective characteristics vary greatly, regardless of the number of variables
involved.

MacLeod [14] was the first to use Constraint Consensus to explore the variable
space in an effort to identify good launch points for a local solver. His Multistart
Constraint Consensus method uses the information obtained from an initial set of
randomly started constraint consensus runs to assign votes to various zones in the
variable space, where more votes correspond to a greater belief that a feasible point
exists in the corresponding zone. This information is used to guide the placement
of later CC initial points, whose information is used to update the vote totals. To
avoid a combinatorial explosion in the number of zones, the voting information
is projected onto the axes, so that each axis is individually subdivided into zones
with associated vote totals. Promising experiments in finding feasible regions in
difficult NLPs were carried out using this method in conjunction with the Knitro
local solver [2]. A drawback of the voting method used is that it tends to make
the feasible regions appear larger than they actually are. For the purposes of this
paper, the major drawback is that the method is oriented towards finding a single
launch point that leads the solver to feasibility, as opposed to identifying all of the
disjoint feasible regions.

3. Constraint Consensus and Basins of Attraction

The central idea of the method developed in this paper is to use CC to quickly and
inexpensively explore the variable space to identify promising regions in which to
launch expensive local solvers. CC runs are started at random points in the variable
space, and the CC end points concentrate in subsets near regions of attraction,



6 L. Smith et al.

typically near feasible regions. The trails of points from the starts of CC runs to
their ends can be used to visualize approximate basins of attraction (regions in
which a CC run will lead to the same feasible region) as shown in Fig. 1.

Consider the Branin1 model illustrated in Fig. 1, in which g1(x) is a variant of
the well-known Branin function [11] used as a constraint:

find x = {x1, x2} (7a)

s.t. g1(x) =

(
x2 −

5.1x2
1

4π2
+

5x1

π
− 6

)2

+

(
10− 10

8π

)
cos(x1) + 9 ≤ 0 (7b)

g2(x) = x2 +
x1 − 12

1.2
≤ 0 (7c)

−5 ≤ x1 ≤ 10 (7d)

0 ≤ x2 ≤ 15 (7e)

The Branin1 model has both a linear and a nonlinear constraint. There are three
feasible regions shown as gray areas in Fig. 1.

Fig. 1a illustrates 50 CC runs for the Branin1 model, where each line segment
connects the start point and the end point for a CC run. The basins of attraction
start to become obvious when CC is run from many start points as shown in Fig. 1b.
The white space visualizes the boundaries between the basins of attraction. Some
of the CC paths in Fig. 1 cross between basin approximations; this is because a
basin may actually be composed of disjoint regions due to the nature of nonlinear
functions and their interactions with solution algorithms (e.g., a solution algorithm
may take a step that is too large). In these vicinities CC may take a path that does
not lead to the closest (in terms of Euclidean distance) feasible region.

4. An Efficient Algorithm for Choosing Multi-Start Local Solver Launch
Points

The main steps in the algorithm for selecting local solver launch points are:

(1) Initial Sample (Fig. 2a). Choose random points in the variable space.
(2) Concentrate (Fig. 2c). Launch CC from each of the random sample points.

This concentrates the CC end points around various regions of attraction,
typically feasible regions.

(3) Choose the critical distance (Fig. 2d). The concentrated CC end points are
analyzed to choose a suitable critical distance for use in the subsequent
clustering step.

(4) Cluster (Fig. 2e). Apply a single linkage clustering algorithm to identify
clusters of CC end points using the critical distance found in the previous
step.

(5) Choose local solver launch points (Fig. 2f). Evaluate the CC end points and
launch the local solver from the most promising point in each cluster. The
best solution value from all the local solver launches is kept as the optimum
point.

The details of these steps are explained below.
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(a) Latin hypercube sample. (b) Initial distribution.

(c) Concentrated points. (d) Distribution of concentrated points.

(e) Clusters formed by a single-linkage method. (f) Launch points.

Figure 2. Concentration and clustering: (a) Fifty initial points chosen by Latin hypercube sampling. The
gray areas represent feasible regions for the Branin1 model. (b) The initial inter-point distance frequency
distribution. (c) The CC end points are concentrated near the feasible regions. (d) The frequency distribu-
tion of the inter-point distances for the concentrated points. The prominent peaks are calculated and used
to determine the critical distances. (e) The concentrated final points are clustered using a single-linkage
method. Three clusters are discovered. (f) The most promising points from each cluster are used as launch
points for a local solver.

4.1. Initial Sample

Latin Hypercube sampling is used for the initial sample within the variable space
defined by the variable bounds. This ensures that the points are distributed
throughout the search space, and Latin Hypercube sampling is known to pro-
vide better coverage than simple random sampling [15]. Further, the number of
samples required for Latin Hypercube sampling is independent of the number of
dimensions of the model. This is important since our methods are intended for
large-scale problems having many variables. The number of initial sample points
is controlled by the parameter p.
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4.2. Concentration

Running CC from a set of initial points produces a concentration of the CC end
points near the various regions of attraction where the constraint violations are
minimized. If feasible regions exist they will be near these regions. We use the
Basic CC algorithm with augmented feasibility vectors, though other versions of
CC could be substituted.

4.3. Choosing the Critical Distance

The single-linkage clustering method [21] that we use depends heavily on the accu-
rate identification of an appropriate critical distance. Points that are closer together
than the critical distance are merged into the same cluster. Any point in a given
cluster is separated from any point in a different cluster by more than the criti-
cal distance. The critical distance thus determines the number of clusters that are
identified. It is generally difficult to determine an appropriate critical distance a
priori. We develop a new procedure for doing so automatically that depends on
two parameters.

We first reduce the high-dimensional clustering data to a simple distribution of
distances between data points [1]. We exploit the fact that the frequency distri-
bution of the inter-point distances between the concentrated CC end points tends
to have peaks that correspond to the distances within and between clusters. We
observed through a large number of experiments that a set of randomly sampled
points in equally weighted dimensions has an inter-point distance distribution that
is most frequently unimodal and usually has a shape similar to a Rayleigh distribu-
tion (an example of this curve for the Branin1 variable space is shown in Fig. 2b).
In contrast, points concentrated near the same region of attraction will be closer to
each other than to points concentrated in other regions. Therefore, the frequency
distribution of inter-point distances for the concentrated set will be multi-modal if
there is more than one region of attraction. This is illustrated in Fig. 2d.

Critical distances that approximate the separation of clusters can be extracted
from the multi-modal distribution. For instance, consider Fig. 2c showing post-CC
concentrated points and Fig. 2d showing the frequency distribution of the inter-
point distances. There are four distinct groups of inter-point distances: d0, d1, d2,
and d3. The set of inter-point distances labeled d0 represents the distances between
points near the same region of attraction. The inter-point distances labeled d1, d2,
and d3 represent the distances between the points in different concentrated sets as
depicted in Fig. 2c. We posit that the critical distance for a single-linkage clustering
routine can be extracted from the inter-point frequency distribution, and used to
estimate how many regions of attraction exist in a given model using a single-
linkage clustering technique.

The inter-point frequency distribution, F [d], of the concentrated points will have
peaks because some subsets of points are close to each other and, in general, fur-
ther away from other sets of points. This is shown in Fig. 2c and Fig. 2d. Dis-
tances, d, that correspond to minima in F [d] are effective critical distances for the
single-linkage algorithm because they are the distances that separate clusters. For
instance, d ' 4 separates clusters c1, c2, and c3 in Fig. 2e. Alternatively, d ' 9 sepa-
rates the points in clusters c2 and c3 from those in c1. The differences in frequencies
between successive distances tend to be low in the regions near the minima, for
instance, consider the region 2 < d < 6 in Fig. 2d. For this reason we identify
maxima in the inter-point distance distribution instead, and then approximate the
minima using the midpoints between the maxima.

The main steps in the procedure for identifying the critical distance are:
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(1) Calculate all of the inter-point distances among the CC end points. If there
are p CC end points, then there will be 1

2p(p− 1) inter-point distances.
(2) Construct the frequency distribution histogram for the inter-point distances

by determining the histogram bin limits, and then assigning the inter-point
distances to the correct bins.

(3) Identify the prominent peaks in the inter-point distance frequency distri-
bution histogram.

(4) Use the prominent peaks to calculate a useful critical distance.

We determine the histogram bins representing the inter-point distance ranges
based on the smallest and largest inter-point distances, dmin and dmax, respectively.
The range of an individual bin, dwidth, is determined by dividing the difference
between dmin and dmax by the number of sample points, p. The nominal distance
associated with a bin is given by its midpoint or bin center, where

di = dmin + (i+
1

2
)dwidth, i ∈ {0, p− 1} (8)

are the bin centers. All the inter-point distances are then sorted into their respective
histogram bins. The number of inter-point distances in each bin constitutes the
frequency distribution, F [di].

The parameter ω is then used in the identification of prominent peaks in the
frequency distribution, defined as bins with a population that is higher than the
ω preceding bins and the subsequent ω bins. For example consider Fig. 3 in which
p = 7, dmin = 2, dmax = 16, dwidth = 16−2

7 = 2, and the nominal distance associated
with the bin [2, 4) is d0 = 3. There are 21 inter-point distances among the 7 points.
Fig. 3 illustrates the relation between frequencies and bin centers and the labels
used to represent the distances and frequencies. Fig. 3 shows that there is only one
prominent peak when ω = 2. In this case F [d4] = 7 is greater than the frequencies
of the two preceding bins, F [d2] = 5 and F [d3] = 3, and the two subsequent bins,
F [d5] = 2 and F [d6] = 1. If ω = 1 then there are two prominent peaks: the bin
centered at d4 whose frequency is greater than the bins centered at d3 and d5, and
the bin centered at d2 whose frequency is greater than its preceding and subsequent
bins.

Distances that correspond to minima in F [d] tend to be effective critical distances
for the single-linkage clustering algorithm. For example, consider a model that has
two widely separated clusters of CC end points. There will be a peak in F [d] at
the smaller end of the scale that corresponds to the distances between points in
the same cluster, and a peak in F [d] at the larger end of the scale that corresponds
to the distances between points in different clusters. An ideal critical distance will
be halfway between these two peaks. Values smaller than this might break up the
clusters into several parts, and values larger than this could cause the clusters
to merge. For this reason we identify the critical distance by first identifying the
prominent peaks, and then choosing the critical distances typically at the midpoint
between the prominent peaks to approximate the minima in F [d].

Since there may be multiple minima in F [d], all of which may represent suitable
values for the critical distance, a parameter τ is used to control which value is
selected. We start with the smallest calculated critical distance, but if more than
τ clusters are identified, then the next larger critical distance is used. This process
repeats until the critical distance identifies τ or fewer clusters.

Consider the Branin1 model in Fig. 2d for example. The first peak occurs near
d ' 6. The first minimum occurs somewhere in the range 2 < d < 5. This minimum
is approximated by averaging dmin and the distance associated with the first peak:
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Figure 3. Finding prominent peaks. Only one prominent peak exists at d4 = 11 when ω = 2. The gray
region highlights the bins involved in the prominent peak calculation for the bin centered at d4 = 11. There
are prominent peaks at d2 = 7 and d4 = 11 when ω = 1. In this example p = 7, dmin = 2, dmax = 16, and
dwidth = 2.

dc ' 0+6
2 = 3. If the resulting number of clusters falls below the threshold, τ ,

then this distance is accepted as the critical distance. If the number of clusters
exceeds the threshold, then a distance between the first peak and the second peak
is calculated and tried as the clustering distance. In the Branin1 example the second
peak occurs at an inter-point distance d ' 10, hence the second critical distance
candidate is 6+10

2 = 8. If the number of clusters again exceeds the threshold when
dc = 8 then the next clustering distance is tried. This pattern is repeated until the
number of clusters falls below the threshold or a maximum number of clustering
distances is tried. The method is summarized below.

(1) Determine the set of prominent peak distances {qj | j ∈ {1, ..., J}} using ω,
where qj is the bin center of the jth prominent peak. Order the peaks from
shortest to longest in terms of inter-point distances. If the number of peaks
is zero (i.e., J = 0), reduce ω by one and repeat step 1 if ω 6= 0, else exit
unsuccessfully. We found that an initial value of ω = 3 works well for many
models.

(2) Cluster the concentrated points using the critical distance dc = (dmin +
q1)/2. If the number of clusters is less than or equal to τ then exit success-
fully, else go to step 3.

(3) Try clustering the concentrated points with dc = (qj + qj+1)/2 for each
element j ∈ {1, ..., J − 1}. If the number of clusters found is ever less than
τ then exit successfully, else reduce ω by one and go to step 1.

For the example in Fig. 3 the critical distance extracted is 2+11
2 = 6.5 if ω = 2. If

ω = 1 the first critical distance is 4.5, and the second, if needed, is 9.0.

4.4. Clustering

We use a single-linkage clustering method [21] to group the concentrated CC end
points into clusters, which typically correspond to a single region of attraction
(generally a feasible region). The method begins by assuming that each point is
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its own cluster. The two clusters that are the closest are then merged into a single
cluster if they are separated by a distance smaller than the critical distance. This
process is repeated until either all the points are in one cluster or the closest clusters
are further from each other than the critical distance.

4.5. Choosing Local Solver Launch Points

CC end points may be feasible or infeasible. If feasible they likely have various
values of the objective function, and if infeasible likely have various values of the
infeasibility measure. We must consider all of these factors in ranking points as
potential solver launch points. We use the following hierarchical system to rank
solution vectors in order of their promise as local solver launch points:

(1) All feasible solutions are more promising than infeasible solutions.
(2) If two solution vectors are feasible, the one with the lower objective function

value is more promising.
(3) If two solutions vectors are infeasible the one with the lowest maximum

constraint violation is more promising.

The most promising point in each cluster is selected and added to a short-list. The
short-list of launch points is ordered from most to least promising. The local solver
is launched from each of the points in the short-list, in order. The number of local
solver launches is equal to the number of clusters identified, and is therefore τ or
fewer, since τ limits the maximum number of clusters identified.

4.6. Complete Algorithm

Pseudocode for the complete multi-start with clustering (MS+C) algorithm follows:

(1) Initialize: select values for p, ω, and τ , and CC parameters α, β, and µ.
(2) Choose random points in the variable space via Latin Hypercube sampling.
(3) Launch CC from each of the random sample points.
(4) Calculate all of the inter-point distances among the CC end points.
(5) Construct the frequency distribution histogram F [d]:

a) Bin width is 1
p(dmax − dmin).

b) Nominal distance associated with each bin is

di = dmin + (i+
1

2
)dwidth, i ∈ {0, p− 1}.

c) Assign each inter-point distance to the appropriate histogram bin.
(6) Determine the set of prominent peak distances {qj | j ∈ {1, ..., J}}:

a) Find the histogram bins whose populations are greater than the popu-
lations in the preceding and following ω bins. These are the prominent
peaks.

b) Sort the nominal distances di associated with the prominent peaks
into order from smallest to largest, and label these q1 through qJ , in
order.

c) If the number of prominent peaks is zero (i.e., J = 0), reduce ω by
one and repeat step (6) if ω 6= 0, else exit unsuccessfully.

d) Set the critical distance at dc = (dmin + q1)/2, and set j = 1.
(7) Cluster the points using the critical distance dc.
(8) If the number of clusters is greater than τ then:

a) j ← j + 1.
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(a) Random points. (b) Concentrated points.

(c) Inter-point frequency distributions. (d) Clusters.

Figure 4. Rastrigin1 Case Study: (a) The initial locations of the 50 sample points. (b) The new locations
of the 50 points after concentration with CC. (c) Frequency distribution of the inter-point distances after
concentration. (d) Links connect points that are closer than the critical distance of 0.5945. 16 of the 20
feasible regions are identified correctly.

b) If j = J then exit unsuccessfully.
c) Reset the critical distance to dc = (qj + qj+1)/2. Go to step (7).

(9) Rank order the points in each cluster. Launch the local solver from the
most promising point in each cluster.

(10) Output: the best solution value found by any of the local solver launches.

5. Illustrated Experiments

This section illustrates the method using models that have constraints based on
variations of the Schwefel [18] and Rastrigin [17, 24] functions. The Latin hypercube
sampling, CC concentration, and clustering steps from Section 4 are performed on
each model with results as shown in Fig. 4 and Fig. 5. To focus on the performance
of the concentration and clustering method, the solver launch in Step (9) from
Section 4.6 is omitted. The parameter values are: p = 50, τ = 25, and ω = 3.
Parameter selection is discussed in greater detail in Section 6. The augmented CC
algorithm [22] is used for concentration with a maximum time limit of 0.05s per
run.
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(a) Random points. (b) Concentrated points.

(c) Inter-point frequency distributions. (d) Clusters.

Figure 5. Schwefel1 Case Study: (a) The initial locations of the 50 sample points. (b) The new locations
of the 50 points after concentration with CC. (c) Frequency distribution of the inter-point distances after
concentration. (d) Links connect points that are closer than the critical distance of 21.42. All 6 of the
feasible regions are identified.

5.1. Dense Feasible Regions: The Rastrigin1 Model

The Rastrigin1 model is as follows:

find x = {x1, x2} (9a)

s.t. g1(x) = x2
1 + x2

2 + 20− 20(cos 2πx1 + cos 2πx2) ≤ 0 (9b)

g2(x) = x2 − x3
1 ≤ 0 (9c)

−5 ≤ x1 ≤ 5 (9d)

−5 ≤ x2 ≤ 5. (9e)

The Rastrigin1 model has many more feasible regions than the Branin1 model,
and they are also closer together. This makes the task of finding all the feasible
regions more difficult because they are not as widely separated and there are fewer
sample points per feasible region. The Rastrigin1 model also has many infeasible
regions of attraction.

The initial sample of 50 points and the concentrated data are shown in Fig. 4a
and Fig. 4b, respectively. Several of the CC runs terminate near infeasible regions
of attraction. Fig. 4c illustrates the inter-point distance frequency distribution and
the prominent peaks. Note the smaller separation between the prominent peaks in
this distribution compared to the distribution for the Branin1 model, because the
clusters are closer together. The first critical distance, dc = 0.5945, is accepted.
Refer to Table 1 for further details.
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5.2. Irregular Feasible Regions: The Schwefel1 Model

The Schwefel1 model is as follows:

find x = {x1, x2} (10a)

s.t. g1(x) = x1 sin(
√
|x1|) + x2 sin(

√
|x2|) + 125 ≤ 0 (10b)

g2(x) = x2 −
1

16
x2

1 + 150 ≤ 0 (10c)

−150 ≤ x1 ≤ 150 (10d)

−150 ≤ x2 ≤ 150. (10e)

This model has 6 feasible regions that vary greatly in relative size, as well as two
regions of attraction near the boundaries of the search space at (120,−150) and
(−150, 120). The distances between the feasible regions also vary.

Fig. 5b shows the concentrated points. The large feasible region centered near
(125, 125) attracts points to five distinct locations, resulting in five different clus-
ters. The inter-point frequency distribution is illustrated in Fig. 5c. The prominent
peak with the greatest frequency is around d = 200. This is the approximate length
of the sides of a square with vertices located at the centers of the three largest feasi-
ble regions and the small one near (−60,−60). The large frequency around d = 200
is due to the many clustered points located near the square’s four vertices. The
first critical distance of 21.42 is accepted.

5.3. Discussion

Table 1 summarizes the results for the Branin1, Rastrigin1, and Schwefel1 test
cases. Clusters calculated is the number of clusters the single-linkage algorithm
found in the concentrated data sets. Feasible regions attracting exactly one cluster
is the number of feasible regions that were identified correctly by a single cluster.
Feasible regions attracting multiple clusters is the number of feasible regions that
were identified by two or more clusters. Feasible regions attracting no clusters is
the number of feasible regions that were not identified by any clusters. Finally,
Infeasible regions attracting at least one cluster represents the number of clusters
that do not identify a feasible region.

Our method correctly identified all three of the feasible regions in the Branin1
model, each by a single cluster. It identified 19 clusters for the Rastrigin1 model:
16 of the 20 feasible regions were correctly identified by a single cluster. 3 clusters
were located near infeasible regions of attraction, which is typical behavior for
local NLP solution methods. The Rastrigin1 model has many infeasible regions of
attraction.

All 6 of the feasible regions in the Schwefel1 model were identified, along with
2 infeasible regions of attraction. The largest feasible region was identified redun-
dantly by 5 different clusters. A larger critical distance that might have avoided the
redundant clusters may have amalgamated the cluster around the small feasible
region near (125,−10) into the larger clusters. This is less preferable.

The Branin1 and Rastrigin1 models illustrate easy and difficult cases, respec-
tively. The Branin1 model has a few well separated feasible regions that the con-
centration and clustering methods easily identify. In contrast, the feasible regions
of the Rastrigin1 model are numerous and dense because of the sinusoidal functions
in the constraint. The method placed clusters near 16 of the 20 feasible regions,
which is a good result for this difficult model: if used in a multistart algorithm for
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global optimization, 84% of the solver launches (16 of 19 identified clusters) would
likely lead to different feasible solutions. The Schwefel1 model is also relatively dif-
ficult, having feasible regions that vary in size and separation distance. All 6 of the
feasible regions are identified, though there would possibly be up to 4 redundant
solver launches in the largest feasible region.

6. Experimental Setup

6.1. Test Set

The models used in the experiments are taken from libraries 1 and 2 of the COn-
tinuous CONstraints - Updating the Technology (COCONUT) benchmark [20].
We have divided them into two sets based on the number of nonlinear constraints:
Problem Set I contains the 148 models with 10 to 1000 nonlinear constraints, and
Problem Set II contains the 75 models with more than 1000 nonlinear constraints.
Sixteen possible models were omitted because they caused the solver software
to return errors: argauss, argtrig, bratu2d, bratu2dt, bratu3d, camcge, carenary,
cbratu2d, dtoc6, ex8 3 13, ex8 3 14, ex6 6 1, grouping, oet7, pindyck, polak3.

The models are listed in Appendix A. To eliminate bias, the two problem sets
were further randomly subdivided into tuning and testing sets. The tuning subsets
(denoted with an A) were used to determine the maximum time parameter for the
CC runs in the algorithm, and consist of approximately 20% of the models. The
testing subsets (denoted with a B) were used to test the algorithm. The statistics
of the selected models are shown in Table 2.

The initial points provided with some of the models were ignored. This makes
the problem set more difficult for the optimization algorithms because the provided
points are often very close to optimal solutions. Additionally, unbounded variables
(upper, lower, or both) were artificially bounded with the value 104. This is the
same value Lasdon and Plummer chose to test the MSNLP solver [13].

6.2. Hardware

The experiments were run on a machine with an Intel R©CoreTM2 Duo Processor
E6600 (4M Cache, 2.40 GHz, 1066 MHz FSB) and 3GB of memory.

6.3. Software

The operating system was Linux Fedora Core 6. The compiler used was gcc
4.1.2. The C++ source code is available online at https://github.com/LSmith4/
LaunchPointGenerator. All models were interpreted using A Modeling Language
for Mathematical Programming (AMPL) [8].

The local solver used in our implementation is Ipopt, an open source interior-
point solver for large-scale optimization [26]. Parameter settings for Ipopt were:

• honor original bounds = yes. Project final point back inside original bounds.

• bound relax factor = 0. Set to 0 to disable bounds relaxation.

• max iter = 9999999. Set high so that maximum number of iterations is not a
restriction.

• constr viol tol = 10−6. This is the absolute tolerance by which a constraint can
be violated and yet still be considered satisfied. In order to declare optimality,
Ipopt requires that the max-norm of the (unscaled) constraint violation is less
than this threshold.
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• max cpu time. For Problem Set I this is 60 seconds, and for Problem Set II it
is 600 seconds.

All other parameters were left at their default settings.

6.4. Parameter Settings

A basic parameter for all nonlinear programming algorithms is the feasibility tol-
erance. Feasibility was measured as the maximum constraint violation, as shown in
Eqns. 4 and 5. A feasible solution vector must not violate any constraint by more
than 10−6.

The parameters controlling the algorithm are (i) p, the number of initial CC start
points, (ii) τ , the maximum number of local solver launches, (iii) ω, the number of
preceding and following bins in the inter-point frequency distribution that is used
to identify a prominent peak, (iv) the maximum time allowed for a single CC run,
and (v) the maximum time allowed for a single run of the local solver.
p is 25 for Problem Set I and 50 for Problem Set II, values that work relatively

well in our experience though there is no perfect setting that works well for all
models. Since 1

2p(p − 1) inter-point distances are calculated in determining the
critical distance, we do not want p to be larger than necessary. We found that
relatively small values of p work well for many models, even large models, but if
the solution fails, it can always be run again with a different random seed if time
is available. This is similar to determining the number of particles used for particle
swarm optimization or the population size for a genetic algorithm.
τ was arbitrarily set to 25 for all algorithms. This is a reasonable choice for large

NLPs. Different values for this parameter may change the relative performance of
the algorithms compared in the experiments. The default setting for the number
of launch points for Knitro’s multistart procedure is min{200, 10n}, where n is the
number of variables [27]. Given the average number of variables in the problem sets
(listed in Table 2), the default setting for Knitro would run the solver 200 times
for many models in Problem Set IB and all the problems in Problem Set IIB.
ω was set to 3, which worked well in our preliminary experiments.
The algorithm in Section 4.6 (with the exception of the local solver launches) was

run on the tuning sets to choose the maximum time limit for a single CC run. The
results are listed in Table 3. The independent variable in the experiments is the
maximum time limit for a single CC run, ranging from 0.05s to 0.8s for Problem
Set IA, and from 0.25s to 4s for Problem Set IIA. The table shows:

• Median violation: The violation (Eqns. 4 and 5) of the most promising launch
point found by the clustering routine for a particular model. Median violation is
a measure of how well the algorithm performed in terms of finding points close
to a feasible region over the whole set of test problems.

• Average clusters: The average number of launch points calculated.

• Average run time: The average run time of the clustering method, including
the time required to initially sample the space.

• Feasible solutions: The percentage of models for which feasible solutions were
found by the clustering routine without running a local solver.

Using the tuning statistics, we set the maximum time for a single CC run to 0.05s
for Problem Set I and to 1s for Problem Set II. The data in Table 3 indicate that
longer times yield only relatively small and costly decreases in the median violation,
and only a slight if any increase in the percentage of feasible solutions found by
the CC method. The ratio of CC run time to an estimate of the run time for the
local solver was also considered.
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Note that there is no expectation that individual CC runs will reach feasibility.
CC is only expected to find a point that is close to feasibility: the local solver is
expected to proceed to feasibility and optimality. However CC finds a feasible point
for a good fraction of the small models in Problem Set IA. It finds far fewer feasible
solutions in Problem Set IIA because the models are on average much larger and
more difficult than those in Problem Set IA.

The local solver was allowed 60s per launch for the smaller problems in set IB,
and 600s for the larger problems in set IIB. The 600s time limit is likely overly
restrictive for the larger models, but is needed for practical reasons to allow us to
compare a number of alternative algorithms over a large number of models. Since
the variations in results are mostly due to the solver launch points chosen, this
restriction should not materially affect our conclusions.

The variant of CC used is Basic with Augmented feasibility vectors and a re-
currence period of 3. The other CC parameters were set to the following values:
α = 10−6, β = 10−3, and µ = 100.

6.5. Performance Metrics

Our experiments compare a variety of algorithms to determine which one most
frequently finds the best solution the quickest given the same number of local
solver launches. Note that this is not the same as imposing an upper time limit. For
example, our algorithm may determine that a certain model has 3 distinct feasible
regions and hence will launch the local solver 3 times and stop. In contrast, a naive
multi-start algorithm will use all 25 local solver launches, and hence around 8 times
as much computation time. For this reason we expect to see that our algorithm
uses less time on average, especially for the larger models, and hope to see that it
reaches a better solution more frequently due to more intelligent exploration of the
variable space prior to launching the local solver.

The results are compared in terms of feasibility, optimality, and time, and are
presented as performance profiles (see [6]). The success rate for the performance
profiles in Fig. 6 and Fig. 7 is the percentage of models for which a particular
algorithm found the best feasible solution, i.e., the feasible solution vector with the
smallest objective function value. A tolerance of 5% is used so that solutions that
are almost the same are both considered successes. For instance, if three algorithms
found feasible solutions to a minimization problem with objective function values
of 1.00, 1.03, and 1.74, then both 1.00 and 1.03 are considered successes, while
1.74 is not. The ratio to best time compares the relative times the algorithms took
to find the best solutions. This type of performance profile measures how fast the
algorithms find good solutions.

6.6. Algorithms Compared

Four different multistart algorithms are compared in this paper:

• Knitro: Knitro in multistart mode. Knitro is a state-of-the-art commercial solver
that uses interior point and active-set methods for solving continuous, nonlinear
optimization problems [27]. We used Knitro 6.0, which offers a multistart proce-
dure that essentially restarts the Knitro solver from different initial points and
returns the best solution found. All parameters were set at their default values,
except for the following:
- ms enable = 1. Multistart is enabled.
- ms maxsolves = 25. The maximum number of solver launches in the multi-

start algorithm.
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- feastol = 0.0. The relative feasibility tolerance, set to 0 so that Knitro will
only declare optimality when an absolute feasibility tolerance is satisfied.

- feastol abs = 10−6. The absolute feasibility tolerance.
- opttol = 0.0. The relative optimality tolerance.
- opttol abs = 10−6. The absolute optimality tolerance.
- maxit = 9999999. The maximun number of iterations per launch. Set high so

that the number of launches is not a restriction.
- honorbnds = 1. Honor variable bounds.
- outmode = 0. Direct output to standard out.
- outlev = 1. Printing output level.
- maxtime cpu. Maximum local solver CPU time is 60 seconds for Problem Set

I and 600 seconds for Problem Set II.
- ms maxtime cpu. Maximum total multistart time is 1,500 seconds for Prob-

lem Set I and 15,000 seconds for Problem Set II.

• MS: Basic Multistart with Ipopt. An initial random sample of 25 local solver
launch points is generated by Latin Hypercube sampling. These points are then
ordered by increasing value of the maximum violation, and the local solver is
launched from each point in order. The local solver is Ipopt, with parameter
settings as described earlier. The best solution found after the 25 local solver
launches is returned.

• MS+CC: Multistart with Constraint Consensus and Ipopt. An initial random
sample of p = 25 CC launch points is generated by Latin Hypercube sampling.
Basic CC with Augmented feasibility vectors (with recurrence period of 3) is run
from each of the initial points. The CC end points are then ordered by increasing
value of the maximum violation, and the local solver is launched from each point
in order. The local solver is Ipopt with parameter settings as described earlier.
The best solution found after the 25 local solver launches is returned.

• MS+C: Multistart with clustering using Constraint Consensus and Ipopt. This
is the algorithm given in Section 4.6. p = 25 for Problem Set I and p = 50 for
Problem Set II. The maximum number of solver launches is τ = 25. A single
most promising point is identified for each cluster, and these are then ordered
from most to least promising using the rules defined in Section 4.5. The local
solver (Ipopt with parameter settings as described earlier) is launched from the
first τ points in the list (or from the number of points in the list if less than τ).

When possible, the MS, MS+CC, and MS+C algorithms used the same initial
start points, but Knitro used its own internal method to generate initial start
points.

7. Numerical Experiments

The goal of this research is improved methods for multistart global optimization
of large scale nonlinear programs. For this reason, the results for Problem Set II
are of main interest. At the same time, the algorithm should not perform poorly
on smaller models, hence the results for Problem Set I are also relevant. Results
over all models are summarized in Table 4. The performance profiles in Figs. 6-8
concentrate on the results for time ratios under 10: longer times are much less
preferred.
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Figure 6. Performance Profile for Small Problems (Set IB)

7.1. Results for Small Models

For Problem Set IB, the best solutions returned by the three algorithms that used
Ipopt as the local solver (MS, MS+CC, MS+C) are relatively similar in value.
The performance profile in Fig. 6 shows that MS+C dominates all of the other
methods over most time ratios. MS+C finds the best solution the fastest for 51%
of the models and is also relatively robust, finding the best solution for 88% of the
models.

Table 4 shows that both MS+CC and MS+C result in more feasible and best
solutions than MS, which demonstrates the value of using CC prior to launching
the local solver.

MS+C is the fastest on average. MS+CC is the most robust, successfully solving
93% of the models.

7.2. Results for Large Models

The large models in Problem Set IIB are much more difficult to solve because
they are larger in scale and have many more nonlinear constraints. As for the
small models, the objective values returned by the three algorithms are relatively
similar. The performance profile shown in Fig. 7 shows that the MS+C algorithm
dominates the other methods over all time ratios under 10. It finds the best solution
the fastest for 37% of the models, and is the most robust, finding the best solution
for 56% of the models tested.

A much smaller fraction of the large models are solved to optimality than for
the small models, mostly because of the time restriction on the local solvers, as
discussed earlier. Not being able to find a feasible point in the given maximum run
time was the biggest challenge. Convergence of the local solver was also an issue.
There are approximately 30 models in the large set for which finding feasible points
is extremely difficult (perhaps impossible).

Table 4 shows that the numbers of feasible and best solutions for MS+C are
slightly better for MS+CC and MS, but are obtained in much less time. MS+C uses
41% less time than MS+CC, its nearest competitor, while returning 4 additional
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Figure 7. Performance Profile for Large Problems (Set IIB)

best solutions. MS+C is the fastest and most successful for large models.
Statistics over the complete set of 75 large models in Problem Set II were also

collected. Collectively, the three (Ipopt-based) algorithms found feasible solutions
for 46 of those models (61%). For those 46 successful models:

• The initial incumbent solution found by MS+CC was successful for 52% of the
46 models, while the initial incumbent found by MS+C was successful for 63%.
The better exploration afforded by 50 vs. 25 CC runs pays off.

• The average time to the initial incumbent for MS+CC is 228s vs. 335s for MS+C.
The extra initial exploration takes some time.

• MS+CC launched the local solver an average of 25 times, while MS+C launched
the local solver an average of just 9 times. This demonstrates the advantage of
the clustering method in eliminating redundant solver launches.

• The average times used by each individual local solver launch were close to
identical for MS+CC and MS+C at 180s, indicating that both methods put the
solver launch points at approximately the same distances from the local optimum
point. In addition, the local solver failed an average of 7.2 times per model for
MS+CC vs. an average of 2.6 times per model for MS+C, which is about the
same fraction of failures per launch. These facts again underscore that the MS+C
advantage derives mainly from eliminating redundant local solver launches.

7.3. Comparison to Knitro

Knitro was run on Problem Set IIB so that our methods could be compared directly
to a complete commercial multistart algorithm. The parameters for Knitro were
set so that the stopping conditions of the local solver were as similar as possible
to those used by Ipopt and hence a fair comparison can be made. Our intention is
not to compare the local solvers, but the multistart methods they use for global
optimization (comparisons of Knitro and Ipopt as local solvers are found at [16]
and in Section 5.1.3 of [25]).

Initial results data (not included) indicate that Knitro outperforms MS over
Problem Set IIB. Both algorithms found feasible solutions to 35 (59%) of the
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Figure 8. Performance Profile Including Knitro for Large Problems (Set IIB)

models. Knitro found the best objective function value for 31 of the models (vs.
24 for MS). Knitro is faster at finding the best solutions, however the total times
indicate that Knitro is also slower when it does not find a solution. The average
time per model for Knitro was 8859.9s compared to 6867.5s for MS. Overall, Knitro
outperformed MS on Problem Set IIB.

Fig. 8 compares the Knitro and MS+C algorithms. The MS+C algorithm out-
performs Knitro for all ratios to best time up to 10. Knitro found feasible solutions
for 35 models (vs. 38 for MS+C), and the best solution for 31 models (vs. 28 for
MS+C). The biggest difference between the algorithms is the average time used
per model: MS+C used only 3737.95s, 58% less time than Knitro.

These results show that the MS+C algorithm compares well against a state of the
art commercial multistart method. Solution times are much smaller, and feasible
solutions are found for more models. MS+C found slightly fewer best solutions:
this is the focus of ongoing research on how to use CC to move towards optimality
as well as feasibility.

7.4. Discussion

An inherent problem with multistart methods for global optimization is knowing
when to stop launching the local solver: it’s always possible that a better solution
will be returned by the next local solver launch. A major advantage of the MS+C
algorithm is that it will stop when it thinks that the local solver has been launched
once near each feasible region. That can also be a disadvantage since it is possible
that a local solver launch from some other part of the same feasible region will
produce a better solution, especially if the feasible region is quite large. However,
the performance profiles in Fig. 6 and Fig. 7 show that MS+C is both faster and
more robust than the other algorithms examined. The variable space exploration
conducted by the MS+C method is clearly effective in producing recommendations
for a small and efficient set of local solver launch points.

Table 3 shows that the concentration and clustering method identified an average
of 14-16 clusters for the small models in tuning set IA and 10-14 clusters for large
models in tuning set IIA. Assuming that testing sets IB and IIB are similar to their
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corresponding tuning sets, this shows that MS+C is likely to make far fewer than
25 solver launches on average, which accounts for much of its speed advantage. In
fact, the MS+C algorithm averaged 14.1 and 11.9 solver launches for problem sets
IB and IIB, respectively, while the MS, and MS+CC algorithms had no option but
to use the full 25 solver launches for each problem. The relatively large numbers
of clusters, on average, for both large and small models highlights the opportunity
for efficiency improvement by avoiding redundant solver launches near the same
regions of attraction. This is exactly the opportunity that is exploited by MS+C.

As shown in Table 4, MS+C does not do quite as well as MS+CC in terms of the
number of feasible solutions and best solutions for the small models in Problem
Set IB. This is not unexpected, given our experimental setup for Problem Set IB
which specifies p = τ = 25. This allows MS+CC to launch the local solver from
all 25 points, where MS+C launches from only a subset of the same 25 points (i.e.
only the most promising point for each cluster found). In a few cases, the most
promising launch point for a cluster is not actually the best launch point for that
cluster. However, the results also show that it frequently is the best choice. For
better exploration of the variable space prior to a local solver launch we would
normally set p to a much larger value than τ . The improved effect when p = 50
and τ = 25 is seen in the results for the large models in Problem Set IIB.

The importance of using CC to improve the initial point prior to the local solver
launch is demonstrated in Table 4: the MS+CC and MS+C algorithms both find
the best solution more often and faster than the simple MS variant. CC comprises
just 1.4% of the total solution time for MS+CC in Problem Set IB, and 0.4% of
the total solution time in Problem Set IIB. Similarly, the CC plus clustering time
comprises only a small fraction of the total solution time for the MS+C algorithm:
just 1.6% for Problem Set IB and 1.5% for Problem Set IIB. These relatively small
investments in exploration of the variable space prior to launching the local solver
pay big dividends in terms of reduced total solution time and improved solution
success.

Our major conclusion relates to the results for the large models in Problem Set
IIB that are of main interest. As shown in Table 4, MS+C is not only the fastest by a
significant margin, using 41% less time than the next fastest method on average, but
it also solves the most models successfully. The performance profile in Fig. 8 shows
that MS+C is a promising alternative to the Knitro multistart algorithm, which is
representative of the state of current commercial solvers available. We thus conclude
that the algorithm developed in this paper provides valuable improvements in both
the effectiveness and efficiency of multistart methods for global optimization.

A variety of additional experiments further supporting these conclusions are
reported by Smith [23].

8. Conclusions and Future Research

This paper presents a method for efficiently and effectively computing local solver
launch points that are typically near all of the feasible regions in a constrained
NLP, even when there are multiple feasible regions. This is done quickly and inex-
pensively by using a combination of Constraint Consensus and clustering, where
an innovative way of determining the critical distance for the clustering algorithm
is developed. The expensive local solver is then launched just once for each cluster
to avoid redundant launches.

Extensive empirical results show that the MS+C algorithm typically finds the
best reported optimum in significantly less time than competing algorithms. If fur-
ther experiments were run with a total runtime limit imposed, this would translate
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into greater relative success for the MS+C algorithm.
Future research will develop the algorithm further. Some areas for exploration

include:

• Detecting the size of feasible regions. This will help to determine whether more
than one launch point should be used for each feasible region.

• Determining whether there are multiple optima within a single feasible region.
This would again call for more than one local solver launch in a single feasible
region.

• Search within clusters. Progress on the two preceding points will support work
on how to quickly search within clusters to determine whether we can (i) find
a point that is better than the most promising CC end point, or (ii) identify
multiple very promising local solver launch points that are likely to lead to
different solutions.

• Detecting infeasible regions of attraction. It would be helpful if it can be deter-
mined that a particular cluster is unlikely to provide a feasible solution if the
local solver is launched. This will increase efficiency by allowing the local solver
launch to be avoided.

• Dealing with a unimodal inter-point distance frequency distribution. This may
be caused by a single feasible region, or it could have some other cause. It is
difficult to set the critical distance in this case.

• Setting the parameter values. Although 25-50 sample points and 25 local solver
launches worked relatively well for the problem sets examined in the paper, they
may not work well for all models. Algorithms for automatic adjustment of these
and other parameters could be very useful.

Two promising ideas for extensions to the existing algorithm include:

• Adding an aspiration level constraint to the model and updating its value as bet-
ter incumbent solutions are found. An aspiration constraint specifies a minimum
acceptable value of the objective function. This will help direct the CC algorithm
towards feasible solutions that have better values of the objective function.

• Using the start, intermediate, and end points of the CC runs to determine the
basins of attraction for identified clusters so that new random CC start points
can be placed in unexplored regions of the variable space. This will provide better
coverage of the search space.
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Table 1. Clustering Results

Model: Branin1 Rastrigin1 Schwefel1

dmin: 0 0 0
dmax: 17.1 9.15 389

dwidth: 0.341 0.183 7.79
Peaks found: 4 7 6

Critical distances tried: 1 1 1
Critical distance: 3.16 0.595 21.4

Clusters calculated: 3 19 12

Feasible regions attracting exactly one cluster: 3 16 5
Feasible regions attracting multiple clusters: 0 0 1

Feasible regions attracting no clusters: 0 4 0
Infeasible regions attracting at least one cluster: 0 3 2

Actual number of feasible regions: 3 20 6
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Table 2. Model Statistics

Problem Set (# Models) IA (22) IB (126)

Avg. Min. Max. Avg. Min. Max.

Variables 259.0 3 2505 536.5 2 8997
Nonlinear Constraints 120.3 10 800 232.9 10 1000
Total Constraints 216.1 10 2495 481.1 10 7000
Nonzeros in Jacobian 1980.8 30 11425 3067.4 39 36185

Problem Set (# Models) IIA (16) IIB (59)

Avg. Min. Max. Avg. Min. Max.

Variables 6055.7 200 11215 6282.5 3 20008
Nonlinear Constraints 4323.5 1024 10000 3897.5 1000 13798
Total Constraints 5083.3 1024 11192 5615.5 1000 14000
Nonzeros in Jacobian 33001.3 8000 128004 31567.8 2998 128004
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Table 3. Clustering Times

Tuning Problem Set IA (22 models)

Max CC Time (s) 0.05 0.1 0.2 0.4 0.8

Median Violation 15.15 1.07 0.14 0.15 0.11
Avg. Clusters 16.0 16.0 14.6 15.3 14.5
Avg. Run Time (s) 1.30 2.36 4.42 8.52 16.59
Feasible Solutions (%) 40.9 40.9 45.5 45.5 45.5

Tuning Problem Set IIA (16 models)

Max CC Time (s) 0.25 0.5 1 2 4

Median Violation 4260.0 1310.0 912.8 455.9 345.5
Avg. Clusters 10.3 14.1 12.5 11.1 11.4
Avg. Run Time (s) 26.7 31.8 52.9 100.8 188.0
Feasible Solutions (%) 0.0 6.3 12.5 12.5 12.5
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Table 4. Test Statistics

Problem Set IB (126 models)

Algorithm MS MS+CC MS+C

Feasible Solutions 113 122 120
Best Solutions 105 118 111
Avg. Time (s) 115.6 106.6 94.4

Problem Set IIB (59 models)

Algorithm MS MS+CC MS+C

Feasible Solutions 35 38 38
Best Solutions 28 29 33
Avg. Time (s) 6867.5 6385.4 3737.9
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Table 5. Models (Testing subsets IB and IIB shown in bold font.)

Problem Set I
airport dtoc1nd ex8 3 2 hs085 orthrega
britgas eg3 ex8 3 3 hs099 orthrege
camshape100 eigena2 ex8 3 4 hs108 otpop
camshape200 eigenaco ex8 3 5 hs116 pinene25
camshape400 eigenb2 ex8 3 6 hs99exp pinene50
camshape800 eigenbco ex8 3 7 hvycrash polygon25
catena eigenc2 ex8 3 8 integreq popdynm25
catmix100 eigencco ex8 3 9 kissing popdynm50
catmix200 eigmaxa ex8 4 1 korcge ramsey
catmix400 eigmaxb ex8 4 2 lakes reading3
chakra eigmaxc ex8 4 3 launch robot100
chandheq eigmina ex8 4 4 lnts100 robot50
chemrctb eigminb ex8 4 5 lnts200 rocket100
chenery eigminc ex8 4 7 lnts50 s332
circle elec100 ex8 4 8 madsschj sawpath
clnlbeam elec200 flowchan100 ed makela3 semicon1
core1 elec25 flowchan100 manne semicon2
core2 elec50 flowchan200 methanol100 sinrosnb
corkscrw ex14 1 6 flowchan50 methanol50 smmpsf
coshfun ex14 1 7 gasoil100 minc44 ssebnln
cresc100 ex5 2 5 gasoil50 minmaxbd ssnlbeam
cresc50 ex5 3 3 glider50 mistake swopf
disc2 ex7 2 1 gpp optcdeg2 twirism1
discs ex7 3 5 hadamard optcdeg3 vanderm1
dittert ex7 3 6 haifam optcntrl vanderm2
dixchlnv ex8 2 1 haldmads optctrl3 vanderm3
dnieper ex8 3 10 hanging optctrl6 water
dtoc1na ex8 3 11 hatfldg optmass zigzag
dtoc1nb ex8 3 12 himmel16 optprloc
dtoc1nc ex8 3 1 himmelbk orthrds2

Problem Set II
artif broydn3d ex8 2 5 nuffield popdynm200
bdvalue broydnbd flowchan400 nuffield2 porous1
brainpc0 catmix800 gasoil200 nuffield2 trap porous2
brainpc1 cbratu3d gasoil400 oet2 reading1
brainpc2 chemrcta gausselm orthrdm2 robot200
brainpc3 corkscrw glider100 orthregc robot400
brainpc4 cresc132 glider200 orthregd rocket200
brainpc5 drcav1lq glider400 orthrgdm rocket400
brainpc6 drcav2lq lnts400 orthrgds semicon1
brainpc7 drcav3lq methanol200 pinene100 semicon2
brainpc8 dtoc2 methanol400 pinene200 sreadin3
brainpc9 dtoc4 minperm polygon100 svanberg
bratu2d dtoc5 msqrta polygon50 trainf
bratu2dt dtoc6 msqrtb polygon75 trainh
bratu3d ex8 2 2 ngone popdynm100 ubh5
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List of figure captions:

(1) Basin visualization via CC for the Branin1 model: (a) CC start-end pairs
for 50 random start points. (b) CC start-end pairs for 1500 random start
points.

(2) Concentration and clustering: (a) Fifty initial points chosen by Latin hy-
percube sampling. The gray areas represent feasible regions for the Branin1
model. (b) The initial inter-point distance frequency distribution. (c) The
CC end points are concentrated near the feasible regions. (d) The fre-
quency distribution of the inter-point distances for the concentrated points.
The prominent peaks are calculated and used to determine the critical dis-
tances. (e) The concentrated final points are clustered using a single-linkage
method. Three clusters are discovered. (f) The most promising points from
each cluster are used as launch points for a local solver.

(3) Finding prominent peaks. Only one prominent peak exists at d4 = 11 when
ω = 2. The gray region highlights the bins involved in the prominent peak
calculation for the bin centered at d4 = 11. There are prominent peaks
at d2 = 7 and d4 = 11 when ω = 1. In this example p = 7, dmin = 2,
dmax = 16, and dwidth = 2.

(4) Rastrigin1 Case Study: (a) The initial locations of the 50 sample points.
(b) The new locations of the 50 points after concentration with CC. (c)
Frequency distribution of the inter-point distances after concentration. (d)
Links connect points that are closer than the critical distance of 0.5945. 16
of the 20 feasible regions are identified correctly.

(5) Schwefel1 Case Study: (a) The initial locations of the 50 sample points.
(b) The new locations of the 50 points after concentration with CC. (c)
Frequency distribution of the inter-point distances after concentration. (d)
Links connect points that are closer than the critical distance of 21.42. All
6 of the feasible regions are identified.

(6) Performance Profile for Small Problems (Set IB).
(7) Performance Profile for Large Problems (Set IIB).
(8) Performance Profile Including Knitro for Large Problems (Set IIB).

Appendix A. Models

Table 5 lists the names of all the COCONUT models used in the numerical exper-
iments.


