
Recent Advances in Mixed-
Integer Linear Programming
at Carleton University

John W. Chinneck
Systems and Computer Engineering
Carleton University
Ottawa, Canada

Outline

1. Introduction
2. Node selection for faster optimality
◦ Important common patterns

3. Active constraints branching variable
selection

4. Branching to force change
5. General disjunctions
6. Conclusions

Chinneck: Recent Advances in MILP 2

INTRODUCTION

Chinneck: Recent Advances in MILP 3

Themes

Relationship between MILP-feasibility and
MILP-optimality
Seeking MILP-feasibility quickly
Focus on candidate variables
◦ Integer/binary variables that do not have

integer/binary values in LP relaxation solution

Branching to force change in the candidate
variables

4Chinneck: Recent Advances in MILP

Assumptions
Branch and bound method for minimization
◦ Focus on branching
◦ Branching always needed, even in conjunction with

cutting, local exploration, root node heuristics, etc.
Simplex LP solver
◦ Usual MILP choice, for fast restart at child nodes
Measuring solution speed:
◦ Time: best
◦ Simplex iterations: good proxy for time

Non-simplex time must be minimal
Best choice for multi-core machines where time measurements
are not repeatable

◦ Node count: often poor proxy for time

Chinneck: Recent Advances in MILP 5

NODE SELECTION FOR
FASTER OPTIMALITY

Interesting patterns...

Chinneck: Recent Advances in MILP 6

Node selection
Depth-first
◦ Choose child of last solved node
◦ Big advantage: child node almost identical to

parent. Hot start speeds LP solutions!
Best bound
◦ Choose node having best bounding function value

anywhere on tree
Usually high in the tree

Best estimate
◦ Rate node’s progress toward integer feasibility vs.

degradation in objective function value
Others...

Chinneck: Recent Advances in MILP 7

Triggering backtrack/jumpback

Assuming depth-first dive as default
behaviour:
◦ What conditions trigger backtrack?
◦ Which node should be selected?

Aspiration level trigger:
◦ Trigger backtrack when node bound is worse

than pre-selected aspiration level

Chinneck: Recent Advances in MILP 8

Pattern:
Optimality, feasibility, and depth

Chinneck: Recent Advances in MILP 9

Optimum is shallowest integer-
feasible node in about half of all
cases.
Close to shallowest in many
other cases.
Why? Fewest changes from
optimistic root node.

Optimality, feasibility, and depth

Lesson
Node selection chooses the most
promising node
Shallowest integer-feasible descendent
most likely to give best objective value
Ergo: fastest integer-feasibility important
for optimality

Chinneck: Recent Advances in MILP 10

Pattern:
Depth and objective value

Chinneck: Recent Advances in MILP 11

Nodes at same depth as optimum tend to
have bounding function values that are
similar to optimum objective value.

Bounds worsen with depth.

Pattern:
Candidates decrease with depth

Chinneck: Recent Advances in MILP 12

Typical dive pattern, but not guaranteed.

Integer-feasible when there are 0
candidate variables.

Corollary: due to tree fan-out, more
nodes have few candidates (deep in tree)
than have many candidates (high in tree).

Idea:
Aspiration level by linear extrapolation

Chinneck: Recent Advances in MILP 13

2. Estimate optimum obj value using
depth information
3. Set an aspiration value using
estimated optimum objective value

1. Predict optimum
depth by extrapolating
number of candidates

LEXA method

Pattern:
Objective value vs. candidates

Chinneck: Recent Advances in MILP 14

Zmin(c):
smallest
bounding
function value
given c
candidates.

Extrapolate
optimum
value using
Zmin(c) over a
range of c.

Set aspiration
level.

Modified best projection
Two “anchors”:
◦ root and node with fewest candidates
For node selection (MOBP):
◦ Zbp(i) = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)

Zbp(i): best projection of Z at node i
Z0, C0: bounding value, candidates at root node
Zi, Ci: bounding value, candidates at node i
Cmin: minimum candidate variables at any node

For setting aspiration level (MPAS):
◦ Find min(Zbp(i)) over all active nodes
◦ Backtrack if Zi > min(Zbp(i))
Does not need incumbent like original does

Chinneck: Recent Advances in MILP 15

Pattern:
Common distributions

Chinneck: Recent Advances in MILP 16

Distribution of Zi Distribution of number of
candidate variables

Both distributions often Normal-like

Distribution node selection (DIST)

Balance pursuit of feasibility and optimality
◦ Smaller Zi and Ci both desirable
◦ Zi larger where Ci is smaller, and vice versa

Ranges quite different: how to balance?
◦ Normalize ranges of Zi and Ci assuming

independent normal probability distributions
◦ Choose node n = arg mini P(Z ≤ Zi)×P(C ≤ Ci)

Chinneck: Recent Advances in MILP 17

Idea:
Active node search threshold (ANST)

Advanced node selection can take a lot of
time
Switch to simple depth-first node selection
if current node selection method is taking
too much time

Chinneck: Recent Advances in MILP 18

Experiments with GLPK 4.9

Chinneck: Recent Advances in MILP 19

GLPK
default

Node sel: distribution
Triggering: mod. best proj. aspiration
Active node search threshold

Node sel: mod. best proj.
Triggering: mod. best proj. aspiration
Active node search threshold

GLPK default with
ordinary best-projection

Lessons learned

MILP-feasibility (candidates) and
optimality are linked
Patterns relating them can be exploited
Reaching first integer-feasible solution
quickly helps to reach optimality quickly

Chinneck: Recent Advances in MILP 20

ACTIVE CONSTRAINTS
BRANCHING VARIABLE
SELECTION

Goal: reaching first integer-feasible solution quickly

Chinneck: Recent Advances in MILP 21

Is branching variable selection important?

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)

Chinneck: Recent Advances in MILP 22

Chinneck: Recent Advances in MILP 23

y

x

LP relaxation
before
branching

Branch on x Branch on y

Feasible
Region

Traditional: branch to impact
objective function value

New: branch to impact
active constraints in current
LP-relaxation

Try to make the child LP-
relaxations as different as
possible

Selecting the branching variable
Calculate a weight Wik for each candidate i in
active constraint k:
A: Wik=1.
◦ Is candidate variable present in the active constraint?
M: Wik = 1/(no. candidate variables)
◦ Like A, but relative impact of a constraint normalized by number of

candidate variables it contains
O: Wik = |coeffi|/(no. of integer variables)
◦ size of coefficient affects weight of varb in constraint
A, O, M: choose k with largest ∑iWik
HM, HO, etc.: choose k with largest Wik
Many other methods….

Chinneck: Recent Advances in MILP 24

Experiment 1: Cplex heuristics off

Chinneck: Recent Advances in MILP 25

Usually a better optimality
gap at first integer-feasible
solution (53-78% of models).

Experiment 2: Cplex heuristics on

Chinneck: Recent Advances in MILP 26

Only for models not solved at root
node.
Usually a smaller optimality gap at
first integer-feasible solution

Lessons learned

It’s important to impact the active
constraints
◦ Forces many candidates to change values

simultaneously
◦ Forces child node solutions to be quite

different from each other and from parent

Chinneck: Recent Advances in MILP 27

BRANCHING TO FORCE
CHANGE

Goal: reaching first integer-feasible solution quickly

Chinneck: Recent Advances in MILP 28

Question
Should you branch so child node has largest or
smallest probability of a feasible solution?
Insight from multiple choice constraints
◦ x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

Branch down: xi can take real values
Branch up: all xi forced to integer values

◦ E.g.: x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)
◦ Branching on x1:

Branch down: (0, 0.333, 0.333, 0.333) or many others
Branch up: (1, 0, 0, 0) is only solution, and all integer.

Chinneck: Recent Advances in MILP 29

A new principle

Goal: zero candidates (integer feasibility)
Observations:
◦ Often: each branching forces roughly 1 candidate

variable to integrality
◦ Desirable: force as many candidates as possible

to integrality at each branch

Branch to force change in as many candidate
variables as possible
◦ Hope that many will take integer values

Chinneck: Recent Advances in MILP 30

Probability-based branching

Counting solutions (Pesant and Quimper 2008)
l ≤ cx ≤ u : l, c, u are integer values, x integer
Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0

Value of x2 Range for x1 Soln count Soln density
x2=0 [0,10] 11 11/18 = 0.61
x2=1 [0,5] 6 6/18 = 0.33
x2=2 [0] 1 1/18 = 0.06
Total solutions 18
Choose x2 =0 for max prob of satisfaction
Choose x2=2 for min prob of satisfaction
Which is best?

Chinneck: Recent Advances in MILP 31

New: Generalization

Assume:
All variables bounded, real-valued
Uniform distribution within range

Result:
linear combination of variables yields
normal distribution for function value
Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5
has mean 25, variance 110.83
Plot.... Look at g(x) ≤ 12

Chinneck: Recent Advances in MILP 32

g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5

Chinneck: Recent Advances in MILP 33

Probability density plot
• Cumulative prob of satisfying function in blue

P[g(x)≤12] =
0.1085

Chinneck: Recent Advances in MILP 34

• Separate distributions for
DOWN and UP branches
due to changed variable
ranges

• Calculate cumulative
probability of satisfying
constraint in each direction

Example:
• Branch on x1=1.5
• Down: x1 range [0,1], p=0.23
• Up: x1 range [2,5], p=0.05

To use for branching:

New: handling equality constraints

Chinneck: Recent Advances in MILP 35

g(x) = 3x1 + 2x2 + 5x3 = 12 for 0 ≤ x ≤ 5

P[g(x)≤12]=0.1085 P[g(x)≥12]=0.8915

Equality “probability” =
(smaller cum. prob)
(larger cum. prob)

0.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in
the distribution, hence larger chance
of satisfying the equality

New branching direction methods

Given the branching variable:

Choose direction based on cum. prob. in any
active constraint branching variable is in:
◦ LCP: Lowest cum. prob. in any active constraint
◦ HCP: Highest cum. prob. in any active constraint

Choose direction based on votes using cum. prob.
in all active constraints branching variable is in:
◦ LCPV: direction most often selected based on lowest

cum. prob.
◦ HCPV: direction most often selected based on highest

cum. prob.

Chinneck: Recent Advances in MILP 36

New simultaneous variable and
direction selection methods

VDS-LCP: choose varb and direction having
lowest cum. prob. among all candidate varbs
and all active constraints containing them

VDS-HCP: choose varb and direction having
highest cum. prob. among all candidate
varbs and all active constraints containing
them

Chinneck: Recent Advances in MILP 37

New violation-based methods

Fix all variables except branching variable. What
happens when branching UP vs. DOWN?
◦ Inequality: is act. constraint violated or still satisfied?
◦ Equality:

“violated”: less centred direction
“satisfied”: more centred direction

MVV: Most Violated Votes method
◦ Choose direction that violates largest number of active

constraints containing branching varb.
MSV: Most Satisfied Votes method

Chinneck: Recent Advances in MILP 38

Chinneck: Recent Advances in MILP 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

 o
f M

od
el

s

Ratio to Fewest Simplex Iterations

LCP/LCPV vs. HCP/HCPV

GLPK Default

LCP

HCP

LCPV

HCPV

Branching to lower
probabilities is better

Chinneck: Recent Advances in MILP 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

 o
f M

od
el

s

Ratio to Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP

GLPK default

VDS-LCP

VDS-HCP

Branching to lower
probabilities is better

Chinneck: Recent Advances in MILP 41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

 o
f M

od
el

s

Ratio to Fewest Simplex Iterations

MVV vs. MSV

GLPK Default

MSV

MVV

Branching to violate
constraints is better

Chinneck: Recent Advances in MILP 42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

 o
f M

od
el

s

Ratio to Fewest Simplex Iterations

A-UP vs. VDS-LCP

GLPK Default

A-UP

VDS-LCP

A-UP: Method A to
select variable, always
branch up.

Simple branch-up rule is effective

Chinneck: Recent Advances in MILP 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
on

 o
f M

od
el

s

Ratio to Fewest Simplex Iterations

Up vs. Down vs. Closest Integer: All Models

GLPK Default
Up
Down
Closest Integer

Why does it work?
73% of MIPLIB models have at least
one multiple choice constraint!

Lessons learned
Most effective:
◦ Branch to low probability variables and

directions
◦ Branch to violate constraints
◦ Branch to force change in the candidates

Compare:
◦ MILP:

Constraints always satisfied, varbs not integer
◦ Constraint programming:

Constraints not satisfied, varbs always integer

Chinneck: Recent Advances in MILP 44

GENERAL
DISJUNCTIONS

Goal: reaching first integer-feasible solution quickly

Chinneck: Recent Advances in MILP 45

Beyond branching on variables

Why not branch on a general linear
equation? E.g.:
◦ a1x1 + a2x2 + a3x3 +... + anxn ≤ k
◦ a1x1 + a2x2 + a3x3 +... + anxn ≥ k + 1
◦ ai and k are integers

Literature:
◦ Very hard to find a good general disjunction

NP-hard to find best general disjunction

◦ Usually fewer nodes, but much more time

Chinneck: Recent Advances in MILP 46

“45-degree” general disjunctions

Coefficients are +1, -1, 0
Run through many lattice points
Leave an empty interior

Chinneck: Recent Advances in MILP 47

Still NP-hard to
find best
disjunction

New methods: principles

When to use a general disjunction:
◦ Infrequently, only when it is beneficial

Constructing the general disjunction:
◦ 45 degree type, based on the active constraint

having the most impact on candidate variables
Reverse of active constraint variable branching

◦ Branch to force change!

Chinneck: Recent Advances in MILP 48

When to insert a general disjunction?

Only when there are many candidate
variables (60+)
◦ i.e. large models, high in tree

Only when axis-parallel branching is stalling:
◦ Monitor:

number of candidates
infeasibility sum

◦ 2A: both increase 3 times in a row
◦ 2B: either increase 10 times in a row

Chinneck: Recent Advances in MILP 49

Constructing a general disjunction

1. Select active constraint as foundation:
◦ 3A: Choose active constraint having most

integer variables. Break ties using highest sum
of integer-variable absolute coefficients.
◦ 3B: Choose active constraint having most

candidate variables. Break ties using highest
sum of candidate-variable absolute
coefficients.

Chinneck: Recent Advances in MILP 50

Constructing a general disjunction

2. If foundation is an inequality:
◦ Branching disjunction is

approximately parallel to foundation:
match signs

◦ E.g.: 2x1 – 7x2 + 15x3 ≤ 30,
where xi ≥ 0 and integer.
LP-relaxation soln (4.6, 3.2, 2.88)

Down branch:
x1–x2+x3 ≤ 4.6-3.2 +2.88 = 4
Up branch:
x1–x2+x3 ≥ 4.6-3.2+2.88 + 1= 5

Chinneck: Recent Advances in MILP 51

Red line: foundation
Dashed lines: disjunction

opt

Constructing a general disjunction

3. If foundation is an equality:
◦ Branching disjunction: approximately perpendicular to

foundation(exactly perpendicular to approx. parallel)
No point to approximately parallel: usually no intersection

◦ Many ways to construct!
E.g.: approx parallel x1–x2+x3

Approx perpend: (1,1,0), (-1,0,1), (0,1,1), etc.

◦ Method:
Odd no. coeffs: set least impact coeff to zero
Least impact: cont < non-cand int < cand with larger int infeas
< larger abs coeff in foundation < varb in more active
constraints
Switch signs in remaining varbs on even counter

Chinneck: Recent Advances in MILP 52

Branching direction

Branch to force change
Approx parallel disjunctions:
◦ 5A: satisfying direction of inequality, offset by 1

Offset in case disjunction lies on foundation (e.g.
multiple choice foundation)
Pushes into feasible region

◦ 5B: farther from LP-relaxation optimum pt

Approx perpendicular disjunctions:
◦ Farther from LP-relaxation optimum

Chinneck: Recent Advances in MILP 53

Experimental setup
Built into Cplex 12.1 via callbacks
Default Cplex: all default except:
◦ Stop at first integer-feasible solution
◦ Emphasize integer-feasibility
◦ Depth-first search
◦ Time limit 8 hours
◦ Single thread
Baseline Cplex: same as default but also:
◦ Pre-solve off
◦ Aggregation off
◦ Internal node heuristics off
◦ Cut generation off

Chinneck: Recent Advances in MILP 54

Compare to baseline Cplex 12.1

Chinneck: Recent Advances in MILP 55

Compared on “hard models”
that take baseline Cplex more
than 1 hour to solve

Compare to default Cplex 12.1

Chinneck: Recent Advances in MILP 56

Compared on “hard models”
that take baseline Cplex more
than 1 hour to solve

Vs. default Cplex over all models

Chinneck: Recent Advances in MILP 57

Little impact on easy models

CONCLUSIONS

Chinneck: Recent Advances in MILP 58

Lessons learned

There are patterns in MILP solutions that
can be exploited
Seeking integer-feasibility and seeking
optimality are related
Branching should force change in the
candidate variables
General disjunctions can be helpful

Chinneck: Recent Advances in MILP 59

References
H. Mahmoud and J.W. Chinneck (2012), Achieving MILP
Feasibility Quickly Using General Disjunctions, in preparation.

J. Pryor and J.W. Chinneck (2011), Faster Integer-Feasibility in
Mixed-Integer Linear Programs by Branching to Force Change,
Computers and Operations Research, vol. 38, pp.1143–1152.

D.T. Wojtaszek and J.W. Chinneck (2010), Faster MIP Solutions
via New Node Selection Rules, Computers and Operations
Research, vol. 37, no. 9, pp. 1544-1556.

J. Patel and J.W. Chinneck (2007), Active-Constraint Variable
Ordering for Faster Feasibility of Mixed Integer Linear Programs,
Mathematical Programming Series A, vol. 110, pp. 445-474.

Chinneck: Recent Advances in MILP 60

	Recent Advances in Mixed-Integer Linear Programming�at Carleton University
	Outline
	Introduction
	Themes
	Assumptions
	Node selection for faster optimality
	Node selection
	Triggering backtrack/jumpback
	Pattern:�Optimality, feasibility, and depth
	Optimality, feasibility, and depth
	Pattern:�Depth and objective value
	Pattern:�Candidates decrease with depth
	Idea: �Aspiration level by linear extrapolation
	Pattern: �Objective value vs. candidates
	Modified best projection
	Pattern:�Common distributions
	Distribution node selection (DIST)
	Idea: �Active node search threshold (ANST)
	Experiments with GLPK 4.9
	Lessons learned
	Active constraints branching variable selection
	Is branching variable selection important?
	Slide Number 23
	Selecting the branching variable
	Experiment 1: Cplex heuristics off
	Experiment 2: Cplex heuristics on
	Lessons learned
	Branching to force change
	Question
	A new principle
	Probability-based branching
	New: Generalization
	g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5
	To use for branching:
	New: handling equality constraints
	New branching direction methods
	New simultaneous variable and direction selection methods
	New violation-based methods
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Simple branch-up rule is effective
	Lessons learned
	General Disjunctions
	Beyond branching on variables
	“45-degree” general disjunctions
	New methods: principles
	When to insert a general disjunction?
	Constructing a general disjunction
	Constructing a general disjunction
	Constructing a general disjunction
	Branching direction
	Experimental setup
	Compare to baseline Cplex 12.1
	Compare to default Cplex 12.1
	Vs. default Cplex over all models
	Conclusions
	Lessons learned
	References

