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INTRODUCTION
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Themes

Relationship between MILP-feasibility and 
MILP-optimality
Seeking MILP-feasibility quickly
Focus on candidate variables
◦ Integer/binary variables that do not have 

integer/binary values in LP relaxation solution

Branching to force change in the candidate 
variables
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Assumptions
Branch and bound method for minimization
◦ Focus on branching
◦ Branching always needed, even in conjunction with 

cutting, local exploration, root node heuristics, etc.
Simplex LP solver
◦ Usual MILP choice, for fast restart at child nodes
Measuring solution speed:
◦ Time: best
◦ Simplex iterations: good proxy for time

Non-simplex time must be minimal
Best choice for multi-core machines where time measurements 
are not repeatable

◦ Node count: often poor proxy for time

Chinneck: Recent Advances in MILP 5



NODE SELECTION FOR 
FASTER OPTIMALITY

Interesting patterns...
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Node selection
Depth-first
◦ Choose child of last solved node
◦ Big advantage: child node almost identical to 

parent. Hot start speeds LP solutions!
Best bound
◦ Choose node having best bounding function value 

anywhere on tree
Usually high in the tree

Best estimate
◦ Rate node’s progress toward integer feasibility vs. 

degradation in objective function value
Others...
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Triggering backtrack/jumpback

Assuming depth-first dive as default 
behaviour:
◦ What conditions trigger backtrack?
◦ Which node should be selected?

Aspiration level trigger:
◦ Trigger backtrack when node bound is worse 

than pre-selected aspiration level
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Pattern:
Optimality, feasibility, and depth
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Optimum is shallowest integer-
feasible node in about half of all 
cases.
Close to shallowest in many 
other cases.
Why? Fewest changes from 
optimistic root node.



Optimality, feasibility, and depth

Lesson
Node selection chooses the most 
promising node
Shallowest integer-feasible descendent 
most likely to give best objective value
Ergo: fastest integer-feasibility important 
for optimality
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Pattern:
Depth and objective value
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Nodes at same depth as optimum tend to 
have bounding function values that are 
similar to optimum objective value.

Bounds worsen with depth.



Pattern:
Candidates decrease with depth
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Typical dive pattern, but not guaranteed.

Integer-feasible when there are 0 
candidate variables.

Corollary: due to tree fan-out, more 
nodes have few candidates (deep in tree) 
than have many candidates (high in tree).



Idea: 
Aspiration level by linear extrapolation
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2. Estimate optimum obj value using 
depth information
3. Set an aspiration value using 
estimated optimum objective value

1. Predict optimum 
depth by extrapolating 
number of candidates

LEXA method



Pattern:
Objective value vs. candidates
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Zmin(c): 
smallest 
bounding 
function value 
given c
candidates.

Extrapolate 
optimum 
value using 
Zmin(c) over a 
range of c.

Set aspiration 
level.



Modified best projection
Two “anchors”: 
◦ root and node with fewest candidates
For node selection (MOBP):
◦ Zbp(i) = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)

Zbp(i): best projection of Z at node i
Z0, C0: bounding value,  candidates at root node
Zi, Ci: bounding value,  candidates at node i
Cmin: minimum candidate variables at any node

For setting aspiration level (MPAS):
◦ Find min(Zbp(i)) over all active nodes
◦ Backtrack if Zi > min(Zbp(i)) 
Does not need incumbent like original does
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Pattern:
Common distributions
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Distribution of Zi Distribution of number of 
candidate variables

Both distributions often Normal-like



Distribution node selection (DIST)

Balance pursuit of feasibility and optimality
◦ Smaller Zi and Ci both desirable
◦ Zi larger where Ci is smaller, and vice versa

Ranges quite different: how to balance?
◦ Normalize ranges of Zi and Ci assuming

independent normal probability distributions
◦ Choose node n = arg mini P(Z ≤ Zi)×P(C ≤ Ci)
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Idea: 
Active node search threshold (ANST)

Advanced node selection can take a lot of 
time
Switch to simple depth-first node selection 
if current node selection method is taking 
too much time
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Experiments with GLPK 4.9
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GLPK 
default

Node sel: distribution
Triggering: mod. best proj. aspiration
Active node search threshold

Node sel: mod. best proj.
Triggering: mod. best proj. aspiration
Active node search threshold

GLPK default with 
ordinary best-projection



Lessons learned

MILP-feasibility (candidates) and 
optimality are linked
Patterns relating them can be exploited
Reaching first integer-feasible solution 
quickly helps to reach optimality quickly
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ACTIVE CONSTRAINTS 
BRANCHING VARIABLE 
SELECTION

Goal: reaching first integer-feasible solution quickly
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Is branching variable selection important?

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)
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y 

x 

LP relaxation 
before 
branching 

Branch on x Branch on y 

Feasible 
Region 

Traditional: branch to impact 
objective function value

New: branch to impact 
active constraints in current 
LP-relaxation

Try to make the child LP-
relaxations as different as 
possible



Selecting the branching variable
Calculate a weight Wik for each candidate i in 
active constraint k:
A: Wik=1.
◦ Is candidate variable present in the active constraint?
M: Wik = 1/(no. candidate variables)
◦ Like A, but relative impact of a constraint normalized by number of 

candidate variables it contains
O: Wik = |coeffi|/(no. of integer variables)
◦ size of coefficient affects weight of varb in constraint
A, O, M:  choose k with largest ∑iWik
HM, HO, etc.: choose k with largest Wik
Many other methods….

Chinneck: Recent Advances in MILP 24



Experiment 1: Cplex heuristics off
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Usually a better optimality 
gap at first integer-feasible 
solution (53-78% of models).



Experiment 2: Cplex heuristics on
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Only for models not solved at root 
node.
Usually a smaller optimality gap at 
first integer-feasible solution



Lessons learned

It’s important to impact the active 
constraints
◦ Forces many candidates to change values 

simultaneously
◦ Forces child node solutions to be quite 

different from each other and from parent
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BRANCHING TO FORCE 
CHANGE

Goal: reaching first integer-feasible solution quickly
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Question
Should you branch so child node has largest or 
smallest probability of a feasible solution?
Insight from multiple choice constraints
◦ x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

Branch down: xi can take real values
Branch up: all xi forced to integer values

◦ E.g.: x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)
◦ Branching on x1:

Branch down: (0, 0.333, 0.333, 0.333) or many others
Branch up: (1, 0, 0, 0) is only solution, and all integer.

Chinneck: Recent Advances in MILP 29



A new principle

Goal: zero candidates (integer feasibility)
Observations:
◦ Often: each branching forces roughly 1 candidate 

variable to integrality
◦ Desirable: force as many candidates as possible 

to integrality at each branch

Branch to force change in as many candidate 
variables as possible
◦ Hope that many will take integer values
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Probability-based branching

Counting solutions (Pesant and Quimper 2008)
l ≤ cx ≤ u : l, c, u are integer values, x integer
Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0

Value of x2 Range for x1 Soln count Soln density
x2=0 [0,10] 11 11/18 = 0.61
x2=1 [0,5] 6 6/18 = 0.33
x2=2 [0] 1 1/18 = 0.06
Total solutions 18
Choose x2 =0 for max prob of satisfaction
Choose x2=2 for min prob of satisfaction
Which is best?
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New: Generalization

Assume:
All variables bounded, real-valued
Uniform distribution within range

Result:
linear combination of variables yields 
normal distribution for function value
Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5
has mean 25, variance 110.83
Plot.... Look at g(x) ≤ 12
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g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5
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Probability density plot
• Cumulative prob of satisfying function in blue

P[g(x)≤12] = 
0.1085
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• Separate distributions for 
DOWN and UP branches 
due to changed variable 
ranges

• Calculate cumulative 
probability of satisfying 
constraint in each direction

Example:
• Branch on x1=1.5
• Down: x1 range [0,1], p=0.23
• Up: x1 range [2,5], p=0.05

To use for branching:



New: handling equality constraints
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g(x) = 3x1 + 2x2 + 5x3 = 12 for 0 ≤ x ≤ 5

P[g(x)≤12]=0.1085 P[g(x)≥12]=0.8915

Equality “probability” =
(smaller cum. prob)
(larger cum. prob)

0.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in 
the distribution, hence larger chance 
of satisfying the equality



New branching direction methods

Given the branching variable:

Choose direction based on cum. prob. in any
active constraint branching variable is in:
◦ LCP: Lowest cum. prob. in any active constraint
◦ HCP: Highest cum. prob. in any active constraint

Choose direction based on votes using cum. prob. 
in all active constraints branching variable is in:
◦ LCPV: direction most often selected based on lowest 

cum. prob.
◦ HCPV: direction most often selected based on highest 

cum. prob.
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New simultaneous variable and 
direction selection methods

VDS-LCP: choose varb and direction having 
lowest cum. prob. among all candidate varbs
and all active constraints containing them

VDS-HCP: choose varb and direction having 
highest cum. prob. among all candidate 
varbs and all active constraints containing 
them
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New violation-based methods

Fix all variables except branching variable. What 
happens when branching UP vs. DOWN?
◦ Inequality: is act. constraint violated or still satisfied?
◦ Equality:

“violated”: less centred direction
“satisfied”: more centred direction

MVV: Most Violated Votes method
◦ Choose direction that violates largest number of active 

constraints containing branching varb.
MSV: Most Satisfied Votes method
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Simple branch-up rule is effective
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Lessons learned
Most effective:
◦ Branch to low probability variables and 

directions
◦ Branch to violate constraints
◦ Branch to force change in the candidates

Compare:
◦ MILP:

Constraints always satisfied, varbs not integer
◦ Constraint programming:

Constraints not satisfied, varbs always integer
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GENERAL 
DISJUNCTIONS

Goal: reaching first integer-feasible solution quickly
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Beyond branching on variables

Why not branch on a general linear 
equation? E.g.:
◦ a1x1 + a2x2 + a3x3 +... + anxn ≤ k
◦ a1x1 + a2x2 + a3x3 +... + anxn ≥ k + 1
◦ ai and k are integers

Literature:
◦ Very hard to find a good general disjunction

NP-hard to find best general disjunction

◦ Usually fewer nodes, but much more time
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“45-degree” general disjunctions

Coefficients are +1, -1, 0
Run through many lattice points
Leave an empty interior
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Still NP-hard to 
find best 
disjunction



New methods: principles

When to use a general disjunction:
◦ Infrequently, only when it is beneficial

Constructing the general disjunction:
◦ 45 degree type, based on the active constraint 

having the most impact on candidate variables
Reverse of active constraint variable branching

◦ Branch to force change!
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When to insert a general disjunction?

Only when there are many candidate 
variables (60+)
◦ i.e. large models, high in tree

Only when axis-parallel branching is stalling:
◦ Monitor:

number of candidates
infeasibility sum

◦ 2A: both increase 3 times in a row
◦ 2B: either increase 10 times in a row
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Constructing a general disjunction

1. Select active constraint as foundation:
◦ 3A: Choose active constraint having most 

integer variables. Break ties using highest sum 
of integer-variable absolute coefficients.
◦ 3B: Choose active constraint having most 

candidate variables. Break ties using highest 
sum of candidate-variable absolute 
coefficients.
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Constructing a general disjunction

2. If foundation is an inequality:
◦ Branching disjunction is 

approximately parallel to foundation: 
match signs

◦ E.g.: 2x1 – 7x2 + 15x3 ≤ 30, 
where xi ≥ 0 and integer. 
LP-relaxation soln (4.6, 3.2, 2.88)

Down branch: 
x1–x2+x3 ≤ 4.6-3.2 +2.88 = 4
Up branch:  
x1–x2+x3 ≥ 4.6-3.2+2.88 + 1= 5
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Red line: foundation
Dashed lines: disjunction

opt



Constructing a general disjunction

3. If foundation is an equality:
◦ Branching disjunction: approximately perpendicular to 

foundation(exactly perpendicular to approx. parallel)
No point to approximately parallel: usually no intersection

◦ Many ways to construct!
E.g.:  approx parallel x1–x2+x3

Approx perpend: (1,1,0), (-1,0,1), (0,1,1), etc.

◦ Method: 
Odd no. coeffs: set least impact coeff to zero
Least impact: cont < non-cand int < cand with larger int infeas
< larger abs coeff in foundation < varb in more active 
constraints
Switch signs in remaining varbs on even counter
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Branching direction

Branch to force change
Approx parallel disjunctions:
◦ 5A: satisfying direction of inequality, offset by 1

Offset in case disjunction lies on foundation (e.g. 
multiple choice foundation)
Pushes into feasible region

◦ 5B: farther from LP-relaxation optimum pt

Approx perpendicular disjunctions:
◦ Farther from LP-relaxation optimum
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Experimental setup
Built into Cplex 12.1 via callbacks
Default Cplex: all default except:
◦ Stop at first integer-feasible solution
◦ Emphasize integer-feasibility
◦ Depth-first search
◦ Time limit 8 hours
◦ Single thread
Baseline Cplex: same as default but also:
◦ Pre-solve off
◦ Aggregation off
◦ Internal node heuristics off
◦ Cut generation off
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Compare to baseline Cplex 12.1
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Compared on “hard models” 
that take baseline Cplex more 
than 1 hour to solve



Compare to default Cplex 12.1
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Compared on “hard models” 
that take baseline Cplex more 
than 1 hour to solve



Vs. default Cplex over all models
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Little impact on easy models



CONCLUSIONS
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Lessons learned

There are patterns in MILP solutions that 
can be exploited
Seeking integer-feasibility and seeking 
optimality are related
Branching should force change in the 
candidate variables
General disjunctions can be helpful
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