/2

Recent Advances in Mixed-
Integer Linear Programming

at Carleton University

John W. Chinneck

Systems and Computer Engineering
Carleton University
Ottawa, Canada

/2

Qutline

|. Introduction

2. Node selection for faster optimality

> Important common patterns

3. Active constraints branching variable
selection

4. Branching to force change
5. General disjunctions
6. Conclusions

- INTRODUCTION

/2

Themes

 Relationship between MILP-feasibility and
MILP-optimality

 Seeking MILP-feasibility quickly

* Focus on candidate variables

° Integer/binary variables that do not have
integer/binary values in LP relaxation solution

* Branching to force change in the candidate
variables

/2

Assumptions

e Branch and bound method for minimization
> Focus on branching

> Branching always needed, even in conjunction with
cutting, local exploration, root node heuristics, etc.

e Simplex LP solver

o Usual MILP choice, for fast restart at child nodes
e Measuring solution speed:

o Time: best

o Simplex iterations: good proxy for time
Non-simplex time must be minimal

Best choice for multi-core machines where time measurements
are not repeatable

> Node count: often poor proxy for time

Interesting patterns...

> NODE SELECTION FOR

FASTER OPTIMALITY

Node selection

e Depth-first
o Choose child of last solved node

o Big advantage: child node almost identical to
parent. Hot start speeds LP solutions!

e Best bound

> Choose node having best bounding function value
anywhere on tree

Usually high in the tree
e Best estimate

> Rate node’s progress toward integer feasibility vs.
degradation in objective function value

e Others...

/2

Triggering backtrack/jumpback

* Assuming depth-first dive as default
behaviour:

> What conditions trigger backtrack!?
> Which node should be selected?
* Aspiration level trigger:

> Trigger backtrack when node bound is worse
than pre-selected aspiration level

N

Pattern:
Optimality, feasibility, and depth

Felatiwe Optimum Lewel

e}
« o Optimum is shallowest integer-)
& feasible node in about half of all
= 5| cases.
5 __| Close to shallowest in many
= | other cases. -
2 °[Why? Fewest changes from
= optimistic root node. .
B s o o i

8] 5 10 15 20 25 30 35 N g q45
MIF Instance

S0

/2

Optimality, feasibility, and depth

Lesson

* Node selection chooses the most
bromising node

 Shallowest integer-feasible descendent
most likely to give best objective value

* Ergo: fastest integer-feasibility important
for optimality

Pattern:
Depth and objective value

+ node lower bounds
— — Optimal Level
- - - - Optimal Objective

ran10x10a

3000
| e PRI
2500 - |
2000 - |
T ot
5 1500 7 - 3 PNPPIRRIRE o+ - - - - = == == - - sssonsss e
o PR Nodes at same depth as optimum tend to
1000 ~ : have bounding function values that are
| similar to optimum objective value.
500 - |
0 : Bounds worsen with depth.
I I I I

0 20 40 60 80 100

level

iy
_
[
=
ul]
-+
3
=
-—
=
3
[
T

30

25

20

15

10

Pattern:
Candidates decrease with depth

vpmeZ Branch Flot

T T T T T T T |‘_“:Il:jeSI }{
= MIF opt u
O
=
- :}{ -
= . .
% Typical dive pattern, but not guaranteed.
o
- :}{: -
= .
% Integer-feasible when there are 0
. = . .
x candidate variables.
- :\;{: :\;{: -
O
=
o E
.‘-Hi
- :\;{ :"_\;{ -
O
Corollary: due to tree fan-out, more SRAR
. . MM
. nodes have few candidates (deep in tree) . i
. . . MM
than have many candidates (high in tree). -
=
1 1 1 1 1 1 1 1 -_
0 5 10 15 20 25 30 35 40 45

depth

Idea:
Aspiration level by linear extrapolation

vipms Branch Flot

30 : .
nodes =
best fit line: node =20
MIF opt [
25 | -
2o |
2 LEXA method
-
X |. Predict optimum
= 15 , -
= depth by extrapolating
= .
= number of candidates
™ 10 2 Estimate optimum obj value using I
depth information
= | 3.Set an aspiration value using R 1
estimated optimum objective value L
.
}{
o . =
-5 0 5 10 15 20 25 30 35 40 45

depth

Pattern:
Objective value vs. candidates

demulti _
ZM"(¢):
191000 . . . ; ;
s 4, nodes + smallest
190500 + g best fit line zmin(10 : 30) | bounding
MIP optimum O function value
190000 st sy zmin(c) % | givenc
T 189500 | X | candidates.
€ +
= 189000 _
s, Extrapolate
2 188500 | | optimum
9 = value using
=) 188000 1 Z™n(c) over a
187500 | range of c.
187000 1 Set aspiration

candidate variables (ci)

/2

Modified best projection

e Two “anchors’:
> root and node with fewest candidates

e For node selection (MOBP):
o 7bp() = 71 + Ci[Zmin(Cmin)_ZO] /(CO_Cmin)
ZbP0): best projection of Z at node i
Z° C% bounding value, candidates at root node

Z', C: bounding value, candidates at node i
C™min; minimum candidate variables at any node

 For setting aspiration level (MPAS):
> Find min(Z"P()) over all active nodes
> Backtrack if Z' > min(Z,()
* Does not need incumbent like original does

/ Pattern:

Common distributions

10teams Distribution

. \‘H.. |

100
50 ‘
0

320 325 330 935 340 345 350

Distribution of Z

355 360 965 370

bl
a GO0 |

10teams Distribution
1200

1000

800 -

400

200

AL

g0 100 120 140 160

0 20 40 a0

candidate vars

Distribution of number of
candidate variables

Both distributions often Normal-like

180

/2

Distribution node selection (DIST)

 Balance pursuit of feasibility and optimality
> Smaller Z' and C' both desirable

o Z! larger where C' is smaller, and vice versa

» Ranges quite different: how to balance!

> Normalize ranges of Z' and C' assuming
independent normal probability distributions

> Choose node n = arg min, P(Z < Z')xP(C < ()

// ldea:

Active node search threshold (ANST)

e Advanced node selection can take a lot of
time
 Switch to simple depth-first node selection

if current node selection method is taking
too much time

// Experiments with GLPK 4.9

Performance Profile

Triggering: mod. best proj. aspiration
Active node search threshold

1
—4E]

» 08 —, 1
@
J
-
E .'"“
2 06 rgg § GLPK default with 1
o default ordinary best-projection
=
S 04 Node sel: distribution i
S
O
o

Node sel: mod. best proj.
Triggering: mod. best proj. aspiration
Active node search threshold

1 10 100

ratio to best time

/2

Lessons learned

» MILP-feasibility (candidates) and
optimality are linked

* Patterns relating them can be exploited

» Reaching first integer-feasible solution
quickly helps to reach optimality quickly

Goal: reaching first integer-feasible solution quickly

- ACTIVE CONSTRAINTS

BRANCHING VARIABLE
SELECTION

/ Is branching variable selection important!?

B&B nodes to First Feasible Soln
model Cplex 9.0 | Active-Constraints Method
aflow30a 23,481|22 (A, H,,, Hy, O, P)
aflow40Db 100,000+ (limit) | 33 (H,, O, P)
fast0507 14,753 | 26 (A)
glass4 7,940 |62 (A, Hy,, Hy, O, P)
nsrand-ipx 3,301 |18 (Hy)
timtab2 14,059 | 100,000+ (limit)

Traditional: branch to impact
objective function value

New: branch to impact
active constraints in current
LP-relaxation

Try to make the child LP-
relaxations as different as
possible

LP relaxation
before

branching L» X

/.

Branch on x

Branch ony

/2

Selecting the branching variable

e Calculate a weight W, for each candidate i in
active constraint k:

o A: W, =1.
o Is candidate variable present in the active constraint?

e M: W, = 1/(no. candidate variables)

o Like A, but relative impact of a constraint normalized by number of
candidate variables it contains

o O: W, = |coeff|/(no. of integer variables)
o size of coefficient affects weight of varb in constraint
* A, O,M: choose k with largest > W,
* Hy, Hp, etc.: choose k with largest W,
e Many other methods....

Experiment |: Cplex heuristics off

Experiment 1 Iterations Performance Profiles

3 4 5 6 7 38 9

ratio to best (simplex iterations)

10

Experiment 1 Nodes Performance Profile

0.9 .
0.8 B * R R B I

, 07 - L

2 06 XK"J

£

% 05 /

=

S

'EE
S 043
Q
i —w— Cplex 9.0
=03 = A
——0
02 ——P
= HD
0 - ! !

1 2 3 4 5 6 7 8 9 10
ratio to best (nodes)

Usually a better optimality
gap at first integer-feasible
solution (53-78% of models).

Experiment 2: Cplex heuristics on

fraction of models

Experiment 2 Ilterations Performance Profiles

1
0.9 - -
0.8 -
0.7 - ’f’f;% e
0o | B 171
. éx _fﬂ—*_ﬂ_"
0.5 1 g2 we—
0.4 - —<—Cplex 9.0
0.3 —=-B
% —— L
0.2 >:2 ——P
X
—4— HM
0.1 ¥ HO
0 - I
1 2 3 4 8 9 10

ratio to best (iterations)

Experiment 2 Nodes Performance Profiles

fraction of models

02 %

0.11
04
1

2

3

4 5 6 7

ratio to best (nodes)

Only for models not solved at root

node.

Usually a smaller optimality gap at

first integer-feasible solution

/2

Lessons learned

e It's important to impact the active
constraints

> Forces many candidates to change values
simultaneously

> Forces child node solutions to be quite
different from each other and from parent

Goal: reaching first integer-feasible solution quickly

" BRANCHINGTO FORCE

CHANGE

/2

Question

* Should you branch so child node has largest or
smallest probability of a feasible solution?

* Insight from multiple choice constraints

o x; + x, + x3 +..x, {<,=} |, where x; are binary
Branch down: x; can take real values

Branch up: all x; forced to integer values
o Egix, + X, + x3 + x, = | at (0.25,0.25,0.25, 0.25)

> Branching on x;:
Branch down: (0, 0.333,0.333,0.333) or many others
Branch up: (1,0, 0, 0) is only solution, and all integer.

/2

A new principle

* Goal: zero candidates (integer feasibility)

e Observations:

o Often: each branching forces roughly 1 candidate
variable to integrality

o Desirable: force as many candidates as possible
to integrality at each branch

* Branch to force change in as many candidate
variables as possible

> Hope that many will take integer values

/ Probability-based branching

Counting solutions (Pesant and Quimper 2008)
e[S ecx = u:lc uare integer values, x integer
o Example: x, + 5x, = 10 where x,,x, 2 0

Value of x, Range for x, Soln count Soln density

X,=0 0,10] 11 11/18 =0.61
X,=1 0,5] 6 6/18 = 0.33
X,=2 0] 1 1/18 = 0.06
Total solutions 18

» Choose x, =0 for max prob of satisfaction
* Choose x,=2 for min prob of satisfaction
» Which is best?

New: Generalization

Assume:

» All variables bounded, real-valued
e Uniform distribution within range
Result:

¢ linear combination of variables yields
normal distribution for function value

* Example: g(x) = 3x, + 2x, + 5x3,0 = x =5
has mean 25, variance 110.83
* Plot.... Look at g(x) = |2

/2

g(x) =3x, +2x, + 5x; = |2for0=x =<5

* Probability density plot

e Cumulative prob of satisfying function in blue

Mormal {Gaussian) Distribution

0.04 -

Plg()<12] =
0.03 4 RHS =12 O. I 085

DDZS-

[}
=
a

Pr bability Density

£0.015

0.01 ~

0.005 A

0

0 5 i0 15 20 25 30 35 40 45 LD 55 60

To use for branching:

Mormal {Gaussian) Distribution - Down Direction
- Separate distributions for il T
DOWN and UP branches
due to changed variable £ o
0,025
ranges 5 ooz
- Calculate cumulative -
probability of satisfying
constraint in each direction 0 5 1 15 20 25 0 35 40 45 S0 S5 e
Marmal {Gaussian} Distribution - Up Direction
0.045
0.04 4
Example: —
- Branch on x,=1.5 .
E.“D 025
% RHS =12
- Down:x, range [0,1],p=0.23 |5 °=
20,015
- Up: x, range [2,5], p=0.05 /
0.0085 4
] T T T T T T T T T T T]
a E 10 15 20 25 =20 =5 40 4K I=1n} EE 60

/2

New: handling equality constraints

g(x) =3x;+2x, + 5x;= [2for0 = x =5

=
& o
=]
ra n

Frobability Density

=]
[
=
93]

0

0.04

0.035 +

0.03 4

0.01 +

0.005 A

Mormal {Gaussian) Distribution

RHS =12

Equality “probability” =
(smaller cum. prob)
(larger cum. prob)

¢mmm (./085/0.8915=0.1217

0 5 10 15 20 25 30 35 40 45 G50 55 60

P[g(x)<12]=0.1085

€—>€

>
P[g(x)212]=0.8915

Gives value between 0 and |.

Larger value means more centred in
the distribution, hence larger chance
of satisfying the equality

/2

New branching direction methods

Given the branching variable:

* Choose direction based on cum. prob. in any
active constraint branching variable is in:

o LCP: Lowest cum. prob. in any active constraint
o HCP: Highest cum. prob. in any active constraint

* Choose direction based on votes using cum. prob.
in all active constraints branching variable is in:

o LCPV: direction most often selected based on lowest
cum. prob.

o HCPV: direction most often selected based on highest
cum. prob.

// New simultaneous variable and
direction selection methods

e VDS-LCP: choose varb and direction having
lowest cum. prob. among all candidate varbs
and all active constraints containing them

* VDS-HCP: choose varb and direction having
highest cum. prob. among all candidate
varbs and all active constraints containing
them

/2

New violation-based methods

e Fix all variables except branching variable.What
happens when branching UP vs. DOWN?
o Inequadlity: is act. constraint violated or still satisfied?
o Equality:
“violated”: less centred direction
“satisfied”: more centred direction

e MVV:MostViolated Votes method

> Choose direction that violates largest number of active
constraints containing branching varb.

o MSV: Most Satisfied Votes method

Fraction of Models

o
w

0.2

0.1

LCP/LCPV vs. HCP/HCPV

o
a~

=—GLPK Default

Branching to lower HCP
le. . . —+—HCP
probabilities is better
—«LCPV
==HCPV
; 4 5 6 7 : 5 0

Ratio to Fewest Simplex Iterations

o
BN

o
o

Fraction of Models
© =) o o
N w N [0,

°

o

VDS-LCP vs.VDS-HCP

L 3
——=
Branching to lower
probabilities is better ~—-GLPK default
VDS-LCP
~+-VDS-HCP
; s 5 6 7 5 9 o

Ratio to Fewest Simplex Iterations

Fraction of Models

0.9

0.8

0.7

0.6 -

0.5

0.4

0.3

0.2

0.1

MVYV vs. MSV

Branching to violate
constraints is better

——GLPK Default
MSV
—-MVV

3 4 5 6

7 8 9 10

Ratio to Fewest Simplex Iterations

Fraction of Models

A-UP vs.VDS-LCP

0.9 =5
0.8 e —
0.7
0.6
0.5
0.4
A-UP: Method A to ~+~GLPK Defaule
2 select variable, always AU
0! branch up. TVDSACP
0

| 2 3 4 5 6 7 8 9 10
Ratio to Fewest Simplex Iterations

o o
~N 0o

o
o

Fraction of Models
o o o o
N w N (9,1

e

o

Simple branch-up rule is effective

Up vs. Down vs. Closest Integer: All Models

Why does it work?

73% of MIPLIB models have at least

one multiple choice constraint!

=—GLPK Default
Up
—+-Down

—Closest Integer

2 3 4 5 6 7
Ratio to Fewest Simplex Iterations

// Lessons learned

* Most effective:

> Branch to low probability variables and
directions

> Branch to violate constraints
> Branch to force change in the candidates

o Compare:
> MILP:
Constraints always satisfied, varbs not integer

> Constraint programming:
Constraints not satisfied, varbs always integer

Goal: reaching first integer-feasible solution quickly

- GENERAL

DISJUNCTIONS

/2

Beyond branching on variables

* Why not branch on a general linear
equation? E.g.:
caX; t ayx, tax;+..+tax sk
caX; tax, tax;+.+tax 2k+ |
> a;and k are integers
o Literature:

° Very hard to find a good general disjunction
NP-hard to find best general disjunction

> Usually fewer nodes, but much more time

/2

“45-degree” general disjunctions

o Coefficients are +1,-1,0
* Run through many lattice points
* Leave an empty interior

Still NP-hard to

find best
disjunction

/2

New methods: principles

* When to use a general disjunction:

° Infrequently, only when it is beneficial

e Constructing the general disjunction:

> 45 degree type, based on the active constraint
having the most impact on candidate variables

Reverse of active constraint variable branching

° Branch to force change!

/2

When to insert a general disjunction?

* Only when there are many candidate
variables (60+)

° i.e.large models, high in tree

e Only when axis-parallel branching is stalling:

> Monitor:
number of candidates

infeasibility sum
o 2A: both increase 3 times in a row

o 2B: either increase |10 times in a row

/2

Constructing a general disjunction

|. Select active constraint as foundation:

> 3A: Choose active constraint having most
integer variables. Break ties using highest sum
of integer-variable absolute coefficients.

> 3B: Choose active constraint having most
candidate variables. Break ties using highest
sum of candidate-variable absolute
coefficients.

Constructing a general disjunction

2. If foundation is an inequality:
. . > Branching disjunction is
(./—'—\, g dis]

| Hﬁ approximately parallel to foundation:
J'*. “E': H\ . match signs
‘/ % o E.g.:2x, —7x, + 15x; = 30,

where x; 2 0 and integer.
LP-relaxation soln (4.6, 3.2, 2.88)

Down branch:

X, —X,+x3 < |4.6-3.2 +2.88| = 4
Up branch:

X|—XyFX3 2 |14.6-3.2+2.88]| + I=5

Red line: foundation
Dashed lines: disjunction

/2

Constructing a general disjunction

3. If foundation is an equality:

> Branching disjunction: approximately perpendicular to
foundation(exactly perpendicular to approx. parallel)
No point to approximately parallel: usually no intersection

> Many ways to construct!

E.g.: approx parallel x,—x,+x;

Approx perpend: (1,1,0), (-1,0,1), (O,1,1), etc.
> Method:

Odd no. coeffs: set least impact coeff to zero

Least impact: cont < non-cand int < cand with larger int infeas
< larger abs coeff in foundation < varb in more active
constraints

Switch signs in remaining varbs on even counter

/2

Branching direction

* Branch to force change

e Approx parallel disjunctions:
> BA: satisfying direction of inequality, offset by 1

Offset in case disjunction lies on foundation (e.g.
multiple choice foundation)

Pushes into feasible region

> 5B: farther from LP-relaxation optimum pt

e Approx perpendicular disjunctions:

° Farther from LP-relaxation optimum

Experimental setup

e Built into Cplex |2.1 via callbacks

e Default Cplex: all default except:
o Stop at first integer-feasible solution
> Emphasize integer-feasibility
o Depth-first search
> Time limit 8 hours
> Single thread

e Baseline Cplex: same as default but also:
° Pre-solve off
> Aggregation off
° Internal node heuristics off
o Cut generation off

Compare to baseline Cplex 2.1

Fraction of Models

0.9

0.8

0.7

0.3

0.2

0.1

Performance Profile on Simplex lterations

than | hour to solve

Compared on “hard models”
that take baseline Cplex more

—~— 2A, 3B,5A
—+— 2A 3B,5B
—8— 2B, 3A,5A

2B,3B,5A

Baseline-Cplex

3 4 5 6 T

Ratio to Best

10

Compare to default Cplex 12.1

Performance Profile on Simplex Iterations
1 I I I I I I
0.9+ §
0.8+ /»" g
0 07 1
® RO '
S 06 ‘(' ' '
= | f'ﬁ&d 2A 3B,5A
S o5 | |——2A,38B,58B
- ! ! ! ! !
= i i E E E i —H—2B,3A 5B
- []L_d’-J : : : : :
& 4 ' ' ' ' - 2B,3B,5A
i Compared on “hard models” Default-Cplex
that take baseline Cplex more - -
0.2~ than | hour to solve
0.1F
0 | | | | | i i |
1 2 3 4 5 6 7 8 9
Ratio to Best

Vs. default Cplex over all models

Performance Profile on Simplex Iterations

0.95

|

09

; : : : : : 2A 3B, ,5A
0855 e e e 5 :
i : : : : : —+—2A 3B,58B

0.8, i i i i . | —8— 2B.3A. 58 -

2B,3B, 5A

. Little impact on easy models Default-Cplex

Fraction of Models
=
=
0

oest £ bbb

0.6 i i i i i i i o

osst L b b

05 i i i i i i i i
1 2 3 4 5 6 7 8 9 10
Ratio to Best

- CONCLUSIONS

/2

Lessons learned

* There are patterns in MILP solutions that
can be exploited

 Seeking integer-feasibility and seeking
optimality are related

* Branching should force change in the
candidate variables

 General disjunctions can be helpful

/2

References

e H.Mahmoud and J.W. Chinneck (2012), Achieving MILP
Feasibility Quickly Using General Disjunctions, in preparation.

*].Pryor and J.W. Chinneck (201 I), Faster Integer-Feasibility in
Mixed-Integer Linear Programs by Branching to Force Change,
Computers and Operations Research, vol. 38, pp.1 143—1152.

e D.T.Wojtaszek and J.W. Chinneck (2010), Faster MIP Solutions
via New Node Selection Rules, Computers and Operations
Research, vol. 37, no. 9, pp. 1544-1556.

 |. Patel and J.W. Chinneck (2007), Active-Constraint Variable
Ordering for Faster Feasibility of Mixed Integer Linear Programs,
Mathematical Programming Series A, vol. 1 10, pp. 445-474.

	Recent Advances in Mixed-Integer Linear Programming�at Carleton University
	Outline
	Introduction
	Themes
	Assumptions
	Node selection for faster optimality
	Node selection
	Triggering backtrack/jumpback
	Pattern:�Optimality, feasibility, and depth
	Optimality, feasibility, and depth
	Pattern:�Depth and objective value
	Pattern:�Candidates decrease with depth
	Idea: �Aspiration level by linear extrapolation
	Pattern: �Objective value vs. candidates
	Modified best projection
	Pattern:�Common distributions
	Distribution node selection (DIST)
	Idea: �Active node search threshold (ANST)
	Experiments with GLPK 4.9
	Lessons learned
	Active constraints branching variable selection
	Is branching variable selection important?
	Slide Number 23
	Selecting the branching variable
	Experiment 1: Cplex heuristics off
	Experiment 2: Cplex heuristics on
	Lessons learned
	Branching to force change
	Question
	A new principle
	Probability-based branching
	New: Generalization
	g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5
	To use for branching:
	New: handling equality constraints
	New branching direction methods
	New simultaneous variable and direction selection methods
	New violation-based methods
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Simple branch-up rule is effective
	Lessons learned
	General Disjunctions
	Beyond branching on variables
	“45-degree” general disjunctions
	New methods: principles
	When to insert a general disjunction?
	Constructing a general disjunction
	Constructing a general disjunction
	Constructing a general disjunction
	Branching direction
	Experimental setup
	Compare to baseline Cplex 12.1
	Compare to default Cplex 12.1
	Vs. default Cplex over all models
	Conclusions
	Lessons learned
	References

