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- INTRODUCTION
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Themes

 Relationship between MILP-feasibility and
MILP-optimality

 Seeking MILP-feasibility quickly

* Focus on candidate variables

° Integer/binary variables that do not have
integer/binary values in LP relaxation solution

* Branching to force change in the candidate
variables
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Assumptions

e Branch and bound method for minimization
> Focus on branching

> Branching always needed, even in conjunction with
cutting, local exploration, root node heuristics, etc.

e Simplex LP solver

o Usual MILP choice, for fast restart at child nodes
e Measuring solution speed:

o Time: best

o Simplex iterations: good proxy for time
Non-simplex time must be minimal

Best choice for multi-core machines where time measurements
are not repeatable

> Node count: often poor proxy for time



Interesting patterns...

> NODE SELECTION FOR

FASTER OPTIMALITY



Node selection

e Depth-first
o Choose child of last solved node

o Big advantage: child node almost identical to
parent. Hot start speeds LP solutions!

e Best bound

> Choose node having best bounding function value
anywhere on tree

Usually high in the tree
e Best estimate

> Rate node’s progress toward integer feasibility vs.
degradation in objective function value

e Others...
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Triggering backtrack/jumpback

* Assuming depth-first dive as default
behaviour:

> What conditions trigger backtrack!?
> Which node should be selected?
* Aspiration level trigger:

> Trigger backtrack when node bound is worse
than pre-selected aspiration level



N

Pattern:
Optimality, feasibility, and depth
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Optimality, feasibility, and depth

Lesson

* Node selection chooses the most
bromising node

 Shallowest integer-feasible descendent
most likely to give best objective value

* Ergo: fastest integer-feasibility important
for optimality



Pattern:
Depth and objective value

+ node lower bounds
— — Optimal Level
- - - - Optimal Objective

ran10x10a

3000
| e PRI
2500 - |
2000 - |
T ot
5 1500 7 - 3 PNPPIRRIRE o+ - - - - = == == - - sssonsss e
o PR Nodes at same depth as optimum tend to
1000 ~ : have bounding function values that are
| similar to optimum objective value.
500 - |
0 : Bounds worsen with depth.
I I I I

0 20 40 60 80 100

level



iy
_
[
=
ul]
-+
3
=
-—
=
3
[
T

30

25

20

15

10

Pattern:
Candidates decrease with depth
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Idea:
Aspiration level by linear extrapolation

vipms Branch Flot
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Pattern:
Objective value vs. candidates

demulti _
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Modified best projection

e Two “anchors’:
> root and node with fewest candidates

e For node selection (MOBP):
o 7bp() = 71 + Ci[Zmin(Cmin)_ZO] /(CO_Cmin)
ZbP0): best projection of Z at node i
Z° C% bounding value, candidates at root node

Z', C: bounding value, candidates at node i
C™min; minimum candidate variables at any node

 For setting aspiration level (MPAS):
> Find min(Z"P()) over all active nodes
> Backtrack if Z' > min(Z,()
* Does not need incumbent like original does



/ Pattern:

Common distributions
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Distribution node selection (DIST)

 Balance pursuit of feasibility and optimality
> Smaller Z' and C' both desirable

o Z! larger where C' is smaller, and vice versa

» Ranges quite different: how to balance!

> Normalize ranges of Z' and C' assuming
independent normal probability distributions

> Choose node n = arg min, P(Z < Z')xP(C < ()




// ldea:

Active node search threshold (ANST)

e Advanced node selection can take a lot of
time
 Switch to simple depth-first node selection

if current node selection method is taking
too much time



// Experiments with GLPK 4.9

Performance Profile

Triggering: mod. best proj. aspiration
Active node search threshold

1
—4E]

» 08 —, 1
@
J
-
E .'"“
2 06 rgg § GLPK default with 1
o default ordinary best-projection
=
S 04 Node sel: distribution i
S
O
o

Node sel: mod. best proj.
Triggering: mod. best proj. aspiration
Active node search threshold

1 10 100

ratio to best time




/2

Lessons learned

» MILP-feasibility (candidates) and
optimality are linked

* Patterns relating them can be exploited

» Reaching first integer-feasible solution
quickly helps to reach optimality quickly



Goal: reaching first integer-feasible solution quickly

- ACTIVE CONSTRAINTS

BRANCHING VARIABLE
SELECTION



/ Is branching variable selection important!?

B&B nodes to First Feasible Soln
model Cplex 9.0 | Active-Constraints Method
aflow30a 23,481|22 (A, H,,, Hy, O, P)
aflow40Db 100,000+ (limit) | 33 (H,, O, P)
fast0507 14,753 | 26 (A)
glass4 7,940 |62 (A, Hy,, Hy, O, P)
nsrand-ipx 3,301 |18 (Hy)
timtab2 14,059 | 100,000+ (limit)




Traditional: branch to impact
objective function value

New: branch to impact
active constraints in current
LP-relaxation

Try to make the child LP-
relaxations as different as
possible

LP relaxation
before

branching L» X

/.

Branch on x

Branch ony
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Selecting the branching variable

e Calculate a weight W, for each candidate i in
active constraint k:

o A: W, =1.
o Is candidate variable present in the active constraint?

e M: W, = 1/(no. candidate variables)

o Like A, but relative impact of a constraint normalized by number of
candidate variables it contains

o O: W, = |coeff|/(no. of integer variables)
o size of coefficient affects weight of varb in constraint
* A, O,M: choose k with largest > W,
* Hy, Hp, etc.: choose k with largest W,
e Many other methods....




Experiment |: Cplex heuristics off

Experiment 1 Iterations Performance Profiles
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Experiment 2: Cplex heuristics on

fraction of models

Experiment 2 Ilterations Performance Profiles
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Lessons learned

e It's important to impact the active
constraints

> Forces many candidates to change values
simultaneously

> Forces child node solutions to be quite
different from each other and from parent



Goal: reaching first integer-feasible solution quickly

" BRANCHINGTO FORCE

CHANGE



/2

Question

* Should you branch so child node has largest or
smallest probability of a feasible solution?

* Insight from multiple choice constraints

o x; + x, + x3 +..x, {<,=} |, where x; are binary
Branch down: x; can take real values

Branch up: all x; forced to integer values
o Egix, + X, + x3 + x, = | at (0.25,0.25,0.25, 0.25)

> Branching on x;:
Branch down: (0, 0.333,0.333,0.333) or many others
Branch up: (1,0, 0, 0) is only solution, and all integer.
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A new principle

* Goal: zero candidates (integer feasibility)

e Observations:

o Often: each branching forces roughly 1 candidate
variable to integrality

o Desirable: force as many candidates as possible
to integrality at each branch

* Branch to force change in as many candidate
variables as possible

> Hope that many will take integer values



/ Probability-based branching

Counting solutions (Pesant and Quimper 2008)
e[S ecx = u:lc uare integer values, x integer
o Example: x, + 5x, = 10 where x,,x, 2 0

Value of x, Range for x, Soln count  Soln density

X,=0 0,10] 11 11/18 =0.61
X,=1 0,5] 6 6/18 = 0.33
X,=2 0] 1 1/18 = 0.06
Total solutions 18

» Choose x, =0 for max prob of satisfaction
* Choose x,=2 for min prob of satisfaction
» Which is best?



New: Generalization

Assume:

» All variables bounded, real-valued
e Uniform distribution within range
Result:

¢ linear combination of variables yields
normal distribution for function value

* Example: g(x) = 3x, + 2x, + 5x3,0 = x =5
has mean 25, variance 110.83
* Plot.... Look at g(x) = |2
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g(x) =3x, +2x, + 5x; = |2for0=x =<5

* Probability density plot

e Cumulative prob of satisfying function in blue

Mormal {Gaussian) Distribution

0.04 -

Plg()<12] =
0.03 4 RHS =12 O. I 085

DDZS-

[}
=
a

Pr bability Density

£0.015

0.01 ~

0.005 A

0

0 5 i0 15 20 25 30 35 40 45 LD 55 60




To use for branching:

Mormal {Gaussian) Distribution - Down Direction
- Separate distributions for il T
DOWN and UP branches
due to changed variable £ o
0,025
ranges 5 ooz
- Calculate cumulative -
probability of satisfying
constraint in each direction 0 5 1 15 20 25 0 35 40 45 S0 S5 e
Marmal {Gaussian} Distribution - Up Direction
0.045
0.04 4
Example: —
- Branch on x,=1.5 .
E.“D 025
% RHS =12
- Down:x, range [0,1],p=0.23 |5 °=
20,015
- Up: x, range [2,5], p=0.05 /
0.0085 4
] T T T T T T T T T T T ]
a E 10 15 20 25 =20 =5 40 4K I=1n} EE 60
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New: handling equality constraints

g(x) =3x;+2x, + 5x;= [2for0 = x =5

=
& o
= ]
ra n

Frobability Density

=]
[
=
93]

0

0.04

0.035 +

0.03 4

0.01 +

0.005 A

Mormal {Gaussian) Distribution

RHS =12

Equality “probability” =
(smaller cum. prob)
(larger cum. prob)

¢mmm (./085/0.8915=0.1217

0 5 10 15 20 25 30 35 40 45 G50 55 60

P[g(x)<12]=0.1085

€—>€

>
P[g(x)212]=0.8915

Gives value between 0 and |.

Larger value means more centred in
the distribution, hence larger chance
of satisfying the equality
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New branching direction methods

Given the branching variable:

* Choose direction based on cum. prob. in any
active constraint branching variable is in:

o LCP: Lowest cum. prob. in any active constraint
o HCP: Highest cum. prob. in any active constraint

* Choose direction based on votes using cum. prob.
in all active constraints branching variable is in:

o LCPV: direction most often selected based on lowest
cum. prob.

o HCPV: direction most often selected based on highest
cum. prob.



// New simultaneous variable and
direction selection methods

e VDS-LCP: choose varb and direction having
lowest cum. prob. among all candidate varbs
and all active constraints containing them

* VDS-HCP: choose varb and direction having
highest cum. prob. among all candidate
varbs and all active constraints containing
them
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New violation-based methods

e Fix all variables except branching variable.What
happens when branching UP vs. DOWN?
o Inequadlity: is act. constraint violated or still satisfied?
o Equality:
“violated”: less centred direction
“satisfied”: more centred direction

e MVV:MostViolated Votes method

> Choose direction that violates largest number of active
constraints containing branching varb.

o MSV: Most Satisfied Votes method



Fraction of Models

o
w

0.2

0.1

LCP/LCPV vs. HCP/HCPV

o
a~

=—GLPK Default

Branching to lower HCP
le. . . —+—HCP
probabilities is better
—«LCPV
==HCPV
; 4 5 6 7 : 5 0

Ratio to Fewest Simplex Iterations
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Ratio to Fewest Simplex Iterations



Fraction of Models
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Branching to violate
constraints is better
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Fraction of Models

A-UP vs.VDS-LCP

0.9 =5
0.8 e —
0.7
0.6
0.5
0.4
A-UP: Method A to ~+~GLPK Defaule
2 select variable, always AU
0! branch up. TVDSACP
0

| 2 3 4 5 6 7 8 9 10
Ratio to Fewest Simplex Iterations
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Fraction of Models
o o o o
N w N (9,1

e

o

Simple branch-up rule is effective

Up vs. Down vs. Closest Integer: All Models

Why does it work?

73% of MIPLIB models have at least

one multiple choice constraint!

=—GLPK Default
Up
—+-Down

—Closest Integer

2 3 4 5 6 7
Ratio to Fewest Simplex Iterations



// Lessons learned

* Most effective:

> Branch to low probability variables and
directions

> Branch to violate constraints
> Branch to force change in the candidates

o Compare:
> MILP:
Constraints always satisfied, varbs not integer

> Constraint programming:
Constraints not satisfied, varbs always integer



Goal: reaching first integer-feasible solution quickly

- GENERAL

DISJUNCTIONS
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Beyond branching on variables

* Why not branch on a general linear
equation? E.g.:
caX; t ayx, tax;+..+tax sk
caX; tax, tax;+.+tax 2k+ |
> a;and k are integers
o Literature:

° Very hard to find a good general disjunction
NP-hard to find best general disjunction

> Usually fewer nodes, but much more time
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“45-degree” general disjunctions

o Coefficients are +1,-1,0
* Run through many lattice points
* Leave an empty interior

Still NP-hard to

find best
disjunction
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New methods: principles

* When to use a general disjunction:

° Infrequently, only when it is beneficial

e Constructing the general disjunction:

> 45 degree type, based on the active constraint
having the most impact on candidate variables

Reverse of active constraint variable branching

° Branch to force change!
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When to insert a general disjunction?

* Only when there are many candidate
variables (60+)

° i.e.large models, high in tree

e Only when axis-parallel branching is stalling:

> Monitor:
number of candidates

infeasibility sum
o 2A: both increase 3 times in a row

o 2B: either increase |10 times in a row



/2

Constructing a general disjunction

|. Select active constraint as foundation:

> 3A: Choose active constraint having most
integer variables. Break ties using highest sum
of integer-variable absolute coefficients.

> 3B: Choose active constraint having most
candidate variables. Break ties using highest
sum of candidate-variable absolute
coefficients.




Constructing a general disjunction

2. If foundation is an inequality:
. . >  Branching disjunction is
(./—'—\, g dis]

| Hﬁ approximately parallel to foundation:
J'*. “E': H\ . match signs
‘/ % o E.g.:2x, —7x, + 15x; = 30,

where x; 2 0 and integer.
LP-relaxation soln (4.6, 3.2, 2.88)

Down branch:

X, —X,+x3 < |4.6-3.2 +2.88| = 4
Up branch:

X|—XyFX3 2 |14.6-3.2+2.88]| + I=5

Red line: foundation
Dashed lines: disjunction
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Constructing a general disjunction

3. If foundation is an equality:

> Branching disjunction: approximately perpendicular to
foundation(exactly perpendicular to approx. parallel)
No point to approximately parallel: usually no intersection

> Many ways to construct!

E.g.: approx parallel x,—x,+x;

Approx perpend: (1,1,0), (-1,0,1), (O,1,1), etc.
> Method:

Odd no. coeffs: set least impact coeff to zero

Least impact: cont < non-cand int < cand with larger int infeas
< larger abs coeff in foundation < varb in more active
constraints

Switch signs in remaining varbs on even counter
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Branching direction

* Branch to force change

e Approx parallel disjunctions:
> BA: satisfying direction of inequality, offset by 1

Offset in case disjunction lies on foundation (e.g.
multiple choice foundation)

Pushes into feasible region

> 5B: farther from LP-relaxation optimum pt

e Approx perpendicular disjunctions:

° Farther from LP-relaxation optimum



Experimental setup

e Built into Cplex |2.1 via callbacks

e Default Cplex: all default except:
o Stop at first integer-feasible solution
> Emphasize integer-feasibility
o Depth-first search
> Time limit 8 hours
> Single thread

e Baseline Cplex: same as default but also:
° Pre-solve off
> Aggregation off
° Internal node heuristics off
o Cut generation off



Compare to baseline Cplex 2.1

Fraction of Models
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Compare to default Cplex 12.1

Performance Profile on Simplex Iterations
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Vs. default Cplex over all models

Performance Profile on Simplex Iterations
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- CONCLUSIONS
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Lessons learned

* There are patterns in MILP solutions that
can be exploited

 Seeking integer-feasibility and seeking
optimality are related

* Branching should force change in the
candidate variables

 General disjunctions can be helpful
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