Recent Advances in Mixed-Integer Linear Programming at Carleton University

John W. Chinneck Systems and Computer Engineering Carleton University Ottawa, Canada

Outline

- I. Introduction
- 2. Node selection for faster optimality
 - Important common patterns
- 3. Active constraints branching variable selection
- 4. Branching to force change
- 5. General disjunctions
- 6. Conclusions

° INTRODUCTION

Themes

- Relationship between MILP-feasibility and MILP-optimality
- Seeking MILP-feasibility quickly
- Focus on candidate variables
 - Integer/binary variables that do not have integer/binary values in LP relaxation solution
- Branching to force change in the candidate variables

Assumptions

Branch and bound method for minimization

- Focus on branching
- Branching always needed, even in conjunction with cutting, local exploration, root node heuristics, etc.

• Simplex LP solver

• Usual MILP choice, for fast restart at child nodes

• Measuring solution speed:

- Time: best
- Simplex iterations: good proxy for time
 - Non-simplex time must be minimal
 - Best choice for multi-core machines where time measurements are not repeatable
- Node count: often poor proxy for time

Interesting patterns...

0

NODE SELECTION FOR FASTER OPTIMALITY

Node selection

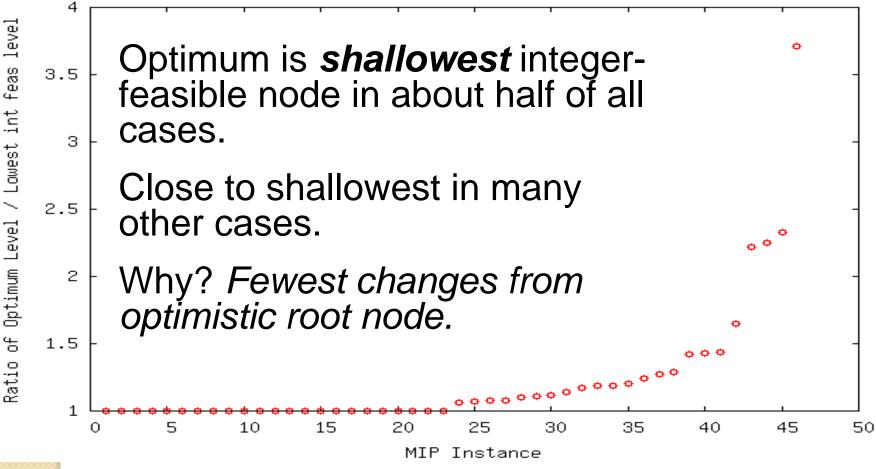
- Depth-first
 - Choose child of last solved node
 - Big advantage: child node almost identical to parent. Hot start speeds LP solutions!
- Best bound
 - Choose node having best bounding function value anywhere on tree
 - Usually high in the tree
- Best estimate
 - Rate node's progress toward integer feasibility vs. degradation in objective function value
- Others...

Triggering backtrack/jumpback

- Assuming depth-first dive as default behaviour:
 - What conditions trigger backtrack?
 - Which node should be selected?
- Aspiration level trigger:
 - Trigger backtrack when node bound is worse than pre-selected aspiration level

Pattern: Optimality, feasibility, and depth

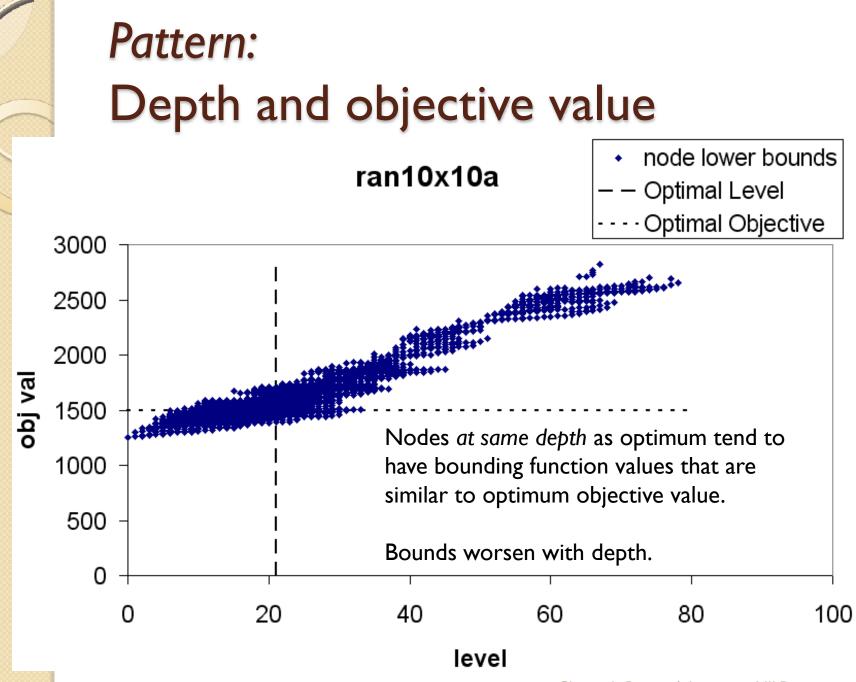
Relative Optimum Level



Optimality, feasibility, and depth

Lesson

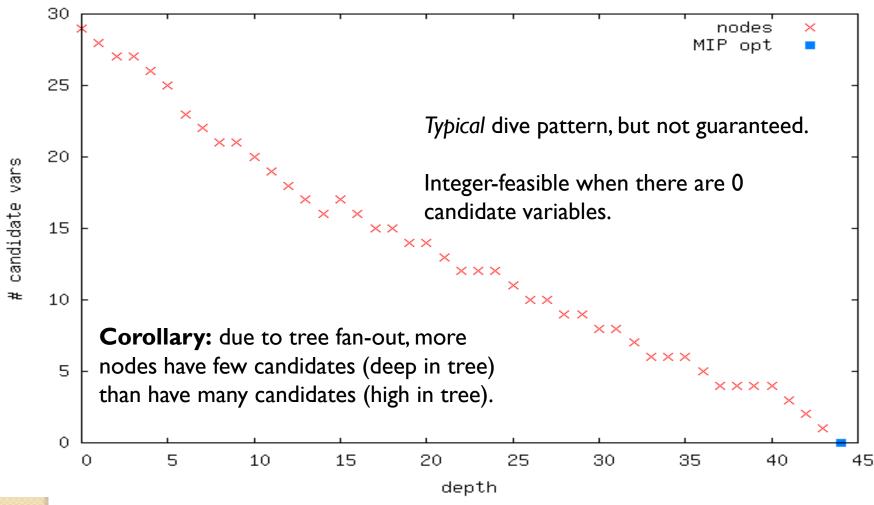
- Node selection chooses the most promising node
- Shallowest integer-feasible descendent most likely to give best objective value
- Ergo: fastest integer-feasibility important for optimality



Chinneck: Recent Advances in MILP

Pattern: Candidates decrease with depth

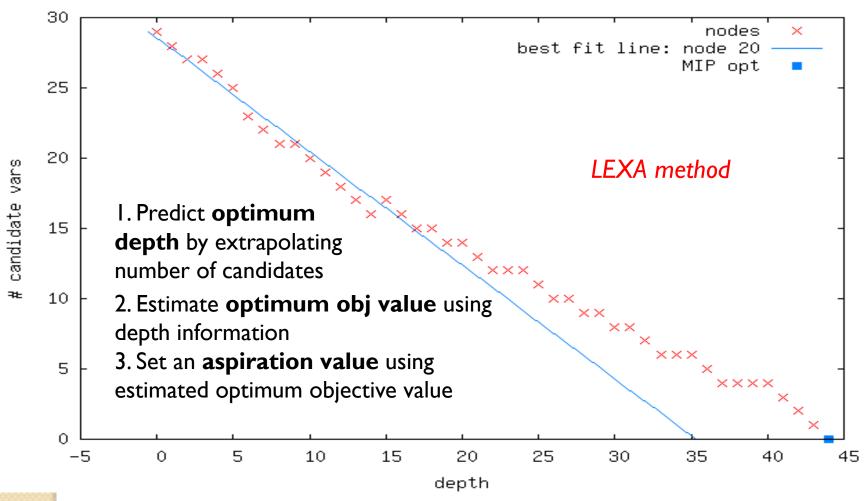
vpm2 Branch Plot



Chinneck: Recent Advances in MILP

Idea: Aspiration level by linear extrapolation

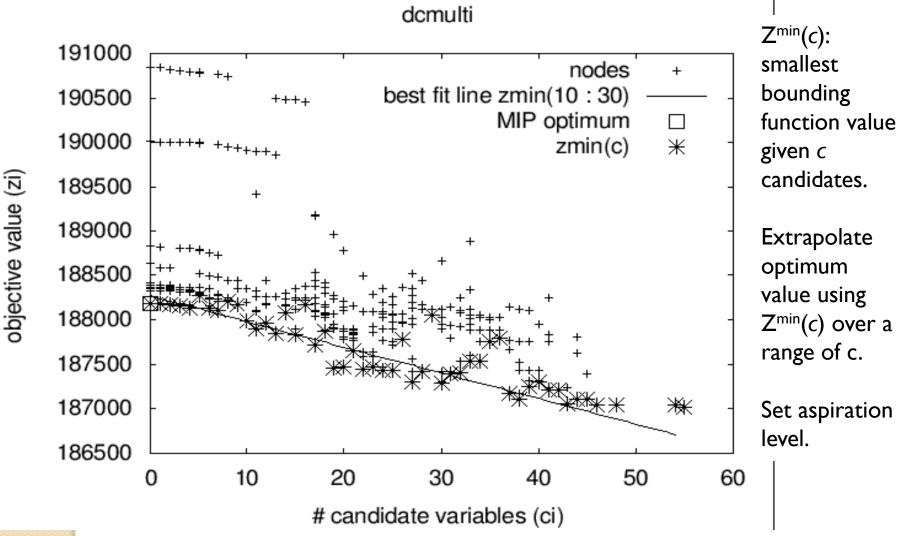
vpm2 Branch Plot



Chinneck: Recent Advances in MILP

Pattern:

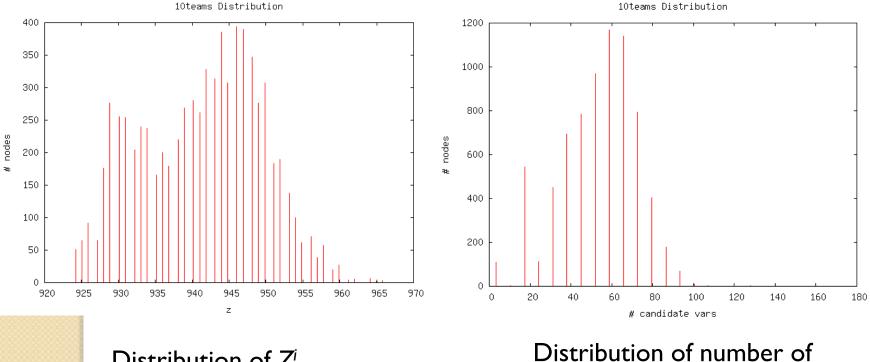
Objective value vs. candidates



Modified best projection

- Two "anchors":
 - root and node with fewest candidates
- For node selection (MOBP):
 - $Z^{bp(i)} = Z^{i} + C^{i}[Z^{min}(C^{min})-Z^{0}]/(C^{0}-C^{min})$
 - $Z^{bp(i)}$: best projection of Z at node i
 - Z^0 , C^0 : bounding value, candidates at root node
 - Z^i , C^i : bounding value, candidates at node *i*
 - *C^{min}*: minimum candidate variables at any node
- For setting aspiration level (MPAS):
 - Find min $(Z^{bp(i)})$ over all active nodes
 - Backtrack if $Z^i > \min(Z^{bp(i)})$
- Does not need incumbent like original does

Pattern: **Common distributions**



Distribution of Z^i

candidate variables

Both distributions often Normal-like

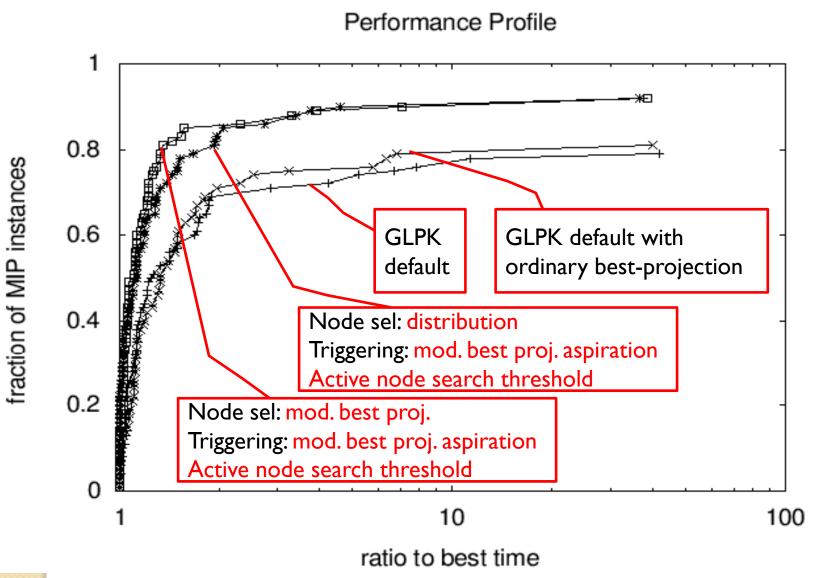
Distribution node selection (DIST)

- Balance pursuit of feasibility and optimality
 - Smaller Z^i and C^i both desirable
 - Z^i larger where C^i is smaller, and vice versa
- Ranges quite different: how to balance?
 Normalize ranges of Zⁱ and Cⁱ <u>assuming</u> independent normal probability distributions
 - Choose node $n = \arg \min_i P(Z \le Z^i) \times P(C \le C^i)$

Idea: Active node search threshold (ANST)

- Advanced node selection can take a lot of time
- Switch to simple depth-first node selection if current node selection method is taking too much time

Experiments with GLPK 4.9



Lessons learned

- MILP-feasibility (candidates) and optimality are linked
- Patterns relating them can be exploited
- Reaching first integer-feasible solution quickly helps to reach optimality quickly

Goal: reaching first integer-feasible solution quickly

ACTIVE CONSTRAINTS BRANCHING VARIABLE SELECTION

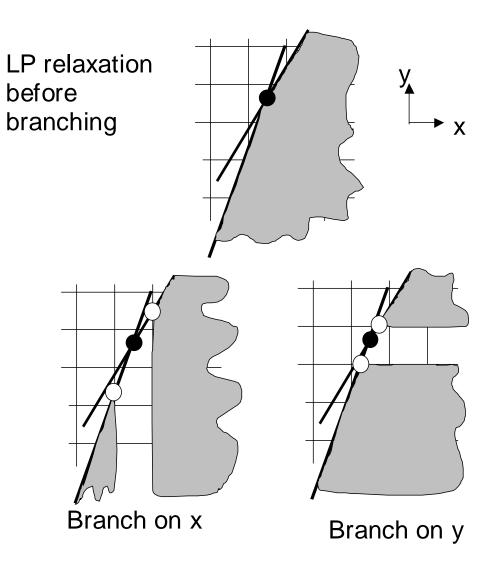
Is branching variable selection important?

	B&B nodes to First Feasible Soln	
model	Cplex 9.0	Active-Constraints Method
aflow30a	23,481	22 (A, H_M, H_O, O, P)
aflow40b	100,000+ (limit)	33 (H _O , O, P)
fast0507	14,753	26 (A)
glass4	7,940	$62 (A, H_M, H_O, O, P)$
nsrand-ipx	3,301	18 (H _M)
timtab2	14,059	100,000+ (limit)

Traditional: branch to impact objective function value

New: branch to impact active constraints in current LP-relaxation

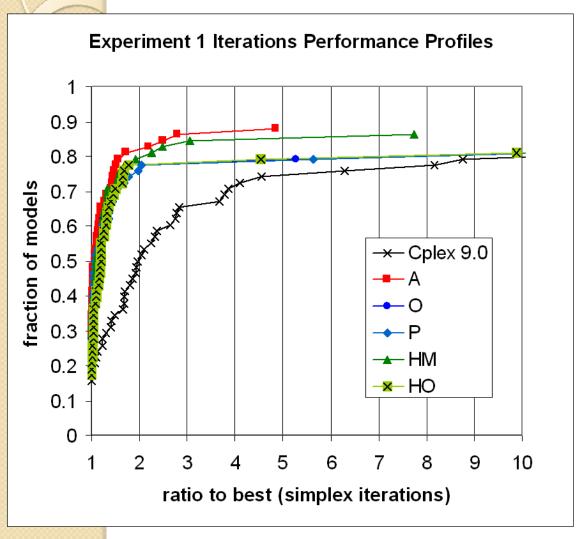
Try to make the child LPrelaxations as different as possible

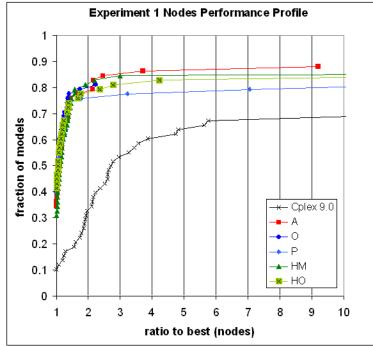


Selecting the branching variable

- Calculate a weight W_{ik} for each candidate i in active constraint k:
- **A:** W_{ik}=1.
 - Is candidate variable present in the active constraint?
- M: W_{ik} = 1/(no. <u>candidate variables</u>)
 - Like A, but relative impact of a constraint normalized by number of candidate variables it contains
- O: W_{ik} = |coeff_i|/(no. of <u>integer variables</u>)
 - size of coefficient affects weight of varb in constraint
- A, O, M: choose k with largest $\sum_{i} W_{ik}$
- H_M , H_O , etc.: choose k with largest W_{ik}
- Many other methods....

Experiment I: Cplex heuristics off



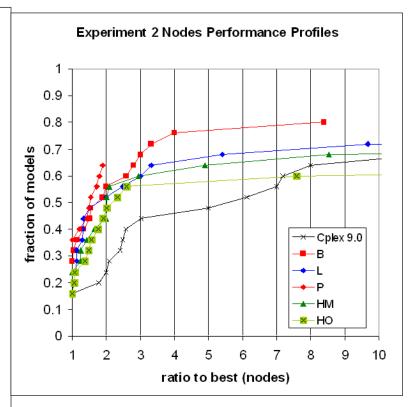


Usually a better optimality gap at first integer-feasible solution (53-78% of models).

Experiment 2: Cplex heuristics on

0.9 0.8 0.7 fraction of models 0.6 0.5 0.4 \rightarrow Cplex 9.0 0.3 0.2 HM 📥 0.1 -X-HO 0 2 10 3 5 6 8 9 4 1 7 ratio to best (iterations)

Experiment 2 Iterations Performance Profiles



Only for models not solved at root node.

Usually a smaller optimality gap at first integer-feasible solution

Lessons learned

- It's important to impact the active constraints
 - Forces many candidates to change values simultaneously
 - Forces child node solutions to be quite different from each other and from parent

Goal: reaching first integer-feasible solution quickly

0

BRANCHING TO FORCE CHANGE

Question

- Should you branch so child node has *largest* or smallest probability of a feasible solution?
- Insight from multiple choice constraints
 - $x_1 + x_2 + x_3 + ... x_n \{\leq,=\}$ I, where x_i are binary
 - Branch down: x_i can take real values
 - Branch up: all x_i forced to integer values
 - E.g.: $x_1 + x_2 + x_3 + x_4 = 1$ at (0.25, 0.25, 0.25, 0.25)
 - Branching on x_1 :
 - Branch down: (0, 0.333, 0.333, 0.333) or many others
 - Branch up: (1, 0, 0, 0) is only solution, and **all integer**.

A new principle

- Goal: zero candidates (integer feasibility)
- Observations:
 - <u>Often</u>: each branching forces roughly 1 candidate variable to integrality
 - <u>Desirable</u>: force as many candidates as possible to integrality at each branch
- Branch to force change in as many candidate variables as possible
 - Hope that *many* will take integer values

Probability-based branching

Counting solutions (Pesant and Quimper 2008)

- $l \leq cx \leq u : l, c, u$ are integer values, x integer
- Example: $x_1 + 5x_2 \le 10$ where $x_1, x_2 \ge 0$ Value of x₂ Range for x₁ Soln count Soln density 11/18 = 0.61 $x_2 = 0$ [0, 10]11 6/18 = 0.33 x₂=1 [0,5] 6 1/18 = 0.06*x*₂=2 [0] 1 18 Total solutions
- Choose x₂ =0 for max prob of satisfaction
- Choose x₂=2 for min prob of satisfaction
- Which is best?

New: Generalization

Assume:

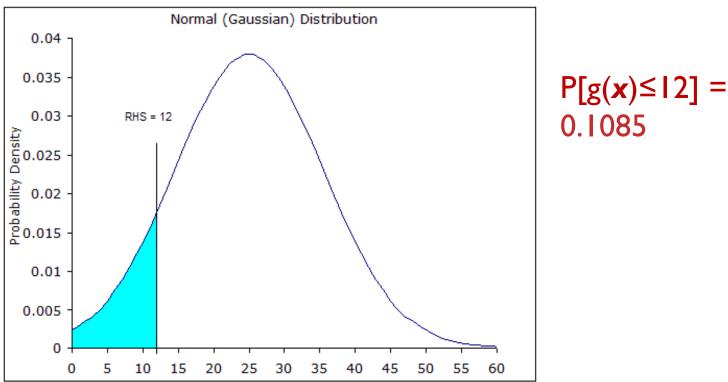
- All variables bounded, real-valued
- Uniform distribution within range
 Result:
- linear combination of variables yields normal distribution for function value
- Example: $g(x) = 3x_1 + 2x_2 + 5x_3, 0 \le x \le 5$ has mean 25, variance 110.83
- Plot.... Look at $g(x) \leq 12$

32

$g(\mathbf{x}) = 3x_1 + 2x_2 + 5x_3 \le 12$ for $0 \le \mathbf{x} \le 5$

Probability density plot

Cumulative prob of satisfying function in blue

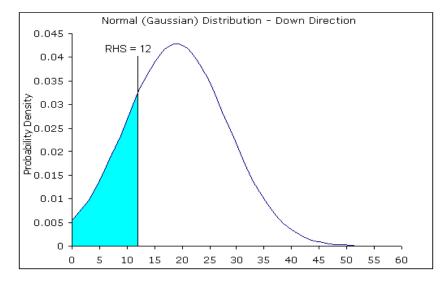


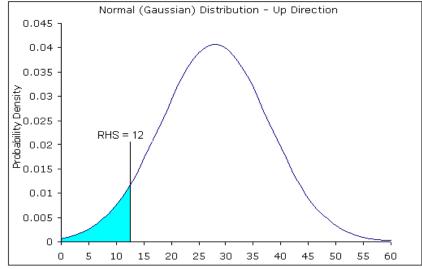
To use for branching:

- Separate distributions for DOWN and UP branches due to changed variable ranges
- Calculate cumulative probability of satisfying constraint in each direction

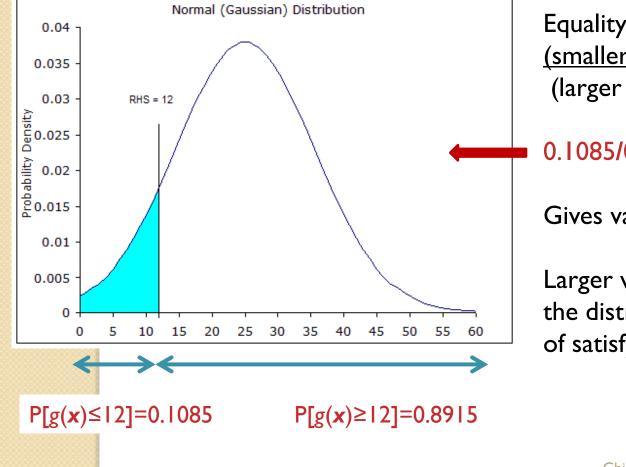
Example:

- Branch on $x_1 = 1.5$
- Down: x₁ range [0,1], p=0.23
- Up: x₁ range [2,5], p=0.05





New: handling equality constraints $g(\mathbf{x}) = 3x_1 + 2x_2 + 5x_3 = 12$ for $0 \le \mathbf{x} \le 5$



Equality "probability" = (smaller cum. prob) (larger cum. prob)

0.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in the distribution, hence larger chance of satisfying the equality

35

New branching direction methods

Given the branching variable:

- Choose direction based on cum. prob. in <u>any</u> active constraint branching variable is in:
 - LCP: Lowest cum. prob. in any active constraint
 - HCP: Highest cum. prob. in any active constraint
- Choose direction based on votes using cum. prob. in <u>all</u> active constraints branching variable is in:
 - LCPV: direction most often selected based on lowest cum. prob.
 - HCPV: direction most often selected based on highest cum. prob.

New simultaneous variable and direction selection methods

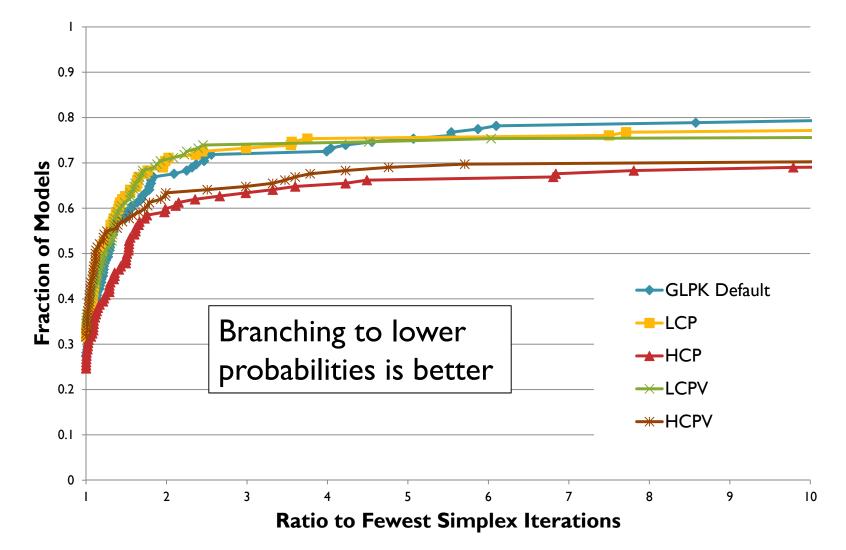
• VDS-LCP: choose varb *and* direction having lowest cum. prob. among all candidate varbs and all active constraints containing them

 VDS-HCP: choose varb and direction having highest cum. prob. among all candidate varbs and all active constraints containing them

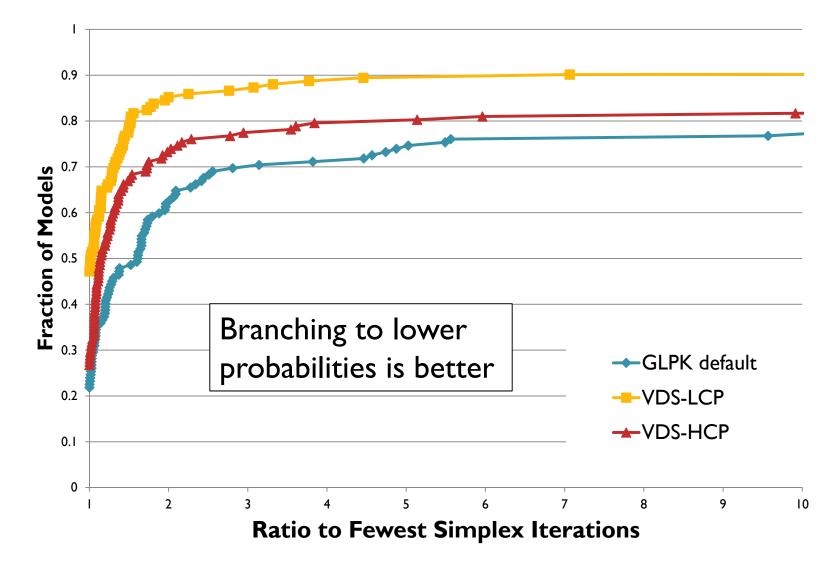
New violation-based methods

- Fix all variables except branching variable. What happens when branching UP vs. DOWN?
 - Inequality: is act. constraint violated or still satisfied?
 - Equality:
 - "violated": less centred direction
 - "satisfied": more centred direction
- MVV: Most Violated Votes method
 - Choose direction that violates largest number of active constraints containing branching varb.
- MSV: Most Satisfied Votes method

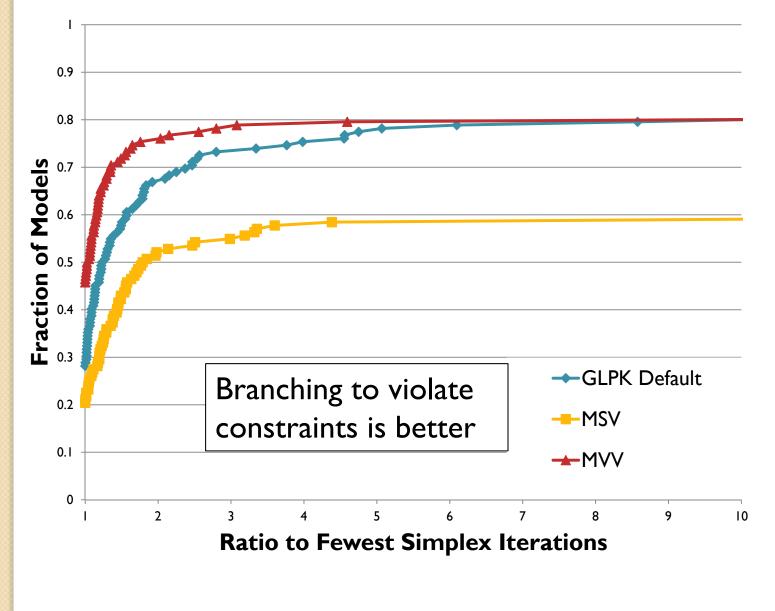
LCP/LCPV vs. HCP/HCPV



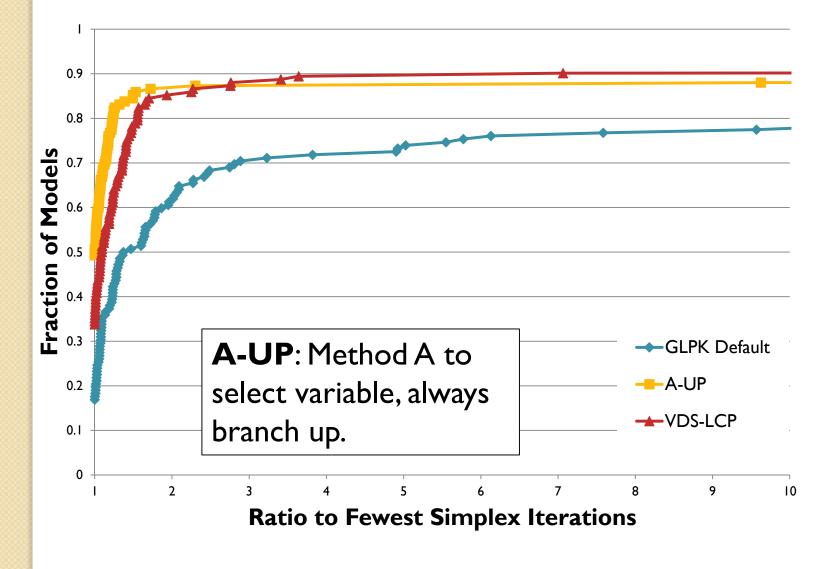
VDS-LCP vs.VDS-HCP

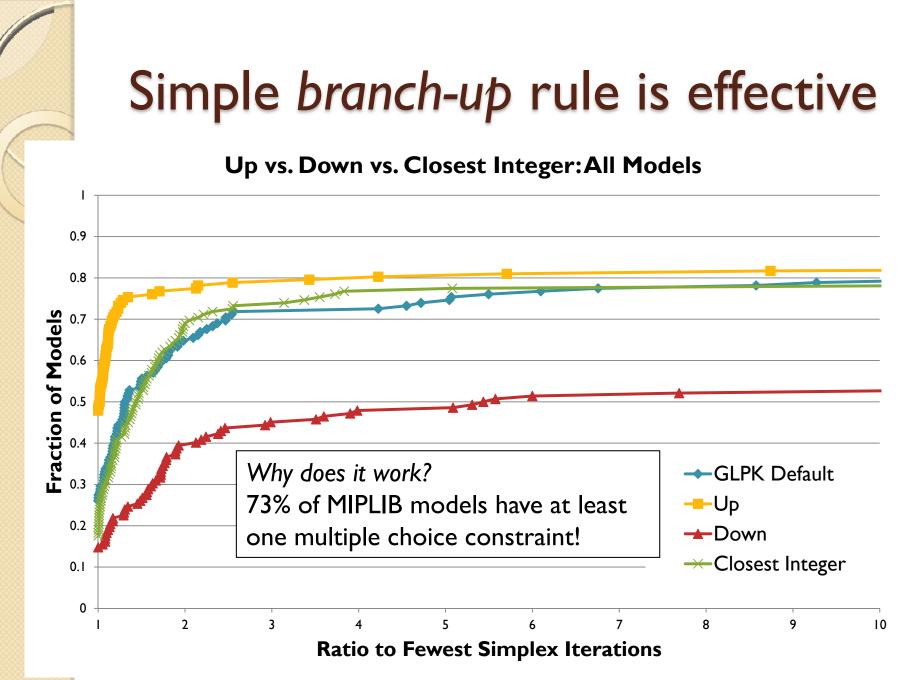


MVV vs. MSV



A-UP vs.VDS-LCP





Lessons learned

- Most effective:
 - Branch to low probability variables and directions
 - Branch to violate constraints
 - Branch to force change in the candidates
- Compare:
 - MILP:
 - Constraints always satisfied, varbs not integer
 - Constraint programming:
 - Constraints not satisfied, varbs always integer

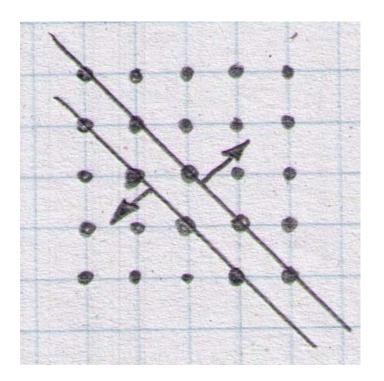
Goal: reaching first integer-feasible solution quickly

GENERAL DISJUNCTIONS

Beyond branching on variables

- Why not branch on a general linear equation? E.g.:
 - $\circ a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n \le k$
 - $a_1x_1 + a_2x_2 + a_3x_3 + ... + a_nx_n \ge k + 1$
 - \circ a_i and k are integers
- Literature:
 - Very hard to find a good general disjunction
 - NP-hard to find best general disjunction
 - Usually fewer nodes, but much more time

- Coefficients are +1, -1, 0
- Run through many lattice points
- Leave an empty interior



Still NP-hard to find best disjunction

New methods: principles

- When to use a general disjunction:
 - Infrequently, only when it is beneficial
- Constructing the general disjunction:
 - 45 degree type, based on the active constraint having the most impact on candidate variables
 - <u>Reverse</u> of active constraint variable branching
 - Branch to force change!

- Only when there are many candidate variables (60+)
 - i.e. large models, high in tree
- Only when axis-parallel branching is stalling:
 - Monitor:
 - number of candidates
 - infeasibility sum
 - **2A**: both increase 3 times in a row
 - **2B**: either increase 10 times in a row

Constructing a general disjunction

- I. Select active constraint as foundation:
 - **3A**: Choose active constraint having most <u>integer variables</u>. Break ties using highest sum of <u>integer-variable</u> absolute coefficients.
 - **3B**: Choose active constraint having most <u>candidate variables</u>. Break ties using highest sum of <u>candidate-variable</u> absolute coefficients.

Constructing a general disjunction

Red line: foundation

Dashed lines: disjunction

2. If foundation is an **inequality**:

- Branching disjunction is
 approximately parallel to foundation:
 match signs
 - E.g.: $2x_1 7x_2 + 15x_3 \le 30$, where $x_i \ge 0$ and integer. LP-relaxation soln (4.6, 3.2, 2.88)
 - Down branch:
 - $x_1 x_2 + x_3 \le \lfloor 4.6 3.2 + 2.88 \rfloor = 4$

Up branch:

 $x_1 - x_2 + x_3 \ge \lfloor 4.6 - 3.2 + 2.88 \rfloor + 1 = 5$

Constructing a general disjunction

3. If foundation is an **equality**:

- Branching disjunction: approximately perpendicular to foundation(exactly perpendicular to approx. parallel)
 - No point to approximately parallel: usually no intersection
- Many ways to construct!
 - E.g.: approx parallel $x_1 x_2 + x_3$
 - Approx perpend: (1,1,0), (-1,0,1), (0,1,1), etc.
- Method:
 - Odd no. coeffs: set least impact coeff to zero
 - Least impact: cont < non-cand int < cand with larger int infeas
 < larger abs coeff in foundation < varb in more active constraints
 - Switch signs in remaining varbs on even counter

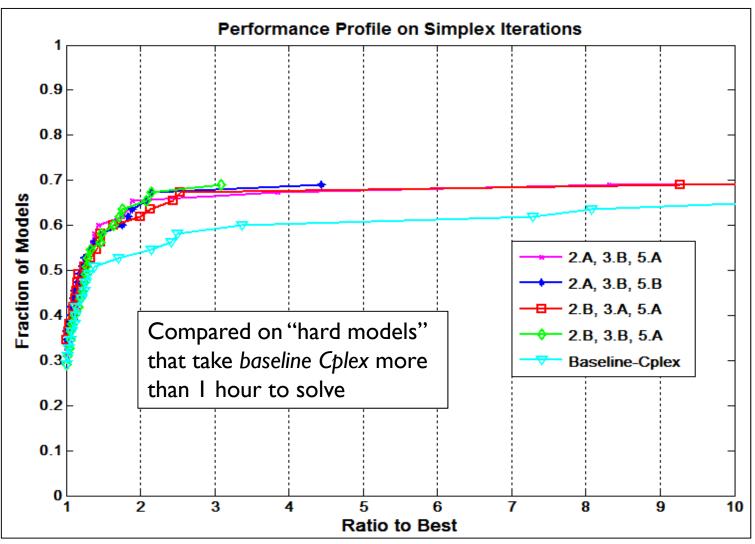
Branching direction

- Branch to force change
- Approx parallel disjunctions:
 - \circ **5A**: satisfying direction of inequality, offset by 1
 - Offset in case disjunction lies <u>on</u> foundation (e.g. multiple choice foundation)
 - Pushes into feasible region
 - **5B**: farther from LP-relaxation optimum pt
- Approx perpendicular disjunctions:
 - Farther from LP-relaxation optimum

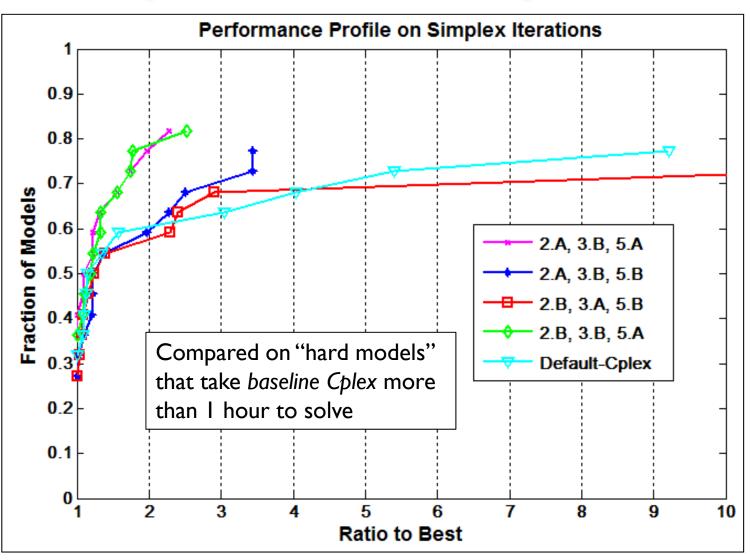
Experimental setup

- Built into Cplex 12.1 via callbacks
- **Default Cplex**: all default except:
 - Stop at first integer-feasible solution
 - Emphasize integer-feasibility
 - Depth-first search
 - Time limit 8 hours
 - Single thread
- **Baseline Cplex**: same as default but also:
 - Pre-solve off
 - Aggregation off
 - Internal node heuristics off
 - Cut generation off

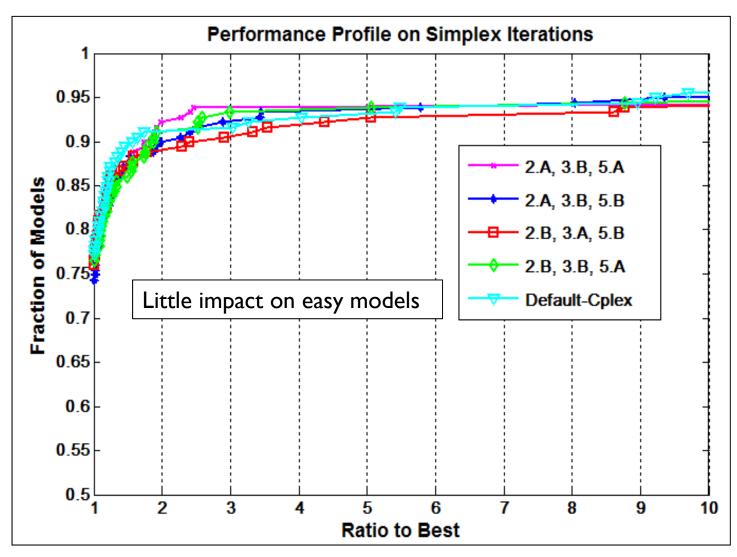
Compare to baseline Cplex 12.1



Compare to default Cplex 12.1



Vs. default Cplex over all models



CONCLUSIONS

Lessons learned

- There are *patterns* in MILP solutions that can be exploited
- Seeking integer-feasibility and seeking optimality are *related*
- Branching should force change in the candidate variables
- General disjunctions can be helpful

References

- H. Mahmoud and J.W. Chinneck (2012), Achieving MILP Feasibility Quickly Using General Disjunctions, in preparation.
- J. Pryor and J.W. Chinneck (2011), Faster Integer-Feasibility in Mixed-Integer Linear Programs by Branching to Force Change, Computers and Operations Research, vol. 38, pp.1143–1152.
- D.T. Wojtaszek and J.W. Chinneck (2010), Faster MIP Solutions via New Node Selection Rules, Computers and Operations Research, vol. 37, no. 9, pp. 1544-1556.
- J. Patel and J.W. Chinneck (2007), Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs, Mathematical Programming Series A, vol. 110, pp. 445-474.