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Abstract 

Branching in mixed-integer (or integer) linear programming requires choosing both the 
branching variable and the branching direction. This paper develops a number of new methods 
for making those two decisions either independently or together with the goal of reaching the 
first integer-feasible solution quickly.  These new methods are based on estimating the 
probability of satisfying a constraint at the child node given a variable/direction pair.  The 
surprising result is that the first integer-feasible solution is usually found much more quickly 
when the variable/direction pair with the smallest probability of satisfying the constraint is 
chosen.  This is because this selection forces change in many candidate variables 
simultaneously, leading to an integer-feasible solution sooner.  Extensive empirical results are 
given. 

1. Introduction 

Mixed-integer linear programs (MILP) are composed of a linear objective function and linear 
constraints over a set of variables, some or all of which are restricted to take on integer or 
binary values ("integer" is assumed to include "binary" as a special case hereafter).  The most 
popular solution approach is branch and bound, supplemented with cuts and various other 
heuristics such as local searching (see e.g. Johnson et al. (2000)).  Nodes in the resulting search 
tree are variations on the original model with tightened bounds on the integer variables and/or 
added cut constraints. The bounding formula applied at a node in the search tree consists of 
the solution of a linear programming (LP) relaxation of the modified version of the original 
model represented by the node.  The LP relaxation is a linear programming solution of the node 
model that simply ignores the integer restrictions on the variables. 
 
A branch and bound node that is chosen for further expansion has an LP relaxation solution in 
which at least one of the integer variables does not have an integer value; such integer 
variables are candidates for branching.  A candidate variable is chosen for branching and two 
child nodes are created: branching up adjusts the bound on the branching variable to be no less 
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than the current value rounded up, while branching down adjusts the bound on the branching 
variable to be no more than the current value rounded down. If there are k candidate variables, 
then there are 2k ways to proceed from the current node to the next node in the usual depth-
first exploration of the search tree.  The heuristic used for choosing which of the 2k potential 
child nodes to explore next can have a major impact on the speed of the MILP solution. 
 
There are two main ways to branch, i.e. to choose the child node to explore next.  The most 
common approach is to first choose the candidate variable, and then choose the branching 
direction (i.e. decide whether to branch up or down).  A great deal of research exists on 
heuristics for choosing the candidate variable, but there is surprisingly little research on the 
best way to choose the branching direction once the candidate variable has been selected.  The 
second approach is to choose the branching variable and the branching direction 
simultaneously.  There is relatively little research on techniques in this category. 
 
This paper addresses the question of the best branching heuristic (i.e. the heuristic that most 
often reaches the first feasible solution fastest), given the node that is to be expanded.  
Exploring this question sheds some light on the characteristics of MILP models that affect how 
well various branching techniques work.  Influential characteristics include the presence or 
absence of equality constraints, the inclusion of "multiple choice" constraints, and the fraction 
of inequality constraints that are violated by adjusting the branching variable in the up vs. down 
directions.  The analysis uncovers some important general principles in branching. 
 
The metric of interest in this paper is speed in reaching the first integer-feasible solution.  This 
is important for several reasons.  First, several classes of MILP problems do not have an 
objective function and require only a feasible solution.  Second, in very large MILPs it is wise to 
reach an incumbent solution early so that at least one integer-feasible solution is in hand 
should the time limit be reached, and because an incumbent is then available for pruning the 
developing tree, thereby reducing the overall solution time.  Third, if the node selection 
heuristic is effective, then reaching an integer-feasible descendent of the chosen node quickly 
should lead to an optimum solution more quickly. 
 
There are a variety of branching heuristics, though most are oriented towards fast optimality as 
opposed to fast integer-feasibility; see e.g. Achterberg et al. [2005] for an overview and 
assessment.  Many algorithms first choose the branching variable and then the branching 
direction, using separate algorithms for each decision. Given the branching variable, the most 
common direction selection heuristics are: branch up always, branch down always, or branch to 
the closest integer.  Branching to the farthest integer is also sometimes used.  A number of 
commercial solvers include a parameter that allows the user to make any of these choices, 
along with the choice to let the solver decide the branching direction using its own heuristic. 
 
Previous research provides no definite conclusions about which branching direction heuristic is 
best.  Meyer et al. [2003] studied branching direction selection in the context of optimizing the 
placement of radioactive seeds for cancer treatment. They compared the branch up, branch 
down, and closest integer direction selection heuristics in combination with different node 
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selection, variable selection and scaling techniques, as well as with variations on the MILP 
model itself. They conclude that the branching direction heuristic has a significant impact on 
solution times, but could not identify an overall best heuristic: each method performed better 
or worse depending on the scaling method used. For example, branching down worked well 
with aggressive scaling, and branching up worked best with standard scaling. 
 
Jariwala [1995] studied branch and bound solutions to the dynamic layout problem, comparing 
the usual three branching direction selection heuristics: branch up, branch down, and closest 
integer. He concludes that fixing the branching variable direction selection to either branch up 
or branch down is more effective than using the closest integer heuristic for this problem. 
Bernatzki et al. [1998] looked at branching direction selection heuristics in a MILP model for 
optimizing scrap combination for steel production.  They test branching up and branching down 
on the binary variables, and concluded that branching down performs best for this model. 
 
Driebeek [1966] developed a well-known branching heuristic that selects both the branching 
variable and the branching direction. Tomlin [1971] extended Driebeek’s idea by considering 
the integrality of variables. The resulting Driebeek and Tomlin method is a penalty method that 
estimates the potential degradation of the objective function value due to selecting a candidate 
variable, as estimated by performing a dual simplex pivot, which generates a lower bound on 
the bound improvement possible if a given candidate variable is selected as the branching 
variable [Linderoth and Ralphs 2004].  Degradation bounds are calculated separately for 
branching up and for branching down. The largest degradation bound is used to choose the 
branching variable, and once chosen, the smaller of the bounds for that variable is used to 
choose the branching direction. This method is designed to reach optimality quickly, rather 
than integer feasibility. It is the default heuristic for branching variable and direction selection 
in the GLPK MILP solver [Makhorin 2008] that is used in the experiments reported in this paper. 
 
There are a variety of specialized algorithms for reaching integer-feasibility quickly in MILPs that 
are not solely branching heuristics.  The pivot-and-shift algorithm (Balas and Martin 1986) has a 
first phase that seeks integer feasibility using a variety of special techniques including rounding, 
specialized pivots and small neighbourhood searches.  The OCTANE heuristic (Balas et al. 2001) 
for binary integer programs uses the intersection of the improving direction with the extended 
facets of the solution hyper-octagon to identify good binary solutions to try.  The feasibility 
pump (Fischetti et al. 2005) alternates linear programming solutions with rounding.  This paper 
concentrates on branching-related methods. 
 
The general folklore is that branching in the up direction is usually best.  This is definitely true in 
the case of so-called "multiple choice" constraints, which are composed entirely of binary 
variables and have the form x1 + x2 + x3 + ... xn {≤,=} 1.  For these constraints, branching up on 
the branching variable (i.e. setting it to 1) forces all other variables in the constraint to zero, 
hence all variables take on integer values simultaneously.  On the other hand, branching down 
on the branching variable (i.e. setting it to 0) allows the other variables to take on non-integer 
values, hence fewer, if any, are forced to integer values.  Branching up on a variable in a 
multiple choice constraint is decidedly preferable for reaching integer-feasibility quickly. 
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While not guaranteed, each branch in a branch and bound solution will more often than not 
force the branching variable to an integer value.  To reach an integer feasible solution more 
quickly it is desirable to force as many additional candidate variables as possible to integer 
values at each branch.  How to do this is straightforward in the case of multiple choice 
constraints, but not so obvious for other classes of constraints.  However because every 
candidate variable must be forced to an integer value to reach an integer-feasible solution it is 
obviously a poor idea to branch in such a way that few candidate variables are affected.  The 
generalization of this idea is that branching should force as many candidate variables as 
possible to change their values, whether or not it can be guaranteed that they will change to 
integer values: some may be forced to integer values, thereby speeding the solution. 
 
This brings us to the central theme of this paper, namely branching to force change in the 
candidate variable values.  This is extremely effective in the case of multiple choice constraints, 
where branching up forces all candidate variables in the constraint to integer values 
simultaneously.  This principle has not been previously articulated as a central motivation in 
branching heuristics.  Most branching variable selection heuristics concentrate on forcing 
change in the value of the objective function.  The single exception is the active constraints 
branching variable selection method of Patel and Chinneck [2007], which concentrates on 
choosing the branching variable that has the greatest impact on the active constraints in the 
current LP-relaxation solution. Patel and Chinneck’s Method A chooses the candidate variable 
that appears in the largest number of active constraints. In so doing it is also choosing the 
candidate variable that affects the values of the largest number of other candidate variables via 
their involvement in the active constraints.  This is a very effective heuristic, outperforming 
state of the art commercial MILP solvers in reaching the first integer-feasible solution quickly.  
We will return throughout the paper to this theme of choosing the branching variable and 
branching direction so as to force change in the values of numerous candidate variables. 

2. Experimental Setup 

The conclusions in this paper are based on extensive computational experimentation.  The 
experimental conditions are described below.   
 
The open-source GLPK MILP solver version 4.28 [Makhorin 2008] was modified extensively to 
test a variety of existing and novel branching heuristics. All parameters were set at their default 
values with the following exceptions:  

 Stopping conditions.  Solutions ran for a maximum of two hours, or stopped earlier 
upon finding the first integer-feasible solution.  

 Node selection.  Depth-first, except where noted.  

 Branching variable selection and branching direction selection. As required for the 
experiment at hand. 
 

Hardware consisted of four computers running Windows XP: a Pentium 4 CPU at 3.40GHz with 
1 GB of RAM, an Intel Core 2 CPU at 3.40GHz with 3GB of RAM (with solutions running as single 
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threads), a Pentium 4 CPU at 3.20GHz with  3GB of RAM, and a Pentium 4 CPU at 2.4 GHz with 1 
GB of RAM.  Multiple machines were needed to handle the computational load, which 
extended over numerous weeks.  Given the different machine specifications, the major metric 
for speed is the total number of simplex iterations required for the MILP solution. This tracks 
clock time closely when node selection, variable selection, and branching direction selection 
heuristics are simple and do not require major computation.   
 
A second metric is the number of models solved to integer-feasibility within the two-hour time 
limit by a particular method.  This could be affected by the slightly different machine speeds.  
To minimize this effect, each model in a given comparison was normally solved on the same 
machine using the different methods being compared; exceptions are noted. In a number of 
test cases the same models were run using the same method on the fastest machine and again 
on a slower machine: there was no difference in the number of completed models, so this is 
likely a minor effect.  
 
To provide a comparison to a known reference point across all experiments, all performance 
profiles include the data for GLPK with all parameters at default settings. The main default 
parameter settings of interest are branching variable and direction selection via the Driebeek 
and Tomlin heuristic [Tomlin 1971], and node selection via best value of the bounding function.  
Note that the GLPK default method was always run on the fastest machine, so the relative 
number of model completions was as large as possible, making for a conservative comparison.  
 
Performance profiles [Dolan and Moré 2002] are used to summarize the results throughout the 
paper.  These provide a graphical summary of the fraction of models (vertical axis) for which the 
solution simplex iterations for a given competing method is within some ratio of the number of 
simplex iterations used by the best competing method (horizontal axis).  This is a much more 
meaningful generalization of the simple statistic giving the fraction of models for which a given 
method is the fastest.  Performance profiles also provide information about the robustness of a 
competing algorithm, which is shown by the maximum height achieved on the vertical axis, 
reflecting the fraction of the models solved by the method within the time limit. We plot the 
ratio to the fewest simplex iterations only as far as 10, though there may be higher values in the 
data set.  
 
Four well-known MILP problem sets comprising a total of 142 models were used: 56 models 
from MIPLIB2003 [Achterberg et al. 2006] (the momentum3, msc98-ip, rd-rplusc-21, and stp3d 
models were omitted because they were not solved by any method within the time limit), 11 
models from MIPLIB3.0 [Bixby et al. 1998], 7 models from MIPLIB 2.0 [Bixby et al. 1992], and 68 
models from Coral [Linderoth 2009]. These include a variety of real-world problems and are 
representative of a good general cross-section of MILPs [Achterberg et al. 2006].   At various 
points in the paper the models are divided into an "equality-containing" subset that consists of 
47 models that include at least one equality constraint involving an integer variable, and an 
"equality-free" subset that consists of 95 models that include no equality constraints that 
involve integer variables.  The complete set of models used in the experiments is shown in 
Table 1. 
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10teams gesa2 neos-1056905 neos-1436709 neos-785912 neos-957143 roll3000 

a1c1s1 gesa2-o neos-1122047 neos-1436713 neos-785914 neos-957323 rout 

aflow30a glass4 neos-1171448 neos-1439395 neos-787933 net12 sentoy 

aflow40b gt2 neos-1171692 neos-1440447 neos-841664 noswot set1ch 

air04 harp2 neos-1171737 neos-1440457 neos-856059 nsrand-ipx seymour 

air05 liu neos-1200887 neos-1440460 neos-872648 nw04 seymour.disj-10 

arki001 lseu neos-1211578 neos-1442119 neos-873061 opt1217 sp97ar 

atlanta-ip manna81 neos-1228986 neos-1442657 neos-885086 p0033 sp97ic 

bell3a markshare1 neos13 neos-1467067 neos-885524 p0040 sp98ar 

bell3b markshare2 neos-1311124 neos-1480121 neos-886822 p0201 sp98ic 

bell4 mas74 neos-1337489 neos-1516309 neos-932721 p0282 sp98ir 

bell5 mas76 neos-1346382 neos-1599274 neos-932816 p0291 stein15 

bm23 misc07 neos-1420205 neos-1616732 neos-933638 p0548 stein27 

cap6000 mkc neos-1426635 neos-495307 neos-933966 p2756 stein45 

dano3mip mod008 neos-1426662 neos5 neos-934278 pk1 swath 

danoint mod011 neos-1427181 neos-544324 neos-934441 pp08a t1717 

disktom modglob neos-1427261 neos-547911 neos-948346 pp08aCUTS timtab1 

ds momentum1 neos-1429185 neos-565672 neos-953928 protfold timtab2 

fast0507 momentum2 neos-1429461 neos-702280 neos-954925 qiu tr12-30 

fiber mzzv11 neos-1430701 neos-785899 neos-956971 ramos3 vpm2 

fixnet6 mzzv42z      

Table 1: Models Used in Experiments. Equality-Free Models Shown in Italics. 

3. Evaluation of Simple Branching Direction Selection Heuristics 
Given the branching variable, there are only two choices available for the branching direction: 
the up branch or the down branch.  The three most common heuristics for making this choice 
are (i) branch up always, (ii) branch down always, or (iii) branch to closest integer (i.e. branch 
down if the fractional part of the branching variable has a value less than 0.5 and branch up 
otherwise).  One might reasonably guess that branching up always would be no better or worse 
than branching down always, on the assumption that the composition of the model is more or 
less uniformly distributed in terms of coefficient signs and magnitudes and types of constraints.  
On the other hand, the folklore in the community is that branching up always is the superior 
choice.  We tested the three basic branching direction heuristics over our complete set of test 
models, with results as shown in the performance profile in Figure 1. 
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Figure 1: Simple Branching Direction Heuristics Over All Models 

 
As Figure 1 shows, branching up always is indeed usually better, and is in fact quite dominant.  
Branching down always is the worst heuristic by a significant margin.  While these results are 
for default GLPK with the simple substitution of the specified branching direction selection 
heuristic, the results are similar for a variety of other node and branching variable selection 
combinations that we tested. 
 
The relative performance of the branching direction selection heuristics is also similar for the 
equality-free subset of models, but is quite different for the equality-containing subset, as 
shown in Figure 2.  For the equality-containing subset, note that all methods are significantly 
less robust, with the three best methods tied in solving 74.5% of the models (vs. 85.9% for the 
up always method over all models).  Second, when there is at least one equality constraint in 
the model then branching up always does not always dominate.  Both GLPK default and 
branching to the closest integer have a larger fraction of solutions that are within a ratio of 2 of 
the smallest number of simplex iterations.  This is so despite the fact that 33 of the 51 models 
(64.7%) in the equality-containing set include multiple choice constraints, for which it is known 
that branching up is the preferred option. 
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Figure 2: Simple Branching Direction Heuristics: Subset of Models Containing at Least One Equality Constraint 

 
The presence or absence of equality constraints is a MIP characteristic that affects the 
performance of branching methods.  As noted earlier, multiple choice constraints are a 
particularly influential form of equality constraint.  
 
We will return in Section 8 to the question of why branching up is generally the better choice. 

4. Probability-Based Branching Methods 

Pesant and Quimper [2008] describe a method for counting solutions in knapsack constraints of 
the form l ≤ cx ≤ u where l and u are integer values representing the lower and upper bounds 
respectively, c is a row vector of integers, and x is a column vector of integer variables.  A count 
can be established for variables whose values have not yet been fixed.  For example, consider 
the simple constraint x1 + 5x2 ≤ 10 (in general, g(x) ≤ b).  We can count the number of solutions 
that satisfy the constraint when x2 is fixed at each of its possible values, and calculate the 
"solution density" as shown in Table 2. 
 

Value of x2 Allowable range for x1 Solution count Solution density 

x2=0 [0,10] 11 11/18 = 0.61 
x2=1 [0,5] 6 6/18 = 0.33 
x2=2 [0] 1 1/18 = 0.06 

Total solutions  18  
Table 2: Solution Density for x1 + 5x2 ≤ 10. 

 
This information can then be used in assigning values to the unfixed variables.  For example, 
you could choose to fix a variable at the value that has the maximum solution density in order 
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to provide the largest likelihood that you will be able to assign values to other unfixed variables 
in a way that will satisfy the constraint.  This reasoning would lead you to set x2=0 in this 
example because this value has the largest solution density. 
 
More generally, the solution counting approach can be applied to examine the possible values 
of g(x) when the n variables (x1, x2, …, xn) each have the range [li, ui], coefficient ci in the 
constraint, and are assumed to be uniformly distributed in their ranges [Pesant and Quimper 
2008].  This linear combination of uniformly distributed random variables results in an 
approximately Gaussian normal distribution for g(x), whose mean and variance are: 
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Consider the constraint g(x) = 3x1 + 2x2 + 5x3 ≤ 12 in which all variables are integer with range 
[0, 5].  Ignoring the integrality of the variables, this yields an approximately Gaussian normal 
distribution for g(x) shown in Figure 3 which has a mean of 25 and variance of 110.83.  Since we 
require g(x) ≤ 12, the cumulative probability (shaded in Figure 3), gives an estimate of the 
likelihood of satisfying the constraint if the variable values are uniformly distributed in their 
ranges. 
 

 
Figure 3: Gaussian distribution for 3x1 + 2x2 + 5x3 ≤ 12 

 
The cumulative probability for a Gaussian normal distribution can be analytically estimated by 
the method of Abramowitz and Stegun [1965].  For this example, the cumulative probability of 
the shaded portion of Figure 3 is 0.1084.  Thus the probability of satisfying the constraint is 
10.84% under the assumption of uniform distribution of the variable values. 
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We extend these ideas to develop a number of new branching methods for general mixed-
integer linear programs.  Let us first consider the case in which the branching variable has 
already been selected and only the choice of whether to branch up or down remains.  Where 
the branching variable xi has the range [li, ui] and current value     then the adjusted ranges in 
the two child nodes are [li,     ] for the down branch and [    , ui] for the up branch.  This 
means that the normal distributions derived for the up and down branches will be different and 
the resulting probability of satisfying the constraint will be different for each branch.  For the 
same constraint as in Figure 3, branching on x1 = 1.5 yields a down branch with range [0,1] for 
x1 and an up branch with range [2,5] for x1.  The two resulting Gaussian distributions for g(x) are 
shown in Figure 4 and Figure 5. 
 

 
Figure 4: Gaussian distribution for the down branch 

 

 
Figure 5: Gaussian distribution for the up branch 

 
The cumulative probability of satisfying the constraint is 0.2262 for the down branch and 
0.0511 for the up branch.  These probabilities can then be used to help decide the branching 
direction.  For example, one may choose a policy of always branching in the direction that 
provides the greatest probability of satisfying the constraint, or one may choose the opposite 
policy.  We examine this choice in detail in Section 6. 
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The examples thus far have dealt with inequalities of ≤ form.  Inequalities of ≥ are easily dealt 
with by calculating their satisfaction probability as 1 minus the cumulative probability of g(x) ≤ 
b.   
 
Dealing with equality constraints is more challenging.  Given the assumption of uniform 
distribution of the values of the variables within their ranges, the probability of exactly 
satisfying an equality constraint is vanishingly small when real-valued variables are also 
included in the constraint. For this reason, we instead develop a new measure that reflects how 
centered the value of b is within the probability density function for g(x).  The more centered b 
is within the density function, the more likely it is that values can be found for the variables in 
g(x) that result in g(x)=b.  "Centeredness" is measured by  taking the ratio of the cumulative 
probability for g(x)≤b to the cumulative probability for g(x)≥b.  Specifically, the centeredness 
measure is:  

                              
                         

                         
 (3) 

 
The maximum value for the equality centeredness measure is 1, which occurs when P(g(x)≤b) = 
P(g(x)≥b), i.e. when b is exactly centered in the probability density function for g(x).  The 
minimum value of the equality centeredness measure is 0, which is achieved when b is at one 
of the ends of the probability density function for g(x), i.e. is the least centered.  Intermediate 
values between 0 and 1 indicate the degree of centeredness between least and most.  This 
metric thus conveniently measures the degree of centeredness on the same 0 to 1 scale as the 
satisfaction probabilities associated with inequalities. 
 
Both the 0 to 1 range and the meaning of the equality centeredness measure conveniently align 
with the probability measures used for inequalities.  A higher value of the equality 
centeredness measure indicates a higher likelihood of satisfying the equality constraint in the 
same way that a higher cumulative probability indicates a higher likelihood of satisfying an 
inequality constraint.  For this reason we will apply the centeredness measure for equalities in 
the same way that we apply the cumulative satisfaction probability in developing branching 
methods. 
 
A number of branching methods can be developed using the probability and centeredness 
measures.  Though the methods are given names related to probability, the equality 
centeredness measure is used for equality constraints.  Given the branching variable, four such 
methods are: 

 Lowest Cumulative Probability (LCP): Suppose that the branching variable appears in k 
constraints. For each of the k constraints, calculate the probability of satisfying the 
constraint (or the centredness measure if the constraint is an equality) in the up and the 
down directions.   Select the direction associated with the smallest of the 2k values. 

 Highest Cumulative Probability (HCP): Same as LCP except choose the direction 
associated with the largest of the 2k values. 



12 
 

 Lowest Cumulative Probability Votes (LCPV): For each constraint that the branching 
variable appears in, calculate the relevant measure for the up and down directions.  
Assign a vote to the branching direction that has the lower value.  Choose the branching 
direction that has the most votes over all constraints. 

 Highest Cumulative Probability Votes (HCPV): For each constraint that the branching 
variable appears in, calculate the relevant measure for the up and down directions.  
Assign a vote to the branching direction that has the higher value.  Choose the 
branching direction that has the most votes over all constraints. 

 
Similar methods for choosing the branching variable and the branching direction 
simultaneously can also be developed  Two such methods are: 

 Variable and Direction Selection using Lowest Cumulative Probability (VDS-LCP): for 
every candidate variable, calculate the relevant measure for branching up and branching 
down in every constraint in which it appears and choose the candidate variable and 
branching direction that gives the lowest value of the measure in any constraint. 

 Variable and Direction Selection using Highest Cumulative Probability (VDS-HCP): for 
every candidate variable, calculate the relevant measure for branching up and branching 
down in every constraint in which it appears and choose the candidate variable and 
branching direction that gives the highest value of the measure in any constraint. 

 
Numerous variations on these probability-measure-based methods are possible including 
branching in the opposite of the directions returned by any of the methods listed above, using 
values from the probability density function instead of the cumulative probability function, 
multiplying the probabilities, etc.  See Pryor [2009] for a listing and evaluation of these other 
possibilities. 

5. Branching Based on Constraint Violation and Satisfaction 

Given the current LP relaxation solution, we can examine the effect on each active constraint of 
branching up or down on a candidate variable while all other variables are fixed at their current 
values.  For inequality constraints this is simple: branching in one direction will violate an active 
inequality while branching in the other direction will continue to satisfy the constraint, and in 
fact will render the inequality inactive.  Actual calculation of the new value of g(x) for each 
active constraint is not needed since the sign of the coefficient of the candidate variable and 
the type of inequality contain all of the needed information, as summarized in Table 3: 
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Coefficient Sign Constraint Sense Branching Direction Result 

+ ≤ up violated 
+ ≤ down satisfied 
+ ≥ up satisfied 
+ ≥ down violated 
– ≤ up satisfied 
– ≤ down violated 
– ≥ up violated 
– ≥ down satisfied 

Table 3: Violating or Satisfying Active Inequality Constraints. 

 
In the case of equality constraints, any unilateral change in the value of a variable will violate 
the constraint. However branching in the up or down direction will change the range of the 
branching variable, and thus there will be different probabilities for g(x)≤b and g(x)≥b in each 
direction.  We label the four resulting probabilities as follows: 

 If branching down:  DB=P(g(x)≤b) and DA=P(g(x)≥b).   

 If branching up: UB=P(g(x)≤b) and UA=P(g(x)≥b).   
DA and DB are used in Equation 3 if we branch down, and UA and UB are used in Equation 3 if 
we branch up. 
 
It is more efficient to use the four values DB, DA, UB, and UA directly to discover the more and 
less centered branching directions instead of calculating the value of Equation 3 once for each 
branching direction. The more violating direction, i.e. the direction that leads to the smallest 
value of Equation 3, is associated with min(DB, DA, UB, UA).  The less violating direction, i.e. the 
direction that leads to the largest value of Equation 3, is associated with max[min(DB, DA), 
min(UB, UA)].  In the algorithms that follow below, the "satisfying" direction for an equality 
constraint is associated with the less violating direction and the "violating" direction for an 
equality constraint is associated with the more violating direction. 
 
These definitions can be used to construct branching methods given the branching variable: 

 Most Satisfied Votes (MSV): for each active constraint containing the branching variable, 
register a vote in favour of the satisfying direction.  Choose the direction with the 
largest number of votes. 

 Most Violated Votes (MVV): for each active constraint containing the branching variable, 
register a vote in favour of the violating direction.  Choose the direction with the largest 
number of votes. 

 

6. Branching to Force Change in the Candidate Variables 

For our purposes, the measure of the quality of a branching method is how quickly the branch 
and bound method reaches integer feasibility.  It follows that a good branching heuristic will 
cause as many as possible of the current candidate variables to take on integer values in the 
selected child node.  In some special cases, such as multiple choice constraints, it is obvious 
how to do this: branching up forces all of the binary variables to integer values simultaneously.  



14 
 

In more general constraints it is difficult to know in advance which branch will result in integer 
values for the largest number of candidate variables.  It is reasonable to assume, however, that 
branching in a way that forces change in the candidate variables is more likely to produce 
integer values than branching in a way that causes few candidate variables to change their 
values.  In the latter case the candidate variables will simply maintain their current non-integer 
values whereas in the former case they may be forced to an integer value. 
 
There are some existing indications that branching to force change results in faster 
achievement of integer feasibility.  This was demonstrated by the active constraint branching 
variable selection methods of Patel and Chinneck [2007] which branch on the candidate 
variable that has the largest impact on the active constraints by some measure.  Choosing the 
branching variable in this way propagates changes to a large number of additional candidate 
variables.  These methods are highly effective in reaching integer feasibility quickly. 
 
The concept that branching to force change in the candidate variable values will speed the 
achievement of the first integer feasible solution is now empirically testable given the new 
branching methods developed in Sections 4 and 5.  For inequalities, branching in the direction 
that is most likely to satisfy the constraint will usually have less impact on the other variables in 
the constraint.  Branching in the direction that is least likely to satisfy the constraint will have 
the opposite effect.  For equalities, branching in the more centered direction should have less 
impact on the other candidate variables while branching in the less centered direction should 
have the most impact. 
 
We test this concept by examining the various new branching methods in pairs.  One method in  
each pair works towards forcing change in the candidate variables by choosing the direction 
that is least likely to satisfy the constraints, and the other method in the pair works towards 
satisfying the constraints so that fewer candidate variables are forced to change their values. 
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Figure 6: LCP/LPV vs. HCP/HCPV Over All Models 

 
Figure 6 shows the results over all of the models in the test set when using the LCP, LCPV, HCP 
and HCPV methods to choose the branching direction, where the branching variable is chosen 
by the default GLPK method in all cases.  Figure 6 shows that the two methods that work 
towards forcing change by choosing the direction having the smallest likelihood of satisfying the 
active constraints (LCP and LCPV) both give better results than their opposites (HCP and HCPV).  
The results are also slightly better than those for default GLPK. 
 
The effect is much stronger when the probability-based methods select both the branching 
variable and the branching direction, as shown in Figure 7 for the VDS-LCP method, which 
forces change, vs. the VDS-HCP method, which does not.  Both of these methods outperform 
default GLPK, but VDS-LCP dominates in terms of fewer simplex iterations required, as well as 
robustness in that it is able to reach a feasible solution within the time limit for 4 more models 
than VDS-HCP and 6 more models than default GLPK.  
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Figure 7: VDS-LPC vs. VDS-HCP Branching Over All Models 

 
The pattern in Figure 7 is similar when the subset of equality-free models is examined, but  
including equality constraints has a significant impact, as shown in Figure 8.  Now VDS-LCP 
dominates by a considerable margin, whereas VDS-HCP is only about as good as default GLPK.  
VDS-LCP also reaches a feasible solution for 7 more models than default GLPK and 8 more than 
VDS-HCP.  Moving in the less-centered direction for the equality constraints has a significant 
impact. 
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Figure 8: VDS-LCP vs. VDS-HCP When Equality Constraints are Present 

 
Figure 9 shows the effect of branching based on an assessment of the number of active 
constraints violated or satisfied by a unilateral adjustment in the branching variable. The 
branching variable is selected by the default GLPK method, but the branching direction is 
selected by the MVV (most violated votes) or MSV (most satisfied votes) method.  MVV 
direction selection far outperforms MSV direction selection, and outperforms default GLPK.  
These results also support the notion that branching to force change leads to integer feasibility 
sooner.   
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Figure 9: MVV vs. MSV Over All Models 

 
When there are only inequalities in the model, MVV direction selection is strongly dominant 
when using the variable selected by GLPK, as shown in Figure 10. It is also more robust, solving 
10 more models than MSV, and one more model than default GLPK within the time limit. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Fr
ac

ti
o

n
 o

f 
M

o
d

el
s

Ratio to Fewest Simplex Iterations

MVV vs. MSV: All Models

GLPK Default

MSV

MVV



19 
 

 
Figure 10: MVV vs. MSV in All-Inequality Models 

 
However the picture is more mixed when the model contains equality constraints, as shown in 
Figure 11.  In this case, MVV direction selection using the branching variable selected by GLPK 
uses the fewest simplex iterations on most models, but runs into difficulties on a few models. 
 

 
Figure 11: MVV vs. MSV When Equalities are Included 
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The active-constraints methods of Patel and Chinneck [2007] choose the candidate variable 
that has the most impact on the active constraints, in keeping with the goal of forcing the most 
change in the candidate variables.  One of the simplest and most effective of these methods is 
Method A, which simply chooses the candidate variable that appears in the largest number of  
active constraints at the LP relaxation solution in the parent node.  The effect of  substituting 
Method A for branching variable selection in place of the GLPK default method for branching 
variable selection is examined in Table 4.  The best value in each pair of results is shown in 
boldface.  All four machines were used to generate these results, so the fraction solved results 
are not strictly comparable; the trends are clear nonetheless. 
 

variable selection – 
direction selection 

fraction fewest 
simplex iterations fraction solved 

GLPK Default 0.1620 0.8239 

GLPK-UP 0.2887 0.8592 
A-UP 0.3662 0.8944 

GLPK-LCP 0.1831 0.8310 
A-LCP 0.3028 0.8592 

GLPK-LCPV 0.1901 0.7958 
A-LCPV 0.2394 0.8521 

GLPK-MVV 0.2042 0.8310 
A-MVV 0.3028 0.8521 

Table 4: Effect of Branching Variable Selection Method 

 
As shown in Table 4, replacing the GLPK default branching variable selection method by 
Method A is always beneficial, whether the direction selection heuristic is always-up (UP), LCP, 
LCPV or MVV.  When the 4 pairs of methods shown in the table are compared, the fraction of 
the models for which the method is best (in terms of simplex iterations) always increases, and 
the total fraction of models that are solved to integer feasibility within the time limit always 
increases when Method A replaces the GLPK default branching variable selection procedure.   
 
The overall best method among those compared in Table 4 is Method A for variable selection 
coupled with always branching in the up direction.  This is the combination of methods 
suggested by Patel and Chinneck [2007] and is the best of the branching methods in the 
literature for seeking MIP feasibility. 
 
The dominant conclusion from these experiments is clear: branching to force change in as many 
candidate variables as possible is a superior tactic for reaching integer feasibility quickly.  This 
finding is consistent across a number of different branching methods that assess the probability 
of reaching an LP-feasible solution for the constraints under consideration, as well as  across 
methods based on assessing whether a unilateral change in the branching variable will violate 
or satisfy the active constraints. 
 
The single exception to this conclusion that we have identified thus far is the case of set-
covering problems, whose constraints are all the form x1 + x2 + … + xn ≥ 1.  Branching to force 
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change suggests that branching down will provide superior results in terms of reaching a 
feasible solution quickly, however, this is not the case.  This is not a surprise since a feasible 
(but poor) solution is readily available: simply set all variables equal to one.  Given this, it 
follows readily that branching up will provide better results; we confirmed this experimentally. 

7. A-UP vs. VDS-LCP 

Choosing the branching variable via Method A coupled with always branching up (A-UP) 
represents the current state of the art in branching methods for seeking integer feasibility in 
MILPs.  In A-UP, the branching variable selection is disconnected from the branching direction 
selection, unlike method VDS-LCP, which makes both decisions simultaneously.  These two 
approaches are compared in Figure 12, which shows that the two different methods produce 
remarkably similar results, in fact an analysis of variance shows no significant difference 
between the results.  VDS-LCP is slightly slower on some models, but is able to solve 3 more 
models to feasibility than A-UP (it solves 91.5% of the models vs. 89.4% for A-UP).  This shows 
that a probability-based branching method that operates to force change is equivalent to the 
state of the art branching method in seeking integer feasibility (which is itself based on the 
principle of branching to force change). 
 

 
Figure 12: A-UP vs. VDS-LCP 

 
VDS-LCP actually outperforms A-UP on the subset of 47 equality-containing models, having 4 
more fastest solutions and reaching integer feasibility within the time limit on 2 more models.  
This raises the possibility of hybrid methods based on using VDS-LCP when there are equality 
constraints in the model and A-UP otherwise; this is left for future research. 
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8. Branching Up Revisited 

We now revisit the question of why branching up always is such a good heuristic, as shown in 
Section 3.  As will be seen, this is mainly due to the characteristics of the set of test MILPs. 
 
Recall that branching up is always the best policy in a multiple choice constraint because this 
forces all variables in the constraint to integrality simultaneously.  As it happens, 104 of the 
models in our test set contain at least one multiple choice constraint, versus just 38 without 
multiple choice constraints.  With almost three times as many models having multiple choice 
constraints as not, it would be expected a priori that always branching up is a good policy.  We 
can examine this in detail by looking at how well the branching techniques work when the 
model does or does not contain multiple choice constraints. 
 
Figure 13 provides a performance profile for simplex iterations for the 104 models that include 
at least one multiple choice constraint.  Method A branching up provides the best performance, 
followed by VDS-LCP, as expected. 
 

 
Figure 13: Models Having at Least One Multiple Choice Constraint 

 
However, when there are no multiple choice constraints, the conclusion is a little different, as 
shown in Figure 14.  Branching up exclusively is no longer the best policy: it is dominated by 
both MVV and LCPV, both of which originate in the notion of branching to force change in the 
candidate variable values. 
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Figure 14: Models Without Multiple Choice Constraints 

 
It is interesting to analyze the behavior of the LCP heuristic on multiple choice constraints.  LCP 
always branches up on multiple choice inequality constraints.  This is because all the variables 
have the same set of possible values and the same coefficients, and hence the values calculated 
in Eqns. 1 and 2 are always the same for a given number of candidate variables.  Consider Table 
5, which shows the cumulative probabilities of satisfying an inequality multiple choice 
constraint when branching up or down. LCP, which chooses the lower cumulative probability, 
will always choose to branch up, as shown in boldface. 
 

# Variables Cumulative Probability Up Cumulative Probability Down 

2 0.158655254 0.841344746 
3 0.078649604 0.5 
4 0.041632258 0.281851431 
5 0.022750132 0.158655254 
6 0.012673659 0.089856247 

Table 5: Cumulative Probabilities for the Branching Direction in an Inequality Multiple Choice Constraint 

 
The situation is a little different when the multiple choice constraint is an equality because now 
Eqn. 3 is used, which measures the ratios of the cumulative probabilities.  LCP chooses the 
direction whose ratio is farthest from 1.0.  As shown in Table 6, LCP will always choose to 
branch up, except when there are two candidate variables, in which case there is no preference 
for branching up or down, as shown in boldface.  This is exactly as expected since in an equality 
multiple choice constraint with two binary variables (x1 + x2 = 1), choosing to branch down will 
force the other candidate variable to a value of 1, i.e. both variables will have integer values.  
Hence when there are two candidate variables in an equality multiple choice constraint, both 
candidate variables are forced to integrality no matter which branching direction is chosen. 
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# Variables Equality Ratio Up Equality Ratio Down 

2 0.188573417 0.188573417 
3 0.085363401 1 
4 0.043440797 0.392469529 
5 0.023279749 0.188573417 
6 0.012836343 0.098727533 

Table 6: Cumulative Probability Ratios for the Branching Direction in an Equality Multiple Choice Constraint 

9.  Conclusions 
This paper makes several useful contributions: 

 The discovery of the principle that branching to force change in the candidate variables 
results in faster achievement of integer feasibility in a MILP. 

 The extension of probability-based branching methods for general mixed-integer 
programming, most notably by the development of new methods for handling equality 
constraints by assessing the "centeredness" of the constant value in the probability 
distributions that result from branching up vs. branching down.  As it turns out, the 
probability-based branching methods are particularly effective on models having 
equality constraints. 

 The development of a number of useful new branching methods based on probability 
methods and the principle of branching to force change.  One of these methods (VDS-
LCP) chooses both the branching variable and the branching direction, and is as good as 
the existing state-of-the art branching method (A-UP) which treats these two decisions 
separately. 
 

It is worth noting that the methods are unaffected by scaling. The MVV and MSV methods for 
inequality constraints use only the signs of the coefficients and not their magnitudes.  All other 
methods are based on probability calculations (including MVV and MSV for equality constraints) 
which use only the lower and upper bounds on the variables and the coefficient values 
(Equations 1 and 2).  Scaling will not affect the probability calculations and hence will not affect 
the heuristics. 
 
There is wide scope for future research to explore the full potential of these ideas: 

 Hybrid methods.  There is evidence that the presence or absence of equality constraints 
and the presence or absence of multiple choice constraints impact the effectiveness of 
the branching methods.  By observing which methods do best under which combination 
of conditions, hybrid methods can be developed which apply the best method under the 
current conditions.  The decision as to which branching method to use can be made 
once at the beginning of the solution process after assessing the relevant factors, or can 
be made at each node of the search tree. 

 A number of combinations of the elements of the new methods were not assessed.  For 
example a new method for simultaneous variable and direction selection based on the 
MVV method could be developed.  This would assess the violation votes in the up and 



25 
 

down directions for all candidate constraints and choose the variable and direction 
having the most votes. 

 Dealing with ties for the selection of the branching variable and direction.  When these 
decisions are made separately there are frequently numerous ties.  For example Method 
A for the selection of the branching variable simply counts the number of active 
constraints that each candidate variable appears in, and ties are frequent.  Using a 
second method to break this tie may improve the results. 
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