
1

Final version appears in Expert Systems with Applications (2012), vol. 39, no. 9, pp. 8193-8203.

Integrated Classifier Hyperplane Placement and Feature
Selection

John W. Chinneck

Systems and Computer Engineering
Carleton University

Ottawa, Ontario K1S 5B6
Canada

chinneck@sce.carleton.ca
May 18, 2011

Errata are shown in red.

Abstract

The process of placing a separating hyperplane for data classification is normally disconnected
from the process of selecting the features to use. An approach for feature selection that is
conceptually simple but computationally explosive is to simply apply the hyperplane placement
process to all possible subsets of features, selecting the smallest set of features that provides
reasonable classification accuracy. Two ways to speed this process are (i) use a faster filtering
criterion instead of a complete hyperplane placement, and (ii) use a greedy forward or
backwards sequential selection method. This paper introduces a new filtering criterion that is
very fast: maximizing the drop in the sum of infeasibilities in a linear-programming
transformation of the problem. It also shows how the linear programming transformation can
be applied to reduce the number of features after a separating hyperplane has already been
placed while maintaining the separation that was originally induced by the hyperplane. Finally,
a new and highly effective integrated method that simultaneously selects features while placing
the separating hyperplane is introduced.

1. Introduction

Classifier decision trees are constructed by a sequential process of placing separating surfaces,
frequently hyperplanes. It is often advantageous to use as few features as possible when
placing each separating surface, generally because there are costs associated with collecting
the data for each feature (e.g. the cost of a medical test), but also because using fewer features
sometimes results in better classification accuracy.

There is a sizable literature on feature selection for classification. Excellent summaries are
provided by Dash and Liu [1997] and Liu and Yu [2005]. Following Liu and Yu [2005], there are
three main categories of feature selection methods: (i) filter methods which use metrics based
on the data set to select features, (ii) wrapper methods which select subsets of features and
evaluate them by applying the data mining technique (e.g. separating hyperplane) while using
only the selected subset of features, and (iii) hybrid methods that combine elements of both
filter and wrapper methods.

mailto:chinneck@sce.carleton.ca

2

A subcategory of all methods is the search strategy. Complete search evaluates all possible
combinations of features; this is combinatorially explosive and impractical for more than a few
features, though it does return the optimum solution (relative to the evaluation metric). For
data sets having many features, alternative approaches are needed. Random search begins with
a random subset of features and iterates towards an improved set, e.g. via simulated annealing.
Sequential search proceeds through the set of features based on an ordering heuristic. The two
most common sequential approaches are:

 Sequential forward selection. This begins with no features and selects the single feature
that gives the best value of the evaluation metric. It then iteratively adds the next
feature that provides the next best value of the evaluation metric. One-by-one addition
of features continues until a stopping criterion is met, e.g. there is no improvement in
the evaluation criterion by adding the next feature.

 Sequential backward elimination. This is the opposite of sequential forward selection: it
begins with all features included and eliminates the feature whose removal gives the
best value of the evaluation metric. It then iteratively eliminates the next feature
whose removal gives the next best value of the evaluation criterion. One-by-one
elimination of features continues until a stopping criterion is met, e.g. there is no
improvement in the evaluation criterion by adding the next feature.

This paper develops a variety of sequential forward and backwards search methods using
filtering based on a new feature selection evaluation metric. It also develops a new integrated
method that uses this evaluation metric while alternating between feature addition and
separating hyperplane placement. Finally it develops new methods for removing features in
such a way that a given linear separation is maintained. In other words, an arbitrary technique
can first be applied to find a desirable separating hyperplane, and then features can be
removed while maintaining the same separation.

There has been relatively little work on integrated methods for simultaneous separating
hyperplane placement and feature selection. Bredensteiner and Bennett [1997] solve a
parametric bilinear program to do so while maintaining a specified level of total accuracy. The
problem is solved by a variation of a Franke-Wolfe algorithm.

Bradley and Mangasarian [1998] introduce a parameter into the objective function to permit
the relative weighting of two objectives: the original objective function that seeks to find a high
accuracy separation and a second objective function that minimizes the number of features.
The resulting optimization problem is nonlinear but convex and is solved by a successive linear
approximation algorithm. Bradley, Mangasarian, and Street [1998] examine similar approaches.
Guo and Dyer [2003] report good results when these techniques are applied in facial expression
recognition.

Dunbar et al [2010] formulate the simultaneous hyperplane placement and feature selection
problem as a nonlinear support vector machine problem, and then reformulate it as a quadratic
minimization problem subject to nonnegativity constraints. This is an extension of a method

3

originally proposed by Bradley and Mangasarian [1998]. Maldonado et al [2011] present
another support vector machine based method that results in a nonlinear problem that must be
solved.

1.1 Hyperplane Placement and the Maximum Feasible Subset Problem

The problem of placing a separating hyperplane to minimize the number of misclassified binary
data points is equivalent to the following problem: given an infeasible set of linear inequalities,
find the maximum cardinality subset that constitutes a feasible set [Amaldi 1994, Parker 1995,
Chinneck 2001, Chinneck 2009]. This second problem is known by a number of names: the
Maximum Satisfiability Problem, the Maximum Feasible Subset Problem (MaxFS), the Minimum
Unsatisfied Linear Relation Problem, or the Minimum Cardinality IIS Set Covering Problem; we
will use MaxFS hereafter.

The conversion of the data misclassification minimization problem to the MaxFS problem is
straightforward [Chinneck 2001]. Given a training set of I binary data points (i=1…I) in J
dimensions (j=1…J), in which the value of attribute j for point i is denoted by dij, where the class
of each point is known (either Type 0 or Type 1), construct one linear inequality constraint for
each data point:

 for each point of Type 0: jdijwj w0

 for each point of Type 1: jdijwj w0 +

where is a small positive constant (often set at 1). The variables are the unrestricted wj
where j=0…J, while the dij are known constants.

This set of linear inequalities has a feasible solution (which is easily found by linear
programming) if and only if the set of data points can be completely separated by a single
hyperplane. Where the data cannot be completely separated by a single hyperplane, the set of
linear inequalities is infeasible. In this case, a solution to the MaxFS problem identifies the
maximum cardinality feasible subset of constraints, and at the same time identifies the smallest
subset of excluded constraints. Any feasible point satisfying the largest feasible subset of
inequalities provides values for the w variables, thereby identifying the parameters of the

separating hyperplane jdijwj = w0. Such a feasible point is normally found by linear
programming (LP). The constraints excluded by the MaxFS solution correspond to data points
that are misclassified by the resulting hyperplane. Thus a solution for the MaxFS problem
provides a hyperplane that misclassifies the minimum number of data points.

Unfortunately, the MaxFS problem is NP-hard [Sankaran 1993; Chakravarti 1994; Amaldi and
Kann 1995]. A number of solution approaches have been developed for this problem; see
Chinneck [2008, chapter 7] for a survey. Small problems can be formulated for exact solution,
either as mixed-integer linear programs, or as a linear programs with equilibrium constraints
(LPEC). Heuristic solutions for the LPEC formulation have been developed in the machine
learning community [Mangasarian 1994, Bennett and Bredensteiner 1997]. Parker [1995] and
Parker and Ryan [1996] described a method that gradually enumerates infeasible subsets of
constraints from which at least one must be removed to create a feasible subset. Chinneck

4

[1996, 2001] developed a number of greedy heuristics that reduce a measure of the infeasibility
of the current subset of constraints at each iteration.

Any of the algorithms described above can be applied to solve the MaxFS problem for the
purpose of identifying a separating hyperplane that minimizes the number of misclassifications.
The methods developed in this paper are based on the infeasibility-reducing algorithms by
Chinneck [1996, 2001, 2009] for several reasons. First, these methods provide the best results
over a variety of categories of MaxFS problems [Jokar and Pfetsch 2008]. Second, they are
easily extended to pursue goals other than maximum overall accuracy [Chinneck 2009]. Third,
and most crucially, the sequential nature of the methods allows us to make the trade-off
between the accuracy of the hyperplane placement and the selection of features in an
integrated manner, which is the subject of this paper.

Chinneck's MaxFS solution algorithms first require that the linear inequalities be converted to
elastic form [Brown and Graves 1975] by the addition of nonnegative elastic variables, ei, one
per inequality, as follows:

 Type 0 inequalities take the elastic form jdijwj − ei w0

 Type 1 inequalities take the elastic form jdijwj + ei w0 +
An elastic program is constructed, consisting of the elastic inequalities, nonnegativity bounds

on the elastic variables, and an elastic objective function of the form minimize SINF

 .

Because of the minimization, an elastic variable will take on a positive value only when the
original non-elastic version of the constraint is violated, hence SINF indicates the "sum of the
infeasibilities". The main MaxFS heuristic is then applied to the elastic program, based on the
following concepts:

 An LP solution of the elastic program minimizes SINF, which is a measure of the total
infeasibility in the current set of constraints. SINF can be reduced by removing
constraints that contribute to the infeasibility. When SINF reaches zero, the remaining
constraints constitute a feasible subset.

 Constraints are removed one at a time, and a new lower value of SINF is found by re-
solving the LP for the smaller set of constraints.

 A candidate list of constraints for removal at each iteration can be generated in various
ways. The list can be as short as one member if a quick solution is desired.

 When there are several candidates for removal, the one that lowers SINF the most is
chosen. This greedy heuristic is highly effective in practice.

A simplified statement of the most basic version of the SINF-reducing algorithm is shown in
Algorithm 1 (some steps that improve efficiency are omitted for clarity of the main procedure).
Numerous LPs are solved, but the method is highly efficient because each new LP is very similar
to the previous one solved. This means that each new LP can be solved in just a few simplex
iterations due to the advanced start routines in modern LP solvers.

5

There are several ways to construct the list of candidate constraints in Step 4 of Alg. 1. The
method that yields the best results includes as candidates all constraints to which the elastic
objective function is sensitive in the current LP solution, i.e. for which the reduced cost
associated with ei is nonzero: in this case constraint i will be either violated or tight. This list of
candidates may be lengthy, so there are other ways to construct shorter lists, but possibly at

the cost of finding a smaller feasible subset, and hence a less accurate separating hyperplane.

Where represents the reduced cost associated with the variable ei, the product
is a good heuristic estimator of the relative magnitude of the reduction in SINF experienced
when constraint i is removed during Step 5.1 of Alg. 1 (provided that ei is positive, i.e. the
original non-elastic version of constraint i is violated) [Chinneck 2001]. When ei=0, the size of
 alone is a good estimator of the relative magnitude of the reduction in SINF when
constraint i is removed during Step 5.1 of Alg. 1 [Chinneck 2001]. These two observations
provide a way to construct shorter lists of candidate constraints in Step 4 of Alg. 1. Simply take
the top k largest elements of the two lists: the constraints corresponding to the k largest values
of for constraints having ei>0, and the constraints corresponding to the k largest
values of for constraints having ei = 0.

A good heuristic for selecting just a single candidate in Step 4 of Alg.1 (thereby reducing Step 5
to a single test), is to choose the constraint having the largest value of from among
constraints in which ei >0 [Chinneck 2001]. When SINF>0 there is always at least one ei >0.

In the sequel, the Orig algorithm will be taken to mean the original version of the algorithm
which includes as candidates all constraints to which the elastic objective function is sensitive in
the current LP solution. A fast version of the original version of the algorithm in which exactly
one candidate is used in Step 4 of Alg. 1 is also tested. The candidate chosen is the constraint
having the largest value of from among constraints having ei >0.

INPUT: an infeasible set of linear constraints.
1. Elasticize the constraints by adding appropriate elastic variables.
2. Solve the elastic LP.
3. If SINF = 0 then exit.
4. Construct the list of candidate constraints for removal.
5. For each candidate constraint:

5.1. Temporarily remove the candidate constraint.
5.2. Solve the reduced elastic LP and note the new value of SINF.
5.3. Reinstate the candidate constraint.

6. Permanently remove the candidate constraint whose temporary removal gave the smallest
value of SINF.

7. Go to Step 2.
OUTPUT: large cardinality feasible subset of constraints.

Algorithm 1: Finding a large cardinality feasible subset of constraints [Chinneck 2009].

6

The reduced set of data points corresponding to the satisfied data point inequalities is
completely linearly separated by the final hyperplane returned by the algorithm. However it
may be advantageous to adjust the placement of the final hyperplane to obtain better
generalization. There are variety of ways to do this, including minimizing the distance from the
hyperplane to the misclassified points, maximizing the distance from the hyperplane to the
correctly classified points, averaging these two approaches, etc. [Chinneck 2009]. It is also
possible to maximize the margins by applying a support vector machine to the subset of
correctly classified points [Cristianini and Shawe-Taylor 2000].

Note that while these methods are specifically for linear separating hyperplanes, they are easily
extendable to nonlinear separating surfaces by including appropriate nonlinear data. For
example, squaring the value of some feature x and including it as a new feature allows x2 to
included in the linear combination of terms that is returned by the separating hyperplane.

2. Integrating Feature Selection and Hyperplane Placement

The linear program used in Alg. 1 for hyperplane placement includes an inequality for each of
the data points in the binary dataset, but the elements of w, the variables whose solution
values provide the coefficients of the features in the separating hyperplane, are completely
unrestricted in value. However it is simple to introduce constraints that prevent certain
features from being used in the resulting hyperplane. For example, to prevent feature j from
being used, add the constraint wj=0. When constraints of this form are added to the set of
inequalities for the data points, the complete set of constraints integrates both hyperplane
placement and feature selection. We have the option of sequential forward addition of
features (by removing constraints of the form wj=0), or of sequential backwards elimination of
features (by adding constraints of the form wj=0). We can also alternate between removing
constraints corresponding to data points, and adding or removing constraints corresponding to
features. Some variants of these options that have proved to be particularly useful are
described below.

The algorithms that follow make use of 3 main elements:

 constraints derived from the data points,

 constraints to allow/remove features, and

 the value of the elastic objective function, SINF, defined over only the constraints
derived from the data points.

Using the elastic objective function defined over only the data points reflects the goal of
maximizing the overall accuracy subject to the features currently used in the separating
hyperplane. Elastic variables are therefore not added to the feature constraints of the form
wj=0; constraints of this type are either removed or added in their entirety (this is simple to do
in most LP solvers by specifying that the constraint is either of type "equality", which includes
the constraint, or of type "free" which means that the constraint is not binding). As in Alg. 1, the
best choice among options is normally indicated by the largest drop in the value of SINF; this is
the new metric for the filtering methods of feature selection developed here. SINF can be used

7

in both of the usual filtering modes: sequential forward selection and sequential backwards
elimination. It can also be used in a new integrated manner described later.

These basic building blocks are very flexible. We examine below a variety of ways to use them
to allow feature selection prior to placing a hyperplane, feature reduction after a separation
has been found (is there a smaller set of features that gives an equivalent separation?), and
integrated hyperplane placement and feature selection. In the same vein, while simultaneously
considering feature selection, these basic ingredients can also be used to pursue other
hyperplane placement goals besides maximizing total accuracy, such as balancing the
population accuracies, balancing the accuracies on each side of the hyperplane, etc. [Chinneck
2009].

2.1 Feature Selection Prior to Hyperplane Placement

The AddB algorithm is a sequential forward feature selection algorithm that operates prior to
placing the separating hyperplane, as shown in Alg. 2. AddB ("add features before hyperplane
placement") begins with no features included at all (i.e. constraints wj=0, j=1...J are in place).
Features are then added one by one in a greedy manner: in each round, the feature that most
reduces SINF is added, provided that it reduces SINF below the value reached when the last
feature was permanently added in the previous round. Feature selection terminates when
adding the next feature does not reduce SINF any further. After a set of features is selected, the
separating hyperplane is then found, beginning in Step 4.

8

Of course, it is possible to proceed in the opposite way: begin with all features in place and
iteratively remove them, i.e. use a sequential backwards elimination procedure. This generally
increases SINF, so an exit condition is needed to prevent it from becoming too large. The DelB1
algorithm ("delete features before, variant 1"), shown in Alg. 3, allows a small percent increase
in SINF relative to the last accepted value, denoted by SINFLastBest. The parameter P represents
the allowable percent increase in SINF relative to SINFLastBest. There is a single run through the
features, testing and potentially removing each feature one by one.

The DelB2 variant allows a small percent increase relative to the original SINF with all features
in place, hence it is identical to Alg. 3 except that Step 3.4 is omitted.

INPUT: a set of inequality constraints representing the data points i=1…I, and a set of
equality constraints representing the feature constraints j=1…J.
1. Elasticize the data point constraints by adding appropriate elastic variables.

2. Solve the elastic LP. SINFLastBest SINF.
3. Do J times:

3.1. SINFMin ∞, Feature .
3.2. For each feature j=1 to J:

3.2.1. If feature j is still excluded (i.e. constraint wj=0 is still included) then:
3.2.1.1. Temporarily add the feature by removing the feature constraint.
3.2.1.2. Solve the elastic LP and note the value of SINF.

3.2.1.3. If SINF < SINFMin then SINFMin SINF and Feature j.
3.2.1.4. Remove feature j by re-introducing the constraint wj=0.

3.3. If SINFMin < SINFLastBest then:
3.3.1. Select feature Feature by permanently removing the constraint wFeature=0.

3.3.2. SINFLastBest SINFMin.
3.3.3. If SINFLastBest = 0 then go to Step 4.

3.4. Else go to Step 4.
4. Solve the elastic LP.
5. If SINF = 0 then exit.
6. Construct the list of candidate data point constraints for removal.
7. For each candidate constraint:

7.1. Temporarily remove the candidate constraint.
7.2. Solve the reduced elastic LP and note the new value of SINF.
7.3. Reinstate the candidate constraint.

8. Permanently remove the candidate constraint whose temporary removal gave the
smallest value of SINF.

9. Go to Step 4.

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation

(given by jwjxj = w0).

Algorithm 2: Adding features before hyperplane placement (AddB).

9

2.2 Feature Selection After Hyperplane Placement

The question here is this: given a separating hyperplane found by an arbitrary method, is there
a hyperplane that has the same sets of correctly and incorrectly classified points but which uses
fewer features? The building blocks allow this question to be addressed in a number of ways.

Given a separating hyperplane, the points in the training set can be grouped into the correctly
and incorrectly classified sets. Incorrectly classified points are removed, leaving only the
correctly classified points. The AddA algorithm (add features after hyperplane placement)
operates on the constraints derived from the correctly classified points in a sequential forward
selection manner as shown in Alg. 4. All of the feature constraints are included at the outset
(i.e. all features are excluded), so SINF will initially be greater than zero. At least one feature
must be added, and Steps 3 and 4 take care of identifying and adding the feature that most
reduces SINF. Step 5 adds further features in a series of iterations. Each iteration adds the
feature that most decreases SINF. The iterations cease when SINF reaches zero .

INPUT: a set of inequality constraints representing the data points i=1…I, and a parameter P.
1. Elasticize the data point constraints by adding appropriate elastic variables.

2. Solve the elastic LP. SINFLastBest SINF.
3. For each feature j=1 to J:

3.1. Delete feature j by adding the feature constraint wj=0.
3.2. Solve the elastic LP.
3.3. If SINF > SINFLastBest×(1+P/100) then reinstate feature j by removing the feature

constraint wj=0.

3.4. Else SINFLastBest SINF.
4. Solve the elastic LP.
5. If SINF = 0 then exit.
6. Construct the list of candidate data point constraints for removal.
7. For each candidate constraint:

7.1. Temporarily remove the candidate constraint.
7.2. Solve the reduced elastic LP and note the new value of SINF.
7.3. Reinstate the candidate constraint.

8. Permanently remove the candidate constraint whose temporary removal gave the
smallest value of SINF.

9. Go to Step 4.

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation

(given by jwjxj = w0).

Algorithm 3: Deleting features before hyperplane placement, allowing a small increase in
SINF relative to last accepted value (DelB1).

10

The DelA algorithm takes the opposite tack of sequential backward elimination by initially
including all of the features and gradually deleting them, as shown in Alg. 5. Note that only the
constraints for points that were incorrectly classified by the previously found separating
hyperplane are elasticized, and hence the elastic variables for only these constraints appear in
the elastic objective function. All features are initially included. In each of up to J rounds, Step
2 identifies and removes the feature whose removal causes the smallest increase in SINF. Note
that if too many features are removed then the LP may be infeasible; this is handled in Step

INPUT: a set of correctly classified data points.
1. Construct and elasticize the data point constraints for the correctly classified points.

Construct and add the feature constraints for j=1…J.

2. Solve the elastic LP. SINFLastBest SINF. SINFMin ∞.
3. For each feature j=1 to J:

3.1. Temporarily include feature j by deleting the feature constraint wj=0.
3.2. Solve the elastic LP.

3.3. If SINF < SINFMin then SINFMin SINF and Feature j.
3.4. Remove feature j by adding the feature constraint wj=0.

4. If SINFMin < SINFLastBest then:

4.1. SINFLastBest SINFMin.
4.2. Permanently add feature Feature by removing constraint wFeature = 0.

5. For each feature j=1 to J:

5.1. SINFMin ∞.
5.2. For each feature k=1 to J:

5.2.1. If feature k is not included (i.e. constraint wk=0 is included) and the elastic
objective function is sensitive to it then:

5.2.1.1. Temporarily include feature k by deleting the feature constraint wk=0.
5.2.1.2. Solve the elastic LP.
5.2.1.3. If SINF < SINFMin then:

5.2.1.3.1. SINFMin SINF. Feature k.
5.2.1.3.2. If SINF=0 then go to Step 5.3.

5.2.1.4. Remove feature j by adding the feature constraint wj=0.
5.3. If SINFMin < SINFLastBest then:

5.3.1. SINFLastBest SINFMin.
5.3.2. Permanently add feature Feature by removing constraint wFeature = 0.
5.3.3. Solve the elastic LP.
5.3.4. If SINFLastBest = 0 then exit.

5.4. Else exit.
6. Exit.

7. OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation

(given by jwjxj = w0).

Algorithm 4: Selecting features by adding them after a separation is available (AddA).

11

2.2.1.3. The algorithm terminates when the removal of each remaining feature causes
infeasibility in the LP, hence no feature can be identified for removal.

The rationale behind Alg. 5 is that the separating hyperplane should remain as close as possible
to the misclassified points (as measured by SINF over the elastic constraints for the misclassified
points). Alg. 5 also works when the set of misclassified points is empty. However in this case,
SINF is always zero, so the method provides no guidance concerning the ordering of the
features to test for potential removal: features are tested in their natural order.

2.3 Integrated Feature Selection and Hyperplane Placement

A major advantage of including the feature removal constraints along with the data point
constraints is that both feature selection and hyperplane placement can be handled in an
integrated manner in a single model. While feature selection can be done before or after
hyperplane selection as in Sections 2.1 and 2.2, the two operations can also be alternated, as
described in this section. Hyperplane placement and the selection of features proceed
together.

The Int ("integrated") algorithm described in Alg. 6 is a straightforward adaptation of the MaxFS
algorithm that includes the feature constraints directly in Alg. 1 along with the data point
constraints. However to initialize the process the algorithm must first identify at least one
feature to include, as shown in Steps 3-5. Steps 3 and 4 first attempt to add the single feature
that most reduces SINF (by eliminating the associated feature constraint). If that process fails,

INPUT: a set of correctly classified points, and a set of incorrectly classified points (possibly
empty).
1. Construct and elasticize the data point constraints for the incorrectly classified points.

Construct and add the nonelastic data point constraints for the correctly classified points.
2. For each feature j=1 to J:

2.1. SINFMin ∞. Feature 0.
2.2. For each feature k=1 to J:

2.2.1. If feature k is still included (i.e. constraint wk=0 is not included) then:
2.2.1.1. Temporarily remove feature k by adding the feature constraint wk=0.
2.2.1.2. Solve the elastic LP.

2.2.1.3. If elastic LP is infeasible then SINF ∞.

2.2.1.4. If SINF < SINFMin then SINFMin SINF and Feature k.
2.2.1.5. Reinstate feature k by removing the feature constraint wk=0.

2.3. If Feature > 0 then permanently remove feature Feature by adding the feature
constraint wFeature=0.

3. Solve the elastic LP and exit.

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation (given

by jwjxj = w0).

Algorithm 5: Selecting features by removing them after a linear separation is available (DelA).

12

then Step 5 initiates the opposite process: it adds all features (eliminates all feature constraints)
and then tries to remove as many as possible (by adding the feature constraints back in),
choosing at each step the feature that least increases SINF as long as SINF does not increase
beyond the original value. Once this is done, then a straightforward application of the MaxFS
algorithm follows in Step 6 and beyond. Initial testing showed that Step 5 is needed in a third of
the data sets (4 of 12), and does not impact the success of the method.

13

INPUT: a set of inequality constraints representing the data points i=1…I, and a set of
equality constraints representing the feature constraints j=1…J.
1. Elasticize the data point constraints by adding appropriate elastic variables.

2. Solve the elastic LP. SINFLastBest SINF. SINFMin ∞.
3. For each feature j=1…J:

3.1. Include feature j by removing the feature constraint wj=0.
3.2. Solve the elastic LP.

3.3. If SINF < SINFMin then SINFMin SINF and Feature j.
3.4. Remove feature j by adding the feature constraint wj=0.

4. If SINFMin < SINFLastBest then:

4.1. SINFLastBest SINFMin.
4.2. Permanently add feature Feature by removing constraint wFeature=0.

5. Else:

5.1. SINFReference SINFLastBest.
5.2. Include all features by removing all feature constraints.

5.3. Solve the elastic LP. SINFLastBest SINF.
5.4. For each feature j=1…J:

5.4.1. SINFCandidate ∞. Feature 0.
5.4.2. For each feature k=1…J:

5.4.2.1. If feature k is still included (i.e. constraint wk=0 is not included):
5.4.2.1.1. Remove feature k by adding constraint wk=0.
5.4.2.1.2. Solve elastic LP.

5.4.2.1.3. If SINF < SINFCandidate then SINFCanadidateSINF and Featurek.
5.4.2.1.4. Reinstate feature k by removing constraint wk=0.

5.4.3. If SINFCandidate < SINFReference then permanently remove feature Feature by
adding constraint wFeature=0.

5.4.4. Else go to Step 6.
6. Solve the elastic LP.
7. If SINF = 0 then exit.
8. Construct the list of candidate data point and feature constraints for removal.
9. For each candidate constraint:

9.1. Temporarily remove the candidate constraint.
9.2. Solve the reduced elastic LP and note the new value of SINF.
9.3. Reinstate the candidate constraint.

10. Permanently remove the candidate constraint whose temporary removal gave the
smallest value of SINF.

11. Go to Step 6.

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation

(given by jwjxj = w0).

Algorithm 6: The integrated algorithm for simultaneous feature selection and hyperplane
placement (Int).

14

3. Experiments

A series of experiments were run to test the algorithms described in Section 2. These were run
on an Intel Core 2 Quad CPU Q9400 running at 2.67 GHZ with 8 Gbytes of RAM and a 64-bit
Windows Vista operating system. All experiments were run in a single-threaded manner,
though other operations on the machine resulted in minor variations in times for repeated
experiments.

The software prototype is coded in Octave 3.2.3 [Octave 2011], an interpreted open-source
Matlab clone. An essential element of the method is the LP solver, which is GLPK in Octave
[GLPK 2011]. GLPK is a moderately capable LP solver according to a recent benchmark
comparison [Mittelmann 2011]. The software prototype code is not optimized for performance
in any way. Many speed improvements are possible including storage of intermediate results
to avoid re-solving LPs in numerous places, use of a better LP solver, and use of a compiled
language. The parameter P used in the DelB1 and DelB2 algorithms is set at 5, a useful value in
preliminary testing.

The reported statistics are based on the final separating hyperplane returned by the hyperplane
placement algorithm. No attempt is made to adjust this final hyperplane prior to applying it to
the testing set. It is possible that testing set results may be improved by such a concluding step,
such as finding a support vector machine solution for the final separable set of data points, but
preliminary experiments showed no particular advantage in doing this.

The algorithms developed in this paper are suitable only for data sets consisting solely of
features having numerical values (real, binary, integer), and having a binary outcome. Twelve
data sets meeting these criteria were chosen from the well-known UCI repository [Frank and
Asuncion 2010]; basic statistics are summarized in Table 1. Note that incomplete instances
were removed in all cases, so the number of instances shown may differ from the number
shown in the UCI repository. Some multicategory data sets were converted to binary by
choosing one of the categories as the positive outcome with all others deemed negative
outcomes, as shown in the comments column in the table. The average number of features
over the data sets is 30.00.

Some characteristics of the data sets are noteworthy:

 The number of instances in a data set affects the granularity of the results, especially in
ten-fold cross-validation. The iris data set has just 150 points, which leaves just 15
points in a ten-fold test set. One additional misclassified point in this case amounts to a
6.7% reduction in overall classifier testing accuracy.

 Some data sets have many features and hence more potential for feature reduction. Six
data sets have more than 10 features: musk1, sonar, vehicle, wdbc, wine, and wpbc.

 It is easy to find a 100% accurate separating hyperplane during training for these four
data sets: musk1, sonar, wdbc, and wine.

 The fractions of the total instances in a data set that are of either type affects feature
selection. For example, wpbc is 85.6% accurate with a null separating hyperplane

15

because positive instances constitute 14.4% of the population. Thus simply classifying
all points as negative achieves an 85.6% accuracy.

Name Data Set in Frank and

Asuncion [2010]
Instances Features Comments

breast1 Breast Cancer Wisconsin
(Original)

683 9

bupa Liver Disorders 345 6

glass Glass Identification 214 9 Type 2 vs. other types.

iris Iris 150 4 Versicolour vs. other
types.

newthyroid Thyroid Disease, database
from Stefan Aeberhard

215 5 Type 1 vs. other types.

pima Pima Indians Diabetes 768 8

sonar Connectionist Bench (Sonar,
Mines vs. Rocks)

208 60

vehicle Statlog (Vehicle Silhouettes) 850 18 Bus vs. other types.

wdbc Breast Cancer Wisconsin
(Diagnostic)

569 30

wine Wine 178 13 Type 3 vs. other types.

wpbc Breast Cancer Wisconsin
(Prognostic)

194 32 Outcome: recurrence
within 24 months.

musk1 Musk (Version 1) 476 166
TABLE 1: DATA SETS USED IN EXPERIMENTS.

The main results of the ten-fold cross-validation experiments are summarized in Table 2. Times
are in seconds, accuracies are in percent. "Feature time" is the subset of the total training time
that is devoted to selecting the features. There is no feature selection time for the Orig
algorithm, and it is not meaningful to separate it out in the integrated Int algorithm. The
highest test accuracy and the smallest number of features used for each model are shown in
boldface.

mean variance

train feat train test train train feat train test train

data set alg. time time acc acc feat time time acc acc feat

breast1 Orig 23.8 98.42 95.90 9.00 19.9 0.05 3.29 0.00
breast1 Int 34.2

98.00 96.34 4.50 21.8

0.09 4.43 0.50

breast1 AddB 26.4 2.7 98.42 95.90 9.00 19.5 0.0 0.05 3.29 0.00

breast1 DelB1 22.6 0.7 98.16 96.19 5.80 15.7 0.0 0.08 1.55 0.40
breast1 DelB2 23.1 2.0 98.21 95.60 6.30 18.0 0.0 0.06 5.77 0.23
breast1 AddA 26.0 2.6 98.42 95.60 8.40 18.8 0.0 0.05 3.39 0.71
breast1 DelA 24.1 0.4 98.42 95.75 8.10 19.5 0.0 0.05 4.54 0.54

bupa Orig 136.1

75.91 69.29 6.00 30.2

0.40 17.88 0.00
bupa Int 138.1

75.94 69.29 5.80 57.1

0.40 25.57 0.18

bupa AddB 63.8 0.0 61.32 59.42 2.30 0.2 0.0 2.28 5.23 0.46

16

mean variance

train feat train test train train feat train test train

data set alg. time time acc acc feat time time acc acc feat

bupa DelB1 107.7 0.1 68.96 67.82 2.20 18.6 0.0 5.95 59.16 0.18
bupa DelB2 113.9 0.2 74.81 70.43 4.00 22.3 0.0 0.96 41.63 0.00
bupa AddA 135.0 0.2 70.43 65.82 4.10 28.3 0.0 73.87 41.93 8.10
bupa DelA 135.3 0.1 75.91 69.29 5.80 30.1 0.0 0.40 17.88 0.18

glass Orig 27.3 80.47 65.50 9.00 8.6 7.35 163.67 0.00
glass Int 21.0

72.58 66.39 3.60 30.6

40.23 29.6 7.60

glass AddB 17.3 0.1 66.36 62.64 1.20 15.3 0.0 6.28 11.9 2.62
glass DelB1 18.3 0.1 67.97 65.87 1.90 9.3 0.0 40.32 10.7 6.77
glass DelB2 23.2 0.2 79.70 71.08 6.60 8.6 0.0 8.01 41.7 0.27

glass AddA 27.2 0.3 80.47 65.50 9.00 8.3 0.0 7.35 163.7 0.00
glass DelA 27.2 0.1 80.42 65.48 8.80 8.5 0.0 7.04 141.5 0.18

iris Orig 4.3

83.26 80.00 4.00 0.0

0.39 39.5 0.00
iris Int 4.2

76.52 70.67 2.10 0.1

3.66 120.5 0.54

iris AddB 4.3 0.0 83.26 80.00 4.00 0.1 0.0 0.39 39.5 0.00
iris DelB1 3.8 0.0 78.67 74.00 2.00 0.1 0.0 18.51 113.1 1.11
iris DelB2 3.8 0.0 79.70 75.33 2.30 0.2 0.0 15.51 128.9 0.90
iris AddA 4.3 0.0 83.26 80.00 4.00 0.1 0.0 0.39 39.5 0.00
iris DelA 4.3 0.0 83.26 80.00 4.00 0.0 0.0 0.39 39.5 0.00

musk1 Orig 3.2 100.00 67.63 166.00 0.0 0.00 34.2 0.00
musk1 Int 1051.0

94.02 81.28 24.70 7283.9

0.95 23.86 5.79

musk1 AddB 1015.8 1013.7 100.00 80.66 59.30 6296.2 6302.2 0.00 23.07 10.90

musk1 DelB1 102.4 99.7 100.00 77.30 90.40 7.0 6.9 0.00 25.7 8.71
musk1 DelB2 7746.2 7743.2 100.00 77.30 90.40 18078.2 18088.1 0.00 25.67 8.71
musk1 AddA 1024.9 1008.8 100.00 80.66 59.30 6183.1 6383.6 0.00 23.07 10.90
musk1 DelA 1499.7 1494.1 100.00 77.51 90.40 1973.5 1973.5 0.00 22.14 8.71

newthyroid Orig 2.8

95.04 91.19 5.00 0.0

0.13 6.4 0.00

newthyroid Int 3.6

94.99 90.74 4.70 0.1

0.18 8.8 0.23
newthyroid AddB 2.9 0.1 95.04 91.19 5.00 0.0 0.0 0.13 6.4 0.00
newthyroid DelB1 2.7 0.0 94.94 91.19 4.60 0.0 0.0 0.17 6.4 0.27
newthyroid DelB2 2.7 0.1 94.94 91.19 4.60 0.0 0.0 0.17 6.4 0.27
newthyroid AddA 2.9 0.1 95.04 91.19 4.90 0.0 0.0 0.13 6.4 0.10
newthyroid DelA 2.9 0.1 95.04 91.65 4.90 0.0 0.0 0.13 8.2 0.10

pima Orig 1776.2 80.67 78.12 8.00 2218.4 0.25 22.11 0.00
pima Int 1560.2

80.44 77.34 6.20 6066.0

0.27 17.73 0.62

pima AddB 1774.3 1.9 80.67 78.12 8.00 2102.0 0.0 0.25 22.11 0.00
pima DelB1 1122.2 0.5 77.08 75.25 1.80 29059.6 0.0 1.57 13.17 0.18
pima DelB2 1276.4 1.8 78.31 75.12 3.00 1040.2 0.0 0.17 23.21 0.00
pima AddA 1760.1 1.9 80.67 78.25 7.90 2247.2 0.0 0.25 22.60 0.10
pima DelA 1770.2 0.3 80.67 78.25 7.90 2074.1 0.0 0.25 22.60 0.10

17

mean variance

train feat train test train train feat train test train

data set alg. time time acc acc feat time time acc acc feat

sonar Orig 0.4

100.00 72.10 60.00 0.0

0.00 71.0 0.00
sonar Int 34.6

92.47 74.43 10.90 8.2

1.42 57.1 2.54

sonar AddB 30.8 30.5 100.00 74.43 34.70 20.0 20.1 0.00 163.0 19.12
sonar DelB1 3.5 3.1 100.00 78.81 41.40 0.0 0.0 0.00 53.2 10.27
sonar DelB2 57.1 56.7 100.00 78.81 41.40 35.4 35.5 0.00 53.2 10.27
sonar AddA 30.8 30.3 100.00 74.43 34.70 19.6 19.8 0.00 163.0 19.12
sonar DelA 20.4 20.1 100.00 78.81 41.40 4.9 5.6 0.00 53.2 10.27

vehicle Orig 61.9 98.90 94.94 18.00 183.2 0.04 12.9 0.00
vehicle Int 234.1

98.52 95.88 11.20 1216.6

0.04 8.69 1.51

vehicle AddB 653.5 8.2 84.24 81.65 7.20 251201.6 92.6 162.63 92.95 86.40
vehicle DelB1 65.0 3.0 98.51 95.88 12.10 162.2 0.0 0.05 5.3 0.32
vehicle DelB2 71.5 14.6 98.71 95.29 13.40 93.5 6.5 0.03 8.9 1.82
vehicle AddA 77.0 14.4 93.96 91.06 13.30 283.1 47.6 106.54 92.0 50.90
vehicle DelA 64.5 1.9 98.90 94.94 16.40 188.6 0.4 0.04 13.5 2.49

wdbc Orig 0.6

100.00 93.67 30.00 0.0

0.00 12.5 0.00
wdbc Int 27.9

98.67 97.53 4.60 6.3

0.05 2.2 0.27

wdbc AddB 27.6 27.3 100.00 95.43 21.10 33.4 32.6 0.00 9.8 21.21
wdbc DelB1 4.3 3.7 100.00 95.08 21.40 0.2 0.1 0.00 11.6 18.93
wdbc DelB2 30.2 29.7 100.00 95.08 21.40 93.5 93.1 0.00 11.6 18.93
wdbc AddA 28.4 27.2 100.00 95.43 21.10 33.2 33.1 0.00 9.8 21.21
wdbc DelA 7.6 6.6 100.00 94.90 21.40 2.6 2.8 0.00 11.3 18.93

wine Orig 0.1 100.00 93.27 13.00 0.0 0.00 19.9 0.00
wine Int 0.3

99.56 96.60 2.10 0.0

0.09 15.4 0.10

wine AddB 0.2 0.2 100.00 96.60 2.80 0.0 0.0 0.00 8.6 0.18
wine DelB1 0.2 0.1 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12
wine DelB2 0.9 0.9 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12
wine AddA 0.3 0.2 100.00 96.60 2.80 0.0 0.0 0.00 8.6 0.18
wine DelA 0.4 0.3 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12

wpbc Orig 6.5

97.48 75.71 32.00 0.9

0.09 20.6 0.00
wpbc Int 14.6

89.00 83.45 4.30 47.2

12.40 24.8 18.01

wpbc AddB 7.6 0.3 85.68 85.05 0.20 0.6 0.0 0.22 8.7 0.40
wpbc DelB1 4.7 0.6 85.85 84.08 0.60 1.5 0.0 0.48 17.7 1.60

wpbc DelB2 14.6 8.8 95.88 75.66 19.70 0.6 0.3 0.21 66.3 1.34
wpbc AddA 7.0 0.4 85.57 85.58 0.00 0.9 0.0 0.05 4.4 0.00
wpbc DelA 9.3 2.8 97.48 76.26 26.00 0.7 1.1 0.09 20.3 10.67

TABLE 2: TEN-FOLD CROSS-VALIDATION DATA

18

3.1 Feature Selection Prior to Hyperplane Placement

Three new algorithms select features using the SINF-based filter prior to placing the separating
hyperplane. AddB is a sequential forward selection algorithm, and DelB1 and DelB2 are two
variants of sequential backward elimination algorithms. Table 3 compares all three to the

original algorithm which does not use feature selection. % acc is the difference in ten-fold

average total accuracy on the testing set between the method and the Orig algorithm; feat is
the difference in the ten-fold average number of features between the method and the Orig
algorithm.

AddB DelB1 DelB2

data set %acc feat %acc feat %acc feat

breast1 0.00 0.00 0.29 -3.20 -0.29 -2.70

bupa -9.87 -3.70 -1.47 -3.80 1.14 -2.00
glass -2.86 -7.80 0.37 -7.10 5.58 -2.40
iris 0.00 0.00 -6.00 -2.00 -4.67 -1.70

musk1 13.02 -106.70 9.67 -75.60 9.67 -75.60
newthyroid 0.00 0.00 0.00 -0.40 0.00 -0.40

pima 0.00 0.00 -2.87 -6.20 -3.00 -5.00
sonar 2.33 -25.30 6.71 -18.60 6.71 -18.60

vehicle -13.29 -10.80 0.94 -5.90 0.35 -4.60
wdbc 1.75 -8.90 1.40 -8.60 1.40 -8.60
wine 3.33 -10.20 3.33 -9.70 3.33 -9.70
wpbc 9.34 -31.80 8.37 -31.40 -0.05 -12.30

average 0.31 -17.10 1.73 -14.38 1.68 -11.97
TABLE 3: SELECTING FEATURES BEFORE PLACING HYPERPLANE. DIFFERENCES RELATIVE TO ORIG ALGORITHM.

On average, all three methods reduce the number of features, as expected, sometimes by a
significant number (e.g. by 106.7 features on average for AddB on the musk1 data set).
However it is surprising to see that all three methods also increase the % total accuracy on
average as well. While DelB1 and DelB2 both reduce the number of features on average in
every data set, AddB fails to do so for 4 data sets. Overall, the best of the methods is DelB1
which has the highest average increase in ten-fold testing accuracy and removes the second
largest number of features on average. DelB1 removes 14.38 features of the 30.00 average
features in the data sets. The time required for the feature selection using DelB1 is very small,
ranging from 0.01 seconds to 99.74 seconds over the data sets, with a geometric mean of 0.5
seconds. The geometric mean times for the other two methods are also small, though slightly
larger.

However, a closer analysis shows that AddB is able to remove many more features for the four
data sets for which it is easy to achieve a 100% linear separation in the training set, while
increasing the ten-fold training accuracy about as much as the other methods. AddB performs
well in this case because it is able to terminate the process of adding features as soon as SINF
reaches zero, i.e. as soon as enough features are added that a complete separation is found.

19

DelB1 remains the best method for data sets that are not easily separated in training.

So DelB1 with P=5 is recommended when there is no prior information about the ability of the
Orig algorithm to place a 100% accurate separating hyperplane. If it is known beforehand that
such a hyperplane exists, then AddB is the method of choice.

3.2 Feature Selection After Hyperplane Placement

Two new algorithms attempt to reduce the number of features after a hyperplane has already
been placed, while making sure that all of the points correctly classified by the original
placement continue to be correctly classified as the number of features is reduced. The two
methods are AddA (sequential forward selection) and DelA (sequential backward selection).

Results are summarized in Table 4, with the change in 10-fold cross-validation test set accuracy
and number of features shown relative to the 10-fold test set results for the Orig algorithm. In
a few cases the change in 10-fold accuracy is negative, indicating that the reduced-features
hyperplane has lower accuracy compared to the Orig algorithm, even though the reduced-
features hyperplane successfully classifies all of the training set points that were successfully
classified when the Orig algorithm used all of the features. Overall the results are not dissimilar
to those shown in Table 3 for selecting features before placing the hyperplane.

 AddA DelA

data set %acc feat %acc feat

breast1 -0.29 -0.60 -0.14 -0.90
bupa -3.46 -1.90 0.00 -0.20

glass 0.00 0.00 -0.02 -0.20
iris 0.00 0.00 0.00 0.00
musk1 13.02 -106.70 9.88 -75.60
newthyroid 0.00 -0.10 0.45 -0.10
pima 0.13 -0.10 0.13 -0.10

sonar 2.33 -25.30 6.71 -18.60
vehicle -3.88 -4.70 0.00 -1.60
wdbc 1.75 -8.90 1.23 -8.60
wine 3.33 -10.20 3.33 -9.70
wpbc 9.87 -32.00 0.55 -6.00

average 1.90 -15.88 1.84 -10.13
TABLE 4: SELECTING FEATURES AFTER PLACING HYPERPLANE. DIFFERENCES RELATIVE TO ORIG ALGORITHM.

The best results are again reached for those data sets in which the Orig algorithm is able to
obtain a 100% separation (musk1, sonar, wdbc, wine). This allows the AddA method to stop
adding features as soon as the complete separation is achieved; and it also stops the DelA
method from deleting further features. Note that these good results are achieved despite the
lack of inherent ordering of the features when a complete separation is available.

20

The time required for feature selection after hyperplane placement is usually quite small. The
geometric mean of the ten-fold averages is 1.75 seconds for AddA, and 1.01 seconds for DelA.
The single outlier in both cases is the 166-feature musk1 data set.

3.3 Integrated Feature Selection

The Int algorithm integrates hyperplane placement and feature selection, as shown in Alg. 6.
The 10-fold cross-validation test set accuracies and numbers of features produced by this
algorithm relative to the Orig algorithm are summarized in Table 5. Accuracy is increased on
average an amount similar to the best of the methods for selecting features before and after
hyperplane placement, but the average reduction in number of features is significantly larger as
compared to all other methods. The average number of features is reduced for every data set,
but most remarkably for musk1, sonar, and wdbc, where the number of features is dramatically
smaller than found by any other method.

 Int

data set %acc feat

breast1 0.44 -4.50
bupa 0.00 -0.20
glass 0.89 -5.40
iris -9.33 -1.90
musk1 13.65 -141.30
newthyroid -0.45 -0.30
pima -0.77 -1.80
sonar 2.33 -49.10

vehicle 0.94 -6.80
wdbc 3.86 -25.40
wine 3.33 -10.90
wpbc 7.74 -27.70

average 1.89 -22.94
TABLE 5: INTEGRATED HYPERPLANE PLACEMENT AND FEATURE SELECTION. DIFFERENCES RELATIVE TO ORIG ALGORITHM.

We also examined the effect of allowing the introduction of a feature to cause a small
worsening in SINF, as is done in the DelB1 and DelB2 algorithms. This did not provide
consistent improvements.

3.4 Discussion

All six of the new methods for feature selection improve over the original algorithm, increasing
accuracy on average and reducing the number of features on average. It is unrealistic to expect
both an increase in accuracy and a reduction in the number of features in every case, and is in
fact frequently useful to accept a small decrease in accuracy in trade for a significant reduction
in the number of features, thus the two factors must be considered simultaneously. Figure 1
summarizes the trade-offs between the ten-fold average number of features and the ten-fold
testing set average accuracy, relative to the best result for each data set. The data is analyzed

21

as follows. The highest ten-fold average accuracy returned by any method and the smallest
ten-fold average number of features returned by any method are separately identified for each
data set, and the differences to those two best values are calculated for all methods. The
average ten-fold differences from the best results over all of the models are plotted for each
method in Figure 1.

FIGURE 1: AVERAGE PERFORMANCE RELATIVE TO BEST

A perfect method would always have the smallest number of features and the highest accuracy,
and hence would be at (0,0) in Figure 1. The closer a method is to (0,0), the better it is. The
figure shows that all six of the new methods improve on the Orig method, having both better
ten-fold testing accuracy on average and fewer ten-fold average features. Other patterns are
visible. AddB is able to reduce the number of features significantly, but does not improve
accuracy much on average. All of the other methods produce roughly similar improvements in
ten-fold average accuracy, but at a range of numbers of features. While AddA, DelB1, DelB2
and DelA cluster between 8.6 and 14 .4 features more than best ten-fold average, Int is
significantly better, averaging just 1.6 features more than best ten-fold average, while
averaging just 1.96 percentage points worse than best ten-fold average accuracy.

Comparisons to other methods in the literature are difficult primarily due to differing selection
of data sets. However there are a few data sets in common with work by Bradley and
Mangasarian (1998) and Fung and Mangasarian (2004). Results for the Int method tend to be

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Te
st

 A
cc

u
ra

cy
:

A
ve

ra
ge

 D
e

lt
a

%
 L

o
w

e
r

th
an

 B
e

st

Features: Average Number More than Best

Orig

AddB

DelB1

DelB2

AddA

DelA

Int

22

slightly better than those reported by Bradley and Mangasarian (2004) and comparable to the
linear methods in Fung and Mangasarian (2004). Results for Int are much better than those
reported by Dunbar et al [2010] for the wdbc data set, and slightly worse for the pima data set.

The time required for feature selection is generally a small fraction of the total time (feature
selection plus hyperplane placement) for most data sets. This is not the case for the musk1,
sonar, wdbc, and wine data sets. These are the data sets which are completely classified by a
single hyperplane. This has the effect of reducing the time for hyperplane placement to a very
small value, hence feature selection constitutes a large fraction of the total time.

The geometric means of the ten-fold cross-validation total training times (feature selection plus
hyperplane placement) and the feature selection times alone are shown in Table 6. The feature
selection time is not relevant for the Orig method, and cannot be separated out for Int. As can
be seen by comparison with the time for the Orig algorithm, feature selection does add some
time to the process. The feature selecting methods have similar training times, except for
DelB1, which is significantly faster than the others. DelB1 is also one of the recommended
methods if features are to be selected prior to hyperplane placement. The feature selection
times are very small, with geometric means in the range of 0.50 to 2.86 seconds, but the
reduced number of features often increases the training time because the time to place the
separating hyperplane by the Orig method increases, usually because the number of LPs that
must be solved increases. All times could be reduced significantly by an efficient
implementation of the algorithm and the use of a compiled language.

method geo. mean of training time (s) geo. mean of feature selection time (s)

Orig 7.67 -

Int 34.32 -

AddB 30.15 1.26
DelB1 13.73 0.50
DelB2 38.45 2.86
AddA 28.41 1.75
DelA 26.38 1.01

TABLE 6: GEOMETRIC MEANS OF TOTAL TRAINING TIME AND FEATURE SELECTION TIME

Note that the small feature selection times in Table 6 are independent of the hyperplane
placement method. In other words, the feature selection times will be the same even if some
other method of hyperplane placement (support vector machine etc.) is used. These feature
selection methods are very fast because they solve a sequence of linear programs in which each
LP model is very similar to the previous one, so advanced start techniques are effective.

Finally, the ten-fold cross-validation experiments were re-run using the fast version of all
algorithms which selects a single constraint representing a data point for the list of candidates
to consider for removal while placing the hyperplane. The fast version chooses the constraint
having the largest value of from among constraints having ei >0. This had minimal
impact on the testing accuracy (an average drop of 0.39 percentage points across all methods)

23

and number of features selected (an average reduction of 0.03 features). However training
time was reduced by about 60% on average, because the number of training LPs solved was
reduced by the same fraction.

4. Conclusions

This paper makes a number of contributions:

 A new and effective filtering criterion for use in feature selection is introduced:
reduction in the sum of infeasibilities (SINF). Feature selection methods based on this
criterion are very quick. Used before a separating hyperplane is placed, this criterion
improves the average accuracy and reduces the number of features as compared to an
existing hyperplane placement method.

 New methods for selecting features after a separating hyperplane has already been
found are introduced. The AddA and DelA methods preserve the training set separation
found by the original hyperplane. These methods also improve the average accuracy
and reduce the number of features as compared to an existing hyperplane placement
method.

 A new integrated method that selects features at the same time as placing a separating
hyperplane is introduced. The Int method is the best of all methods tested, reducing the
number of features more than all other methods, on average, and increasing the testing
accuracy as compared to an existing hyperplane placement method.

While a particular SINF-based method for placing separating hyperplanes has been used
throughout this paper, it is important to note that the feature selection methods (with the
exception of Int) can be used with any hyperplane placement method. The times for feature
selection alone are small, so the additional overhead will be minimal. Overall, the best results
are returned by the integrated Int method, which requires the use of the SINF-based method
for hyperplane placement. However if feature selection is to performed before or after
hyperplane placement, then any hyperplane placement method can be used.
Recommendations in this case are: (i) for feature selection beforehand use AddB if the data set
is known to be completely classified by a single hyperplane, and use DelB1 otherwise, and (ii)
for feature selection afterwards, use the AddA method.

Finally, the speed of these algorithms can be improved dramatically by several techniques.
First, the prototype algorithms implemented for this paper omit several steps that have a large
impact on efficiency, e.g. recording the list of constraints to which the objective function is
sensitive when a new minimum SINF is identified, which means that the LP does not need to be
re-solved at the end of the loop. Such efficiency-enhancing steps should be included. Second,
the algorithms should be re-implemented in a compiled rather than interpreted language, and
third, a more efficient LP solver than the one provided in Octave should be used. These are
tasks for future research.

24

References

Amaldi E (1994). From Finding Maximum Feasible Subsystems Of Linear Systems To
Feedforward Neural Network Design. Ph.D. thesis no. 1282, Département de Mathématiques,
École Polytechnique Fédérale de Lausanne, Switzerland.

Amaldi E, Kann V (1995). The Complexity And Approximability Of Finding Maximum Feasible
Subsystems Of Linear Relations, Theoretical Computer Science 147:181-210.

Bennett KP, Bredensteiner E (1997). A Parametric Optimization Method for Machine Learning,
INFORMS J. on Computing 9:311-318.

Bradley PS, Mangasarian OL (1998). Feature Selection Via Concave Minimization And Support
Vector Machines, in J. Shavlik, editor, Proceedings of the International Conference on Machine
Learning, pages 82–90, San Francisco, California, 1998. Morgan Kaufmann Publishers.

Bradley PS, Mangasarian OL, Street WN (1998). Feature Selection via Mathematical
Programming, INFORMS Journal on Computing 10:209-217.

Bredensteiner EJ, Bennett KP (1997). Feature Minimization Within Decision Trees.
Computational Optimization and Applications, 10:110–126.

Brown G, Graves G (1975). Elastic Programming: A New Approach To Large-Scale Mixed Integer
Optimisation, ORSA/TIMS conference, Las Vegas.

Chakravarti N (1994). Some Results Concerning Post-Infeasibility Analysis, European Journal of
Operations Research 73:139-143.

Chinneck JW (1996). An Effective Polynomial-Time Heuristic for the Minimum-Cardinality IIS Set-
Covering Problem, Annals of Mathematics and Artificial Intelligence 17:127-144.

Chinneck JW (2001). Fast Heuristics for the Maximum Feasible Subsystem Problem, INFORMS
Journal on Computing 13:210-223.

Chinneck JW (2008). Feasibility and Infeasibility in Optimization: Algorithms and
Computational Methods, Vol. 118, International Series in Operations Research and
Management Sciences, Springer Science+Media LLC.

Chinneck JW (2009). Tailoring Classifier Hyperplanes to General Metrics, in J.W. Chinneck, B.
Kristjansson, M. Saltzman (eds.) Operations Research and Cyber-Infrastructure, Springer
Science+Media LLC.

Cristianini N, Shawe-Taylor J (2000). An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods, Cambridge University Press, Cambridge, UK.

Dash M, Liu H (1997). Feature Selection for Classification, Intelligent Data Analysis 1:131-156.

Dunbar M, Murray JM, Cysique LA, Brew BJ, Vaithilingam J (2010). Simultaneous Classification
and Feature Selection Via Convex Quadratic Programming With Application to HIV-Associated
Neurocognitive Disorder Assessment, European Journal of Operational Research 206: 470–478.

Frank A, Asuncion A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
University of California, School of Information and Computer Science, Irvine, CA.

25

Fung GM, Mangasarian OL (2004). A Feature Selection Newton Method for Support Vector
Machine Classification, Computational Optimization and Applications 28:185-202.

GLPK (2011). Homepage for the Gnu Linear Programming Toolkit:
http://www.gnu.org/software/glpk/glpk.html

Guo G, Dyer CR (2003). Simultaneous Feature Selection and Classifier Training via Linear
Programming: A Case Study for Face Expression Recognition, Proceedings of the 2003 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03).

Jokar S, Pfetsch ME (2008). Exact and Approximate Sparse Solutions of Underdetermined Linear
Equations, Siam Journal on Scientific Computation 31:23-44.

Liu H, Yu L (2005). Toward Integrating Feature Selection Algorithms for Classification and
Clustering, IEEE Transactions on Knowledge and Data Engineering 17:491-502.

Maldonado S, Weber R, Basak J (2011). Simultaneous Feature Selection and Classification Using
Kernel-Penalized Support Vector Machines, Information Sciences 181:115-128.

Mangasarian OL (1994). Misclassification Minimization, Journal of Global Optimization 5:349-
360.

Mittelmann H (2011). Benchmark of Serial LP solvers, http://plato.asu.edu/ftp/lpfree.html,
accessed April 15, 2011.

Octave (2011). Octave home page: http://www.gnu.org/software/octave/.

Parker MR (1995). A set covering approach to infeasibility analysis of linear programming
problems and related issues. Ph.D. thesis, Dept. of Mathematics, University of Colorado at
Denver, Denver, Colorado.

Parker MR, Ryan J (1996). Finding the Minimum Weight IIS Cover of an Infeasible System of
Linear Inequalities, Annals of Mathematics and Artificial Intelligence 17:107-126.

Sankaran JK (1993). A Note On Resolving Infeasibility In Linear Programs By Constraint Re-
laxation, Operations Research Letters 13:19-20.

http://www.gnu.org/software/glpk/glpk.html
http://plato.asu.edu/ftp/lpfree.html

