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Abstract 

The process of placing a separating hyperplane for data classification is normally disconnected 
from the  process of selecting the features to use.  An approach for feature selection that is 
conceptually simple but computationally explosive is to simply apply the hyperplane placement 
process to all possible subsets of features, selecting the smallest set of features that provides 
reasonable classification accuracy.  Two ways to speed this process are (i) use a faster filtering 
criterion instead of a complete hyperplane placement, and (ii) use a greedy forward or 
backwards sequential selection method.  This paper introduces a new filtering criterion that is 
very fast: maximizing the drop in the sum of infeasibilities in a linear-programming 
transformation of the problem. It also shows how the linear programming transformation can 
be applied to reduce the number of features after a separating hyperplane has already been 
placed while maintaining the separation that was originally induced by the hyperplane.  Finally, 
a new and highly effective integrated method that simultaneously selects features while placing 
the separating hyperplane is introduced. 

1. Introduction 

Classifier decision trees are constructed by a sequential process of placing separating surfaces, 
frequently hyperplanes.  It is often advantageous to use as few features as possible when 
placing each separating surface, generally because there are costs associated with collecting 
the data for each feature (e.g. the cost of a medical test), but also because using fewer features 
sometimes results in better classification accuracy. 
 
There is a sizable literature on feature selection for classification. Excellent summaries are 
provided by Dash and Liu [1997] and Liu and Yu [2005].   Following Liu and Yu [2005], there are 
three main categories of feature selection methods: (i) filter methods which use metrics based 
on the data set to select features, (ii) wrapper methods which select subsets of features and 
evaluate them by applying the data mining technique (e.g. separating hyperplane) while using 
only the selected subset of features, and (iii) hybrid methods that combine elements of both 
filter and wrapper methods. 
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A subcategory of all methods is the search strategy.  Complete search evaluates all possible 
combinations of features; this is combinatorially explosive and impractical for more than a few 
features, though it does return the optimum solution (relative to the evaluation metric). For 
data sets having many features, alternative approaches are needed. Random search begins with 
a random subset of features and iterates towards an improved set, e.g. via simulated annealing.  
Sequential search proceeds through the set of features based on an ordering heuristic.  The two 
most common sequential approaches are: 

 Sequential forward selection.  This begins with no features and selects the single feature 
that gives the best value of the evaluation metric. It then iteratively adds the next 
feature that provides the next best value of the evaluation metric.  One-by-one addition 
of features continues until a stopping criterion is met, e.g. there is no improvement in 
the evaluation criterion by adding the next feature. 

 Sequential backward elimination. This is the opposite of sequential forward selection: it 
begins with all features included and eliminates the feature whose removal gives the 
best value of the evaluation metric.  It then iteratively eliminates the next feature 
whose removal gives the next best value of the evaluation criterion.  One-by-one 
elimination of features continues until a stopping criterion is met, e.g. there is no 
improvement in the evaluation criterion by adding the next feature.  

 
This paper develops a variety of sequential forward and backwards search methods using 
filtering based on a new feature selection evaluation metric.  It also develops a new integrated 
method that uses this evaluation metric while alternating between feature addition and 
separating hyperplane placement. Finally it develops new methods for removing features in 
such a way that a given linear separation is maintained.  In other words, an arbitrary technique 
can first be applied to find a desirable separating hyperplane, and then features can be 
removed while maintaining the same separation. 
 
There has been relatively little work on integrated methods for simultaneous separating 
hyperplane placement and feature selection.  Bredensteiner and Bennett [1997] solve a 
parametric bilinear program to do so while maintaining a specified level of total accuracy.  The 
problem is solved by a variation of a Franke-Wolfe algorithm. 
 
Bradley and Mangasarian [1998] introduce a parameter into the objective function to permit 
the relative weighting of two objectives: the original objective function that seeks to find a high 
accuracy separation and a second objective function that minimizes the number of features.  
The resulting optimization problem is nonlinear but convex and is solved by a successive linear 
approximation algorithm. Bradley, Mangasarian, and Street [1998] examine similar approaches. 
Guo and Dyer [2003] report good results when these techniques are applied in facial expression 
recognition. 
 
Dunbar et al [2010] formulate the simultaneous hyperplane placement and feature selection 
problem as a nonlinear support vector machine problem, and then reformulate it as a quadratic 
minimization problem subject to  nonnegativity constraints.  This is an extension of a method 
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originally proposed by Bradley and Mangasarian [1998]. Maldonado et al [2011] present 
another support vector machine based method that results in a nonlinear problem that must be 
solved. 

1.1  Hyperplane Placement and the Maximum Feasible Subset Problem 

The problem of placing a separating hyperplane to minimize the number of misclassified binary 
data points is equivalent to the following problem: given an infeasible set of linear inequalities, 
find the maximum cardinality subset that constitutes a feasible set [Amaldi 1994, Parker 1995, 
Chinneck 2001, Chinneck 2009].  This second problem is known by a number of names: the 
Maximum Satisfiability Problem, the Maximum Feasible Subset Problem (MaxFS), the Minimum 
Unsatisfied Linear Relation Problem, or the Minimum Cardinality IIS Set Covering Problem; we 
will use MaxFS hereafter.   
 
The conversion of the data misclassification minimization problem to the MaxFS problem is 
straightforward [Chinneck 2001]. Given a training set of I binary data points (i=1…I) in J 
dimensions (j=1…J), in which the value of attribute j for point i is denoted by dij, where the class 
of each point is known (either Type 0 or Type 1), construct one linear inequality constraint for 
each data point: 

 for each point of Type 0: jdijwj  w0   

 for each point of Type 1: jdijwj  w0 +   

where  is a small positive constant (often set at 1).  The variables are the unrestricted wj 
where j=0…J, while the dij are known constants.   
 
This set of linear inequalities has a feasible solution (which is easily found by linear 
programming) if and only if the set of data points can be completely separated by a single 
hyperplane.  Where the data cannot be completely separated by a single hyperplane, the set of 
linear inequalities is infeasible.  In this case, a solution to the MaxFS problem identifies the  
maximum cardinality feasible subset of constraints, and at the same time identifies the smallest 
subset of excluded constraints. Any feasible point satisfying the largest feasible subset of 
inequalities provides values for the w variables, thereby identifying the parameters of the 

separating hyperplane jdijwj = w0.  Such a feasible point is normally found by linear 
programming (LP).  The constraints excluded by the MaxFS solution correspond to data points 
that are misclassified by the resulting hyperplane.  Thus a solution for the MaxFS problem 
provides a hyperplane that misclassifies the minimum number of data points. 
 
Unfortunately, the MaxFS problem is NP-hard [Sankaran 1993; Chakravarti 1994; Amaldi and 
Kann 1995].  A number of solution approaches have been developed for this problem; see 
Chinneck [2008, chapter 7] for a survey.  Small problems can be formulated for exact solution, 
either as  mixed-integer linear programs, or as a linear programs with equilibrium constraints 
(LPEC).  Heuristic solutions for the LPEC formulation have been developed in the machine 
learning community [Mangasarian 1994, Bennett and Bredensteiner 1997].  Parker [1995] and 
Parker and Ryan [1996] described a method that gradually enumerates infeasible subsets of 
constraints from which at least one must be removed to create a feasible subset.  Chinneck 
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[1996, 2001] developed a number of greedy heuristics that reduce a measure of the infeasibility 
of the current subset of constraints at each iteration.   
 
Any of the algorithms described above can be applied to solve the MaxFS problem for the 
purpose of identifying a separating hyperplane that minimizes the number of misclassifications.  
The methods developed in this paper are based on the infeasibility-reducing algorithms by 
Chinneck [1996, 2001, 2009] for several reasons.  First, these methods provide the best results 
over a variety of categories of MaxFS problems [Jokar and Pfetsch 2008].  Second, they are 
easily extended to pursue goals other than maximum overall accuracy [Chinneck 2009].  Third, 
and most crucially, the sequential nature of the methods allows us to make the trade-off 
between the accuracy of the hyperplane placement and the selection of features in an 
integrated manner, which is the subject of this paper. 
 
Chinneck's MaxFS solution algorithms first require that the linear inequalities be converted to 
elastic form [Brown and Graves 1975] by the addition of nonnegative elastic variables, ei, one 
per inequality, as follows: 

 Type 0 inequalities take the elastic form jdijwj  − ei  w0   

 Type 1 inequalities take the elastic form jdijwj + ei  w0 +  
An elastic program is constructed, consisting of the elastic inequalities, nonnegativity bounds 

on the elastic variables, and an elastic objective function of the form minimize SINF     
 
   .  

Because of the minimization, an elastic variable will take on a positive value only when the 
original non-elastic version of the constraint is violated, hence SINF indicates the "sum of the 
infeasibilities". The main MaxFS heuristic is then applied to the elastic program, based on the 
following concepts: 

 An LP solution of the elastic program minimizes SINF, which is a measure of the total 
infeasibility in the current set of constraints.  SINF can be reduced by removing 
constraints that contribute to the infeasibility.  When SINF reaches zero, the remaining 
constraints constitute a feasible subset. 

 Constraints are removed one at a time, and a new lower value of SINF is found by re-
solving the LP for the smaller set of constraints. 

 A candidate list of constraints for removal at each iteration can be generated in various 
ways. The list can be as short as one member if a quick solution is desired. 

 When there are several candidates for removal, the one that lowers SINF the most is 
chosen.  This greedy heuristic is highly effective in practice. 

 
A simplified statement of the most basic version of the SINF-reducing algorithm is shown in 
Algorithm 1 (some steps that improve efficiency are omitted for clarity of the main procedure).  
Numerous LPs are solved, but the method is highly efficient because each new LP is very similar 
to the previous one solved. This means that each new LP can be solved in just a few simplex 
iterations due to the advanced start routines in modern LP solvers. 
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There are several ways to construct the list of candidate constraints in Step 4 of Alg. 1.  The 
method that yields the best results includes as candidates all constraints to which the elastic 
objective function is sensitive in the current LP solution, i.e. for which the reduced cost 
associated with ei is nonzero: in this case constraint i will be either violated or tight.  This list of 
candidates may be lengthy, so there are other ways to construct shorter lists, but possibly at 

the cost of finding a smaller feasible subset, and hence a less accurate separating hyperplane.   
 
Where       represents the reduced cost associated with the variable ei, the product           
is a good heuristic estimator of the relative magnitude of the reduction in SINF experienced 
when constraint i is removed during Step 5.1 of Alg. 1 (provided that ei is positive, i.e. the 
original non-elastic version of constraint i is violated) [Chinneck 2001].  When ei=0, the size of  
        alone is a good estimator of the relative magnitude of the reduction in SINF when 
constraint i is removed during Step 5.1 of Alg. 1 [Chinneck 2001].  These two observations 
provide a way to construct shorter lists of candidate constraints in Step 4 of Alg. 1.  Simply take 
the top k largest elements of the two lists: the constraints corresponding to the k largest values 
of            for constraints having ei>0, and the constraints corresponding to the k largest 
values of         for constraints having ei = 0. 
 
A good heuristic for selecting just a single candidate in Step 4 of Alg.1 (thereby reducing Step 5 
to a single test), is to choose the constraint having the largest value of           from among 
constraints in which ei >0 [Chinneck 2001].  When SINF>0 there is always at least one ei >0. 
 
In the sequel, the Orig algorithm will be taken to mean the original version of the algorithm 
which includes as candidates all constraints to which the elastic objective function is sensitive in 
the current LP solution.  A fast version of the original version of the algorithm in which exactly 
one candidate is used in Step 4 of Alg. 1 is also tested.  The candidate chosen is the constraint 
having the largest value of           from among constraints having ei >0. 
 

INPUT: an infeasible set of linear constraints. 
1. Elasticize the constraints by adding appropriate elastic variables. 
2. Solve the elastic LP. 
3. If SINF = 0 then exit. 
4. Construct the list of candidate constraints for removal. 
5. For each candidate constraint: 

5.1. Temporarily remove the candidate constraint. 
5.2. Solve the reduced elastic LP and note the new value of SINF. 
5.3. Reinstate the candidate constraint. 

6. Permanently remove the candidate constraint whose temporary removal gave the smallest 
value of SINF. 

7. Go to Step 2. 
OUTPUT: large cardinality feasible subset of constraints. 

Algorithm 1:  Finding a large cardinality feasible subset of constraints [Chinneck 2009]. 
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The reduced set of data points corresponding to the satisfied data point inequalities is 
completely linearly separated by the final hyperplane returned by the algorithm. However it 
may be advantageous to adjust the placement of the final hyperplane to obtain better 
generalization.  There are variety of ways to do this, including minimizing the distance from the 
hyperplane to the misclassified points, maximizing the distance from the hyperplane to the 
correctly classified points, averaging these two approaches, etc. [Chinneck 2009].  It is also 
possible to maximize the margins by applying a support vector machine to the subset of 
correctly classified points [Cristianini and Shawe-Taylor 2000]. 
 
Note that while these methods are specifically for linear separating hyperplanes, they are easily 
extendable to nonlinear separating surfaces by including appropriate nonlinear data.  For 
example, squaring the value of some feature x and including it as a new feature allows x2 to 
included in the linear combination of terms that is returned by the separating hyperplane. 

2. Integrating Feature Selection and Hyperplane Placement 

The linear program used in Alg. 1 for hyperplane placement includes an inequality for each of 
the data points in the binary dataset, but the elements of w, the variables whose solution 
values provide the coefficients of the features in the separating hyperplane, are completely 
unrestricted in value.  However it is simple to introduce constraints that prevent certain 
features from being used in the resulting hyperplane. For example, to prevent feature j from 
being used, add the constraint wj=0.  When constraints of this form are added to the set of 
inequalities for the data points, the complete set of constraints integrates both hyperplane 
placement and feature selection.  We have the option of sequential forward addition of 
features (by removing constraints of the form wj=0), or of sequential backwards elimination of 
features (by adding constraints of the form wj=0).  We can also alternate between removing 
constraints corresponding to data points, and adding or removing constraints corresponding to 
features. Some variants of these options that have proved to be particularly useful are 
described below. 
 
The algorithms that follow make use of 3 main elements: 

 constraints derived from the data points, 

 constraints to allow/remove features, and 

 the value of the elastic objective function, SINF, defined over only the constraints 
derived from the data points.  

Using the elastic objective function defined over only the data points reflects the goal of 
maximizing the overall accuracy subject to the features currently used in the separating 
hyperplane.  Elastic variables are therefore not added to the feature constraints of the form 
wj=0; constraints of this type are either removed or added in their entirety (this is simple to do 
in most LP solvers by specifying that the constraint is either of type "equality", which includes 
the constraint, or of type "free" which means that the constraint is not binding). As in Alg. 1, the 
best choice among options is normally indicated by the largest drop in the value of SINF; this is 
the new metric for the filtering methods of feature selection developed here. SINF can be used 
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in both of the usual filtering modes: sequential forward selection and sequential backwards 
elimination. It can also be used in a new integrated manner described later. 
 
These basic building blocks are very flexible.  We examine below a variety of ways to use them 
to allow feature selection prior to placing a hyperplane, feature reduction after a separation 
has been found (is there a smaller set of features that gives an equivalent separation?), and 
integrated hyperplane placement and feature selection. In the same vein, while simultaneously 
considering feature selection, these basic ingredients can also be used to pursue other 
hyperplane placement goals besides maximizing total accuracy, such as balancing the 
population accuracies, balancing the accuracies on each side of the hyperplane, etc. [Chinneck 
2009]. 

2.1  Feature Selection Prior to Hyperplane Placement 

The AddB algorithm is a sequential forward feature selection algorithm that operates prior to 
placing the separating hyperplane, as shown in Alg. 2.  AddB ("add features before hyperplane 
placement") begins with no features included at all (i.e. constraints wj=0, j=1...J are in place).  
Features are then added one by one in a greedy manner: in each round, the feature that most 
reduces SINF is added, provided that it reduces SINF below the value reached when the last 
feature was permanently added in the previous round.  Feature selection terminates when 
adding the next feature does not reduce SINF any further. After a set of features is selected, the 
separating hyperplane is then found, beginning in Step 4. 
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Of course, it is possible to proceed in the opposite way: begin with all features in place and 
iteratively remove them, i.e. use a sequential backwards elimination procedure. This generally 
increases SINF, so an exit condition is needed to prevent it from becoming too large.  The DelB1 
algorithm ("delete features before, variant 1"), shown in Alg. 3, allows a small percent increase 
in SINF relative to the last accepted value, denoted by SINFLastBest.  The parameter P represents 
the allowable percent increase in SINF relative to SINFLastBest.  There is a single run through the 
features, testing and potentially removing each feature one by one. 
 
The DelB2 variant allows a small percent increase relative to the original SINF with all features 
in place, hence it is identical to Alg. 3 except that Step 3.4 is omitted. 
 

INPUT: a set of inequality constraints representing the data points i=1…I, and a set of 
equality constraints representing the feature constraints j=1…J. 
1. Elasticize the data point constraints by adding appropriate elastic variables. 

2. Solve the elastic LP.  SINFLastBest  SINF. 
3. Do J times: 

3.1. SINFMin  ∞, Feature  . 
3.2. For each feature j=1 to J: 

3.2.1. If feature j is still excluded (i.e. constraint wj=0 is still included) then: 
3.2.1.1. Temporarily add the feature by removing the feature constraint. 
3.2.1.2. Solve the elastic LP and note the value of SINF. 

3.2.1.3. If SINF < SINFMin then SINFMin SINF and Feature  j. 
3.2.1.4. Remove feature j by re-introducing the constraint wj=0. 

3.3. If SINFMin < SINFLastBest then: 
3.3.1. Select feature Feature by permanently removing the constraint wFeature=0. 

3.3.2. SINFLastBest  SINFMin. 
3.3.3. If SINFLastBest = 0 then go to Step 4. 

3.4. Else go to Step 4. 
4. Solve the elastic LP. 
5. If SINF = 0 then exit. 
6. Construct the list of candidate data point constraints for removal. 
7. For each candidate constraint: 

7.1. Temporarily remove the candidate constraint. 
7.2. Solve the reduced elastic LP and note the new value of SINF. 
7.3. Reinstate the candidate constraint. 

8. Permanently remove the candidate constraint whose temporary removal gave the 
smallest value of SINF. 

9. Go to Step 4. 

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation 

(given by jwjxj = w0). 
 
Algorithm 2: Adding features before hyperplane placement (AddB).  
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2.2  Feature Selection After Hyperplane Placement 

The question here is this: given a separating hyperplane found by an arbitrary method, is there 
a hyperplane that has the same sets of correctly and incorrectly classified points but which uses 
fewer features?  The building blocks allow this question to be addressed in a number of ways. 
 
Given a separating hyperplane, the points in the training set can be grouped into the correctly 
and incorrectly classified sets.  Incorrectly classified points are removed, leaving only the 
correctly classified points. The AddA algorithm (add features after hyperplane placement) 
operates on the constraints derived from the correctly classified points in a sequential forward 
selection manner as shown in Alg. 4.  All of the feature constraints are included at the outset 
(i.e. all features are excluded), so SINF will initially be greater than zero. At least one feature 
must be added, and Steps 3 and 4 take care of identifying and adding the feature that most 
reduces SINF.  Step 5 adds further features in a series of iterations.  Each iteration adds the 
feature that most decreases SINF.  The iterations cease when SINF reaches zero . 
 

INPUT: a set of inequality constraints representing the data points i=1…I, and a parameter P. 
1. Elasticize the data point constraints by adding appropriate elastic variables. 

2. Solve the elastic LP.  SINFLastBest  SINF. 
3. For each feature j=1 to J: 

3.1. Delete feature j by adding the feature constraint wj=0. 
3.2. Solve the elastic LP. 
3.3. If SINF > SINFLastBest×(1+P/100) then reinstate feature j by removing the feature 

constraint wj=0. 

3.4. Else SINFLastBest  SINF. 
4. Solve the elastic LP. 
5. If SINF = 0 then exit. 
6. Construct the list of candidate data point constraints for removal. 
7. For each candidate constraint: 

7.1. Temporarily remove the candidate constraint. 
7.2. Solve the reduced elastic LP and note the new value of SINF. 
7.3. Reinstate the candidate constraint. 

8. Permanently remove the candidate constraint whose temporary removal gave the 
smallest value of SINF. 

9. Go to Step 4. 

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation 

(given by jwjxj = w0). 
 
Algorithm 3: Deleting features before hyperplane placement, allowing a small increase in 
SINF relative to last accepted value (DelB1). 
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The DelA algorithm takes the opposite tack of sequential backward elimination by initially 
including all of the features and gradually deleting them, as shown in Alg. 5.  Note that only the 
constraints for points that were incorrectly classified by the previously found separating 
hyperplane are elasticized, and hence the elastic variables for only these constraints appear in 
the elastic objective function.  All features are initially included.  In each of up to J rounds, Step 
2 identifies and removes the feature whose removal causes the smallest increase in SINF.  Note 
that if too many features are removed then the LP may be infeasible; this is handled in Step 

INPUT: a set of correctly classified data points. 
1. Construct and elasticize the data point constraints for the correctly classified points. 

Construct and add the feature constraints for j=1…J. 

2. Solve the elastic LP. SINFLastBest  SINF. SINFMin  ∞. 
3. For each feature j=1 to J: 

3.1. Temporarily include feature j by deleting the feature constraint wj=0. 
3.2. Solve the elastic LP. 

3.3. If SINF < SINFMin then SINFMin  SINF and Feature  j. 
3.4. Remove feature j by adding the feature constraint wj=0. 

4. If SINFMin < SINFLastBest then: 

4.1. SINFLastBest  SINFMin. 
4.2. Permanently add feature Feature by removing constraint wFeature = 0. 

5. For each feature j=1 to J: 

5.1. SINFMin  ∞. 
5.2. For each feature k=1 to J: 

5.2.1. If feature k is not included (i.e. constraint wk=0 is included) and the elastic 
objective function is sensitive to it then: 

5.2.1.1. Temporarily include feature k by deleting the feature constraint wk=0. 
5.2.1.2. Solve the elastic LP. 
5.2.1.3. If SINF < SINFMin then:  

5.2.1.3.1. SINFMin  SINF. Feature  k. 
5.2.1.3.2. If SINF=0 then go to Step 5.3. 

5.2.1.4. Remove feature j by adding the feature constraint wj=0. 
5.3. If SINFMin < SINFLastBest then: 

5.3.1. SINFLastBest  SINFMin. 
5.3.2. Permanently add feature Feature by removing constraint wFeature = 0. 
5.3.3. Solve the elastic LP. 
5.3.4. If SINFLastBest = 0 then exit. 

5.4. Else exit. 
6. Exit. 

7. OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation 

(given by jwjxj = w0). 
 
Algorithm 4: Selecting features by adding them after a separation is available (AddA). 
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2.2.1.3.  The algorithm terminates when the removal of each remaining feature causes 
infeasibility in the LP, hence no feature can be identified for removal. 
 

 
 
The rationale behind Alg. 5 is that the separating hyperplane should remain as close as possible 
to the misclassified points (as measured by SINF over the elastic constraints for the misclassified 
points). Alg. 5 also works when the set of misclassified points is empty.  However in this case, 
SINF is always zero, so the method provides no guidance concerning the ordering of the 
features to test for potential removal: features are tested in their natural order. 

2.3  Integrated Feature Selection and Hyperplane Placement 

A major advantage of including the feature removal constraints along with the data point 
constraints is that both feature selection and hyperplane placement can be handled in an 
integrated manner in a single model. While feature selection can be done before or after 
hyperplane selection as in Sections 2.1 and 2.2, the two operations can also be alternated, as 
described in this section.  Hyperplane placement and the selection of features proceed 
together. 
 
The Int ("integrated") algorithm described in Alg. 6 is a straightforward adaptation of the MaxFS 
algorithm that includes the feature constraints directly in Alg. 1 along with the data point 
constraints. However to initialize the process the algorithm must first identify at least one 
feature to include, as shown in Steps 3-5.  Steps 3 and 4 first attempt to add the single feature 
that most reduces SINF (by eliminating the associated feature constraint).  If that process fails, 

INPUT: a set of correctly classified points, and a set of incorrectly classified points (possibly 
empty). 
1. Construct and elasticize the data point constraints for the incorrectly classified points. 

Construct and add the nonelastic data point constraints for the correctly classified points. 
2. For each feature j=1 to J: 

2.1. SINFMin  ∞. Feature  0. 
2.2. For each feature k=1 to J: 

2.2.1. If feature k is still included (i.e. constraint wk=0 is not included) then: 
2.2.1.1. Temporarily remove feature k by adding the feature constraint wk=0. 
2.2.1.2. Solve the elastic LP. 

2.2.1.3. If elastic LP is infeasible then SINF  ∞. 

2.2.1.4. If SINF < SINFMin then SINFMin  SINF and Feature  k. 
2.2.1.5. Reinstate feature k by removing the feature constraint wk=0. 

2.3. If Feature > 0 then permanently remove feature Feature by  adding the feature 
constraint  wFeature=0. 

3. Solve the elastic LP and exit. 

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation (given 

by jwjxj = w0). 
 
Algorithm 5: Selecting features by removing them after a linear separation is available (DelA).  
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then Step 5 initiates the opposite process: it adds all features (eliminates all feature constraints) 
and then tries to remove as many as possible (by adding the feature constraints back in), 
choosing at each step the feature that least increases SINF as long as SINF does not increase 
beyond the original value.  Once this is done, then a straightforward application of the MaxFS 
algorithm follows in Step 6 and beyond. Initial testing showed that Step 5 is needed in a third of 
the data sets (4 of 12), and does not impact the success of the method. 
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INPUT: a set of inequality constraints representing the data points i=1…I, and a set of 
equality constraints representing the feature constraints j=1…J. 
1. Elasticize the data point constraints by adding appropriate elastic variables. 

2. Solve the elastic LP.  SINFLastBest  SINF. SINFMin  ∞. 
3. For each feature j=1…J: 

3.1. Include feature j by removing the feature constraint wj=0. 
3.2. Solve the elastic LP. 

3.3. If SINF < SINFMin then SINFMin  SINF and Feature  j. 
3.4. Remove feature j by adding the feature constraint wj=0. 

4. If SINFMin < SINFLastBest then: 

4.1. SINFLastBest  SINFMin. 
4.2. Permanently add feature Feature by removing constraint wFeature=0. 

5. Else: 

5.1. SINFReference  SINFLastBest. 
5.2. Include all features by removing all feature constraints. 

5.3. Solve the elastic LP. SINFLastBest  SINF. 
5.4. For each feature j=1…J: 

5.4.1. SINFCandidate  ∞. Feature  0. 
5.4.2. For each feature k=1…J: 

5.4.2.1. If feature k is still included (i.e. constraint wk=0 is not included): 
5.4.2.1.1. Remove feature k by adding constraint wk=0. 
5.4.2.1.2. Solve elastic LP. 

5.4.2.1.3. If SINF < SINFCandidate then SINFCanadidateSINF and Featurek. 
5.4.2.1.4. Reinstate feature k by removing constraint wk=0. 

5.4.3. If SINFCandidate < SINFReference then permanently remove feature Feature by 
adding constraint wFeature=0. 

5.4.4. Else go to Step 6. 
6. Solve the elastic LP. 
7. If SINF = 0 then exit. 
8. Construct the list of candidate data point and feature constraints for removal. 
9. For each candidate constraint: 

9.1. Temporarily remove the candidate constraint. 
9.2. Solve the reduced elastic LP and note the new value of SINF. 
9.3. Reinstate the candidate constraint. 

10. Permanently remove the candidate constraint whose temporary removal gave the 
smallest value of SINF. 

11. Go to Step 6. 

OUTPUT: a set of features (those for which wj0) and a separating hyperplane equation 

(given by jwjxj = w0). 
 
Algorithm 6: The integrated algorithm for simultaneous feature selection and hyperplane 
placement (Int). 
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3. Experiments 

A series of experiments were run to test the algorithms described in Section 2. These were run 
on an Intel Core 2 Quad CPU Q9400 running at 2.67 GHZ with 8 Gbytes of RAM and a 64-bit 
Windows Vista operating system.  All experiments were run in a single-threaded manner, 
though other operations on the machine resulted in minor variations in times for repeated 
experiments. 
 
The software prototype is coded in Octave 3.2.3 [Octave 2011], an interpreted open-source 
Matlab clone.  An essential element of the method is the LP solver, which is GLPK in Octave 
[GLPK 2011].  GLPK is a moderately capable LP solver according to a recent benchmark 
comparison [Mittelmann 2011].  The software prototype code is not optimized for performance 
in any way.  Many speed improvements are possible including storage of intermediate results 
to avoid re-solving LPs in numerous places, use of a better LP solver, and use of a compiled 
language.  The parameter P used in the DelB1 and DelB2 algorithms is set at 5, a useful value in 
preliminary testing. 
 
The reported statistics are based on the final separating hyperplane returned by the hyperplane 
placement algorithm.  No attempt is made to adjust this final hyperplane prior to applying it to 
the testing set.  It is possible that testing set results may be improved by such a concluding step, 
such as finding a support vector machine solution for the final separable set of data points, but 
preliminary experiments showed no particular advantage in doing this. 
 
The algorithms developed in this paper are suitable only for data sets consisting solely of 
features having numerical values (real, binary, integer), and having a binary outcome.  Twelve 
data sets meeting these criteria were chosen from the well-known UCI repository [Frank and 
Asuncion 2010]; basic statistics are summarized in Table 1.  Note that incomplete instances 
were removed in all cases, so the number of instances shown may differ from the number 
shown in the UCI repository. Some multicategory data sets were converted to binary by 
choosing one of the categories as the positive outcome with all others deemed negative 
outcomes, as shown in the comments column in the table.  The average number of features 
over the data sets is 30.00. 
 
Some characteristics of the data sets are noteworthy:   

 The number of instances in a data set affects the granularity of the results, especially in 
ten-fold cross-validation.  The iris data set has just 150 points, which leaves just 15 
points in a ten-fold test set.  One additional misclassified point in this case amounts to a 
6.7% reduction in overall classifier testing accuracy. 

 Some data sets have many features and hence more potential for feature reduction.  Six 
data sets have more than 10 features: musk1, sonar, vehicle, wdbc, wine, and wpbc.   

 It is easy to find a 100% accurate separating hyperplane during training for these four 
data sets: musk1, sonar, wdbc, and wine.   

 The fractions of the total instances in a data set that are of either type affects feature 
selection.  For example, wpbc is 85.6% accurate with a null separating hyperplane 
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because positive instances constitute 14.4% of the population.  Thus simply classifying 
all points as negative achieves an 85.6% accuracy. 

 
Name Data Set in Frank and 

Asuncion [2010] 
Instances Features Comments 

breast1 Breast Cancer Wisconsin 
(Original) 

683 9   

bupa Liver Disorders 345 6   

glass Glass Identification 214 9 Type 2 vs. other types. 

iris Iris 150 4 Versicolour vs. other 
types. 

newthyroid Thyroid Disease, database 
from Stefan Aeberhard 

215 5 Type 1 vs. other types. 

pima Pima Indians Diabetes 768 8   

sonar Connectionist Bench (Sonar, 
Mines vs. Rocks) 

208 60   

vehicle Statlog (Vehicle Silhouettes) 850 18 Bus vs. other types. 

wdbc Breast Cancer Wisconsin 
(Diagnostic) 

569 30   

wine Wine 178 13 Type 3 vs. other types. 

wpbc Breast Cancer Wisconsin 
(Prognostic) 

194 32 Outcome: recurrence 
within 24 months. 

musk1 Musk (Version 1) 476 166   
TABLE 1: DATA SETS USED IN EXPERIMENTS. 

 
The main results of the ten-fold cross-validation experiments are summarized in Table 2.  Times 
are in seconds, accuracies are in percent.  "Feature time" is the subset of the total training time 
that is devoted to selecting the features.  There is no feature selection time for the Orig 
algorithm, and it is not meaningful to separate it out in the integrated Int algorithm.  The 
highest test accuracy and the smallest number of features used for each model are shown in 
boldface. 

  
mean variance 

  
train feat train test train train feat train test train 

data set alg. time time acc acc feat time time acc acc feat 

breast1 Orig 23.8   98.42 95.90 9.00 19.9   0.05 3.29 0.00 
breast1 Int 34.2 

 
98.00 96.34 4.50 21.8 

 
0.09 4.43 0.50 

breast1 AddB 26.4 2.7 98.42 95.90 9.00 19.5 0.0 0.05 3.29 0.00 

breast1 DelB1 22.6 0.7 98.16 96.19 5.80 15.7 0.0 0.08 1.55 0.40 
breast1 DelB2 23.1 2.0 98.21 95.60 6.30 18.0 0.0 0.06 5.77 0.23 
breast1 AddA 26.0 2.6 98.42 95.60 8.40 18.8 0.0 0.05 3.39 0.71 
breast1 DelA 24.1 0.4 98.42 95.75 8.10 19.5 0.0 0.05 4.54 0.54 

bupa Orig 136.1 
 

75.91 69.29 6.00 30.2 
 

0.40 17.88 0.00 
bupa Int 138.1 

 
75.94 69.29 5.80 57.1 

 
0.40 25.57 0.18 

bupa AddB 63.8 0.0 61.32 59.42 2.30 0.2 0.0 2.28 5.23 0.46 
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mean variance 

  
train feat train test train train feat train test train 

data set alg. time time acc acc feat time time acc acc feat 

bupa DelB1 107.7 0.1 68.96 67.82 2.20 18.6 0.0 5.95 59.16 0.18 
bupa DelB2 113.9 0.2 74.81 70.43 4.00 22.3 0.0 0.96 41.63 0.00 
bupa AddA 135.0 0.2 70.43 65.82 4.10 28.3 0.0 73.87 41.93 8.10 
bupa DelA 135.3 0.1 75.91 69.29 5.80 30.1 0.0 0.40 17.88 0.18 

glass Orig 27.3   80.47 65.50 9.00 8.6   7.35 163.67 0.00 
glass Int 21.0 

 
72.58 66.39 3.60 30.6 

 
40.23 29.6 7.60 

glass AddB 17.3 0.1 66.36 62.64 1.20 15.3 0.0 6.28 11.9 2.62 
glass DelB1 18.3 0.1 67.97 65.87 1.90 9.3 0.0 40.32 10.7 6.77 
glass DelB2 23.2 0.2 79.70 71.08 6.60 8.6 0.0 8.01 41.7 0.27 

glass AddA 27.2 0.3 80.47 65.50 9.00 8.3 0.0 7.35 163.7 0.00 
glass DelA 27.2 0.1 80.42 65.48 8.80 8.5 0.0 7.04 141.5 0.18 

iris Orig 4.3 
 

83.26 80.00 4.00 0.0 
 

0.39 39.5 0.00 
iris Int 4.2 

 
76.52 70.67 2.10 0.1 

 
3.66 120.5 0.54 

iris AddB 4.3 0.0 83.26 80.00 4.00 0.1 0.0 0.39 39.5 0.00 
iris DelB1 3.8 0.0 78.67 74.00 2.00 0.1 0.0 18.51 113.1 1.11 
iris DelB2 3.8 0.0 79.70 75.33 2.30 0.2 0.0 15.51 128.9 0.90 
iris AddA 4.3 0.0 83.26 80.00 4.00 0.1 0.0 0.39 39.5 0.00 
iris DelA 4.3 0.0 83.26 80.00 4.00 0.0 0.0 0.39 39.5 0.00 

musk1 Orig 3.2   100.00 67.63 166.00 0.0   0.00 34.2 0.00 
musk1 Int 1051.0 

 
94.02 81.28 24.70 7283.9 

 
0.95 23.86 5.79 

musk1 AddB 1015.8 1013.7 100.00 80.66 59.30 6296.2 6302.2 0.00 23.07 10.90 

musk1 DelB1 102.4 99.7 100.00 77.30 90.40 7.0 6.9 0.00 25.7 8.71 
musk1 DelB2 7746.2 7743.2 100.00 77.30 90.40 18078.2 18088.1 0.00 25.67 8.71 
musk1 AddA 1024.9 1008.8 100.00 80.66 59.30 6183.1 6383.6 0.00 23.07 10.90 
musk1 DelA 1499.7 1494.1 100.00 77.51 90.40 1973.5 1973.5 0.00 22.14 8.71 

newthyroid Orig 2.8 
 

95.04 91.19 5.00 0.0 
 

0.13 6.4 0.00 

newthyroid Int 3.6 
 

94.99 90.74 4.70 0.1 
 

0.18 8.8 0.23 
newthyroid AddB 2.9 0.1 95.04 91.19 5.00 0.0 0.0 0.13 6.4 0.00 
newthyroid DelB1 2.7 0.0 94.94 91.19 4.60 0.0 0.0 0.17 6.4 0.27 
newthyroid DelB2 2.7 0.1 94.94 91.19 4.60 0.0 0.0 0.17 6.4 0.27 
newthyroid AddA 2.9 0.1 95.04 91.19 4.90 0.0 0.0 0.13 6.4 0.10 
newthyroid DelA 2.9 0.1 95.04 91.65 4.90 0.0 0.0 0.13 8.2 0.10 

pima Orig 1776.2   80.67 78.12 8.00 2218.4   0.25 22.11 0.00 
pima Int 1560.2 

 
80.44 77.34 6.20 6066.0 

 
0.27 17.73 0.62 

pima AddB 1774.3 1.9 80.67 78.12 8.00 2102.0 0.0 0.25 22.11 0.00 
pima DelB1 1122.2 0.5 77.08 75.25 1.80 29059.6 0.0 1.57 13.17 0.18 
pima DelB2 1276.4 1.8 78.31 75.12 3.00 1040.2 0.0 0.17 23.21 0.00 
pima AddA 1760.1 1.9 80.67 78.25 7.90 2247.2 0.0 0.25 22.60 0.10 
pima DelA 1770.2 0.3 80.67 78.25 7.90 2074.1 0.0 0.25 22.60 0.10 
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mean variance 

  
train feat train test train train feat train test train 

data set alg. time time acc acc feat time time acc acc feat 

sonar Orig 0.4 
 

100.00 72.10 60.00 0.0 
 

0.00 71.0 0.00 
sonar Int 34.6 

 
92.47 74.43 10.90 8.2 

 
1.42 57.1 2.54 

sonar AddB 30.8 30.5 100.00 74.43 34.70 20.0 20.1 0.00 163.0 19.12 
sonar DelB1 3.5 3.1 100.00 78.81 41.40 0.0 0.0 0.00 53.2 10.27 
sonar DelB2 57.1 56.7 100.00 78.81 41.40 35.4 35.5 0.00 53.2 10.27 
sonar AddA 30.8 30.3 100.00 74.43 34.70 19.6 19.8 0.00 163.0 19.12 
sonar DelA 20.4 20.1 100.00 78.81 41.40 4.9 5.6 0.00 53.2 10.27 

vehicle Orig 61.9   98.90 94.94 18.00 183.2   0.04 12.9 0.00 
vehicle Int 234.1 

 
98.52 95.88 11.20 1216.6 

 
0.04 8.69 1.51 

vehicle AddB 653.5 8.2 84.24 81.65 7.20 251201.6 92.6 162.63 92.95 86.40 
vehicle DelB1 65.0 3.0 98.51 95.88 12.10 162.2 0.0 0.05 5.3 0.32 
vehicle DelB2 71.5 14.6 98.71 95.29 13.40 93.5 6.5 0.03 8.9 1.82 
vehicle AddA 77.0 14.4 93.96 91.06 13.30 283.1 47.6 106.54 92.0 50.90 
vehicle DelA 64.5 1.9 98.90 94.94 16.40 188.6 0.4 0.04 13.5 2.49 

wdbc Orig 0.6 
 

100.00 93.67 30.00 0.0 
 

0.00 12.5 0.00 
wdbc Int 27.9 

 
98.67 97.53 4.60 6.3 

 
0.05 2.2 0.27 

wdbc AddB 27.6 27.3 100.00 95.43 21.10 33.4 32.6 0.00 9.8 21.21 
wdbc DelB1 4.3 3.7 100.00 95.08 21.40 0.2 0.1 0.00 11.6 18.93 
wdbc DelB2 30.2 29.7 100.00 95.08 21.40 93.5 93.1 0.00 11.6 18.93 
wdbc AddA 28.4 27.2 100.00 95.43 21.10 33.2 33.1 0.00 9.8 21.21 
wdbc DelA 7.6 6.6 100.00 94.90 21.40 2.6 2.8 0.00 11.3 18.93 

wine Orig 0.1   100.00 93.27 13.00 0.0   0.00 19.9 0.00 
wine Int 0.3 

 
99.56 96.60 2.10 0.0 

 
0.09 15.4 0.10 

wine AddB 0.2 0.2 100.00 96.60 2.80 0.0 0.0 0.00 8.6 0.18 
wine DelB1 0.2 0.1 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12 
wine DelB2 0.9 0.9 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12 
wine AddA 0.3 0.2 100.00 96.60 2.80 0.0 0.0 0.00 8.6 0.18 
wine DelA 0.4 0.3 100.00 96.60 3.30 0.0 0.0 0.00 15.4 1.12 

wpbc Orig 6.5 
 

97.48 75.71 32.00 0.9 
 

0.09 20.6 0.00 
wpbc Int 14.6 

 
89.00 83.45 4.30 47.2 

 
12.40 24.8 18.01 

wpbc AddB 7.6 0.3 85.68 85.05 0.20 0.6 0.0 0.22 8.7 0.40 
wpbc DelB1 4.7 0.6 85.85 84.08 0.60 1.5 0.0 0.48 17.7 1.60 

wpbc DelB2 14.6 8.8 95.88 75.66 19.70 0.6 0.3 0.21 66.3 1.34 
wpbc AddA 7.0 0.4 85.57 85.58 0.00 0.9 0.0 0.05 4.4 0.00 
wpbc DelA 9.3 2.8 97.48 76.26 26.00 0.7 1.1 0.09 20.3 10.67 

TABLE 2: TEN-FOLD CROSS-VALIDATION DATA 
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3.1 Feature Selection Prior to Hyperplane Placement 

Three new algorithms select features using the SINF-based filter prior to placing the separating 
hyperplane.  AddB is a sequential forward selection algorithm, and DelB1 and DelB2 are two 
variants of sequential backward elimination algorithms.  Table 3 compares all three to the 

original algorithm which does not use feature selection. % acc is the difference in ten-fold 

average total accuracy on the testing set between the method and the Orig algorithm;  feat is 
the difference in the ten-fold average number of features between the method and the Orig 
algorithm. 
 

 
AddB DelB1 DelB2 

data set %acc feat %acc feat %acc feat

breast1 0.00 0.00 0.29 -3.20 -0.29 -2.70 

bupa -9.87 -3.70 -1.47 -3.80 1.14 -2.00 
glass -2.86 -7.80 0.37 -7.10 5.58 -2.40 
iris 0.00 0.00 -6.00 -2.00 -4.67 -1.70 

musk1 13.02 -106.70 9.67 -75.60 9.67 -75.60 
newthyroid 0.00 0.00 0.00 -0.40 0.00 -0.40 

pima 0.00 0.00 -2.87 -6.20 -3.00 -5.00 
sonar 2.33 -25.30 6.71 -18.60 6.71 -18.60 

vehicle -13.29 -10.80 0.94 -5.90 0.35 -4.60 
wdbc 1.75 -8.90 1.40 -8.60 1.40 -8.60 
wine 3.33 -10.20 3.33 -9.70 3.33 -9.70 
wpbc 9.34 -31.80 8.37 -31.40 -0.05 -12.30 

average 0.31 -17.10 1.73 -14.38 1.68 -11.97 
TABLE 3: SELECTING FEATURES BEFORE PLACING HYPERPLANE. DIFFERENCES RELATIVE TO ORIG ALGORITHM. 

 
On average, all three methods reduce the number of features, as expected, sometimes by a 
significant number (e.g. by 106.7 features on average for AddB on the musk1 data set).  
However it is surprising to see that all three methods also increase the % total accuracy on 
average as well.  While DelB1 and DelB2 both reduce the number of features on average in 
every data set, AddB fails to do so for 4 data sets. Overall, the best of the methods is DelB1 
which has the highest average increase in ten-fold testing accuracy and removes the second 
largest number of features on average. DelB1 removes 14.38 features of the 30.00 average 
features in the data sets.  The time required for the feature selection using DelB1 is very small, 
ranging from 0.01 seconds to 99.74 seconds over the data sets, with a geometric mean of 0.5 
seconds.  The geometric mean times for the other two methods are also small, though slightly 
larger.   
 
However, a closer analysis shows that AddB is able to remove many more features for the four 
data sets for which it is easy to achieve a 100% linear separation in the training set, while 
increasing the ten-fold training accuracy about as much as the other methods.  AddB performs 
well in this case because it is able to terminate the process of adding features as soon as SINF 
reaches zero, i.e. as soon as enough features are added that a complete separation is found. 
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DelB1 remains the best method for data sets that are not easily separated in training. 
 
So DelB1 with P=5 is recommended when there is no prior information about the ability of the 
Orig algorithm to place a 100% accurate separating hyperplane.  If it is known beforehand that 
such a hyperplane exists, then AddB is the method of choice. 

3.2 Feature Selection After Hyperplane Placement 

Two new algorithms attempt to reduce the number of features after a hyperplane has already 
been placed, while making sure that all of the points correctly classified by the original 
placement continue to be correctly classified as the number of features is reduced.  The two 
methods are AddA (sequential forward selection) and DelA (sequential backward selection).   
 
Results are summarized in Table 4, with the change in 10-fold cross-validation test set accuracy 
and number of features shown relative to the 10-fold test set results for the Orig algorithm.  In 
a few cases the change in 10-fold accuracy is negative, indicating that the reduced-features 
hyperplane has lower accuracy compared to the Orig algorithm, even though the reduced-
features hyperplane successfully classifies all of the training set points that were successfully 
classified when the Orig algorithm used all of the features.  Overall the results are not dissimilar 
to those shown in Table 3 for selecting features before placing the hyperplane. 
 

  AddA DelA 

data set %acc feat %acc feat

breast1 -0.29 -0.60 -0.14 -0.90 
bupa -3.46 -1.90 0.00 -0.20 

glass 0.00 0.00 -0.02 -0.20 
iris 0.00 0.00 0.00 0.00 
musk1 13.02 -106.70 9.88 -75.60 
newthyroid 0.00 -0.10 0.45 -0.10 
pima 0.13 -0.10 0.13 -0.10 

sonar 2.33 -25.30 6.71 -18.60 
vehicle -3.88 -4.70 0.00 -1.60 
wdbc 1.75 -8.90 1.23 -8.60 
wine 3.33 -10.20 3.33 -9.70 
wpbc 9.87 -32.00 0.55 -6.00 

average 1.90 -15.88 1.84 -10.13 
TABLE 4: SELECTING FEATURES AFTER PLACING HYPERPLANE. DIFFERENCES RELATIVE TO ORIG ALGORITHM. 

 
The best results are again reached for those data sets in which the Orig algorithm is able to 
obtain a 100% separation (musk1, sonar, wdbc, wine).  This allows the AddA method to stop 
adding features as soon as the complete separation is achieved; and it also stops the DelA 
method from deleting further features. Note that these good results are achieved despite the 
lack of inherent ordering of the features when a complete separation is available. 
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The time required for feature selection after hyperplane placement is usually quite small.  The 
geometric mean of the ten-fold averages is 1.75 seconds for AddA, and 1.01 seconds for DelA.  
The single outlier in both cases is the 166-feature musk1 data set. 

3.3 Integrated Feature Selection 

The Int algorithm integrates hyperplane placement and feature selection, as shown in Alg. 6.  
The 10-fold cross-validation test set accuracies and numbers of features produced by this 
algorithm relative to the Orig algorithm are summarized in Table 5.  Accuracy is increased on 
average an amount similar to the best of the methods for selecting features before and after 
hyperplane placement, but the average reduction in number of features is significantly larger as 
compared to all other methods.  The average number of features is reduced for every data set, 
but most remarkably for musk1, sonar, and wdbc, where the number of features is dramatically 
smaller than found by any other method. 
 

  Int 

data set %acc feat

breast1 0.44 -4.50 
bupa 0.00 -0.20 
glass 0.89 -5.40 
iris -9.33 -1.90 
musk1 13.65 -141.30 
newthyroid -0.45 -0.30 
pima -0.77 -1.80 
sonar 2.33 -49.10 

vehicle 0.94 -6.80 
wdbc 3.86 -25.40 
wine 3.33 -10.90 
wpbc 7.74 -27.70 

average 1.89 -22.94 
TABLE 5: INTEGRATED HYPERPLANE PLACEMENT AND FEATURE SELECTION. DIFFERENCES RELATIVE TO ORIG ALGORITHM. 

 
We also examined the effect of allowing the introduction of a feature to cause a small 
worsening in SINF, as is done in the DelB1 and DelB2 algorithms. This did not provide  
consistent improvements. 

3.4 Discussion 

All six of the new methods for feature selection improve over the original algorithm, increasing 
accuracy on average and reducing the number of features on average.  It is unrealistic to expect 
both an increase in accuracy and a reduction in the number of features in every case, and is in 
fact frequently useful to accept a small decrease in accuracy in trade for a significant reduction 
in the number of features, thus the two factors must be considered simultaneously.  Figure 1 
summarizes the trade-offs between the ten-fold average number of features and the ten-fold 
testing set average accuracy, relative to the best result for each data set.  The data is analyzed 
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as follows.  The highest ten-fold average accuracy returned by any method and the smallest 
ten-fold average number of features returned by any method are separately identified for each 
data set, and the differences to those two best values are calculated for all methods.  The 
average ten-fold differences from the best results over all of the models are plotted for each 
method in Figure 1. 
 

 
FIGURE 1: AVERAGE PERFORMANCE RELATIVE TO BEST 

 
A perfect method would always have the smallest number of features and the highest accuracy, 
and hence would be at (0,0) in Figure 1. The closer a method is to (0,0), the better it is.  The 
figure shows that all six of the new methods improve on the Orig method, having both better 
ten-fold testing accuracy on average and fewer ten-fold average features.  Other patterns are 
visible.  AddB is able to reduce the number of features significantly, but does not improve 
accuracy much on average.  All of the other methods produce roughly similar improvements in 
ten-fold average accuracy, but at a range of numbers of features.  While AddA, DelB1, DelB2 
and DelA cluster between 8.6 and 14 .4 features more than best ten-fold average, Int is 
significantly better, averaging just 1.6 features more than best ten-fold average, while 
averaging just 1.96 percentage points worse than best ten-fold average accuracy. 
 
Comparisons to other methods in the literature are difficult primarily due to differing selection 
of data sets.  However there are a few data sets in common with work by Bradley and 
Mangasarian (1998) and Fung and Mangasarian (2004).  Results for the Int method tend to be 
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slightly better than those reported by Bradley and Mangasarian (2004) and comparable to the 
linear methods in Fung and Mangasarian (2004).  Results for Int are much better than those 
reported by Dunbar et al [2010] for the wdbc data set, and slightly worse for the pima data set. 
 
The time required for feature selection is generally a small fraction of the total time (feature 
selection plus hyperplane placement) for most data sets.  This is not the case for the musk1, 
sonar, wdbc, and wine data sets.  These are the data sets which are completely classified by a 
single hyperplane.  This has the effect of reducing the time for hyperplane placement to a very 
small value, hence feature selection constitutes a large fraction of the total time. 
 
The geometric means of the ten-fold cross-validation total training times (feature selection plus 
hyperplane placement) and the feature selection times alone are shown in Table 6.  The feature 
selection time is not relevant for the Orig method, and cannot be separated out for Int. As can 
be seen by comparison with the time for the Orig algorithm, feature selection does add some 
time to the process.  The feature selecting methods have similar training times, except for 
DelB1, which is significantly faster than the others.  DelB1 is also one of the recommended 
methods if features are to be selected prior to hyperplane placement. The feature selection 
times are very small, with geometric means in the range of 0.50 to 2.86 seconds, but the 
reduced number of features often increases the training time because the time to place the 
separating hyperplane by the Orig method increases, usually because the number of LPs that 
must be solved increases.  All times could be reduced significantly by an efficient 
implementation of the algorithm and the use of a compiled language. 
 

method geo. mean  of training time (s) geo. mean of feature selection time (s) 

Orig 7.67 - 

Int 34.32 - 

AddB 30.15 1.26 
DelB1 13.73 0.50 
DelB2 38.45 2.86 
AddA 28.41 1.75 
DelA 26.38 1.01 

TABLE 6: GEOMETRIC MEANS OF TOTAL TRAINING TIME AND FEATURE SELECTION TIME 

 
Note that the small feature selection times in Table 6 are independent of the hyperplane 
placement method.  In other words, the feature selection times will be the same even if some 
other method of hyperplane placement (support vector machine etc.) is used.  These feature 
selection methods are very fast because they solve a sequence of linear programs in which each 
LP model is very similar to the previous one, so advanced start techniques are effective. 
 
Finally, the ten-fold cross-validation experiments were re-run using the fast version of all 
algorithms which selects a single constraint representing a data point for the list of candidates 
to consider for removal while placing the hyperplane.  The fast version chooses the constraint 
having the largest value of           from among constraints having ei >0. This had minimal 
impact on the testing accuracy (an average drop of 0.39 percentage points across all methods) 
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and number of features selected (an average reduction of 0.03 features).  However training 
time was reduced by about 60% on average, because the number of training LPs solved was 
reduced by the same fraction. 

4. Conclusions 

This paper makes a number of contributions: 

 A new and effective filtering criterion for use in feature selection is introduced: 
reduction in the sum of infeasibilities (SINF). Feature selection methods based on this 
criterion are very quick. Used before a separating hyperplane is placed, this criterion 
improves the average accuracy and reduces the number of features as compared to an 
existing hyperplane placement method.  

  New methods for selecting features after a separating hyperplane has already been 
found are introduced.  The AddA and DelA methods preserve the training set separation 
found by the original hyperplane.  These methods also improve the average accuracy 
and reduce the number of features as compared to an existing hyperplane placement 
method. 

 A new integrated method that selects features at the same time as placing a separating 
hyperplane is introduced.  The Int method is the best of all methods tested, reducing the 
number of features more than all other methods, on average, and increasing the testing 
accuracy as compared to an existing hyperplane placement method. 

 
While a particular SINF-based method for placing separating hyperplanes has been used 
throughout this paper, it is important to note that the feature selection methods (with the 
exception of Int) can be used with any hyperplane placement method.  The times for feature 
selection alone are small, so the additional overhead will be minimal. Overall, the best results 
are returned by the integrated Int method, which requires the use of the SINF-based method 
for hyperplane placement. However if feature selection is to performed before or after 
hyperplane placement, then any hyperplane placement method can be used. 
Recommendations in this case are: (i) for feature selection beforehand use AddB if the data set 
is known to be completely classified by a single hyperplane, and use DelB1 otherwise, and (ii) 
for feature selection afterwards, use the AddA method. 
 
Finally, the speed of these algorithms can be improved dramatically by several techniques.  
First, the prototype algorithms implemented for this paper omit several steps that have a large 
impact on efficiency, e.g. recording the list of constraints to which the objective function is 
sensitive when a new minimum SINF is identified, which means that the LP does not need to be 
re-solved at the end of the loop. Such efficiency-enhancing steps should be included. Second, 
the algorithms should be re-implemented in a compiled rather than interpreted language, and 
third, a more efficient LP solver than the one provided in Octave should be used.  These are 
tasks for future research. 
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