
Analyzing Infeasible
Optimization Models

John W. Chinneck
Systems & Computer Engineering

Carleton University
Ottawa, Canada

A tutorial for CORS/INFORMS 2004
May 16-19, Banff, Canada

Chinneck: Tutorial on (In)feasibility 2

Why is (In)feasibility Interesting?

l Sometimes any feasible solution will do.
l Feasibility question can be same as optimality question.
l Assistance in formulating complex optimization models:

why is it infeasible?
l Applications of infeasibility analysis:

¡ Training neural networks
¡ Classification via math programming methods
¡ Radiation treatment planning
¡ Backtracking in constraint logic programs
¡ Applications to NP-hard problems
¡ Statistical analysis
¡ Protein folding …

Chinneck: Tutorial on (In)feasibility 3

Outline

1. Analyzing Infeasible Math Programs
1. Infeasibility Isolation

1. General Methods
2. Linear Programming
3. Mixed-Integer Programming
4. Nonlinear Programming

2. Finding Maximum Feasible Subsets
3. Software
4. Applications:

1. Formulation: Networks; Multi-Objective Programs, etc.
2. Other Applications

2. Faster Feasibility
1. Mixed-Integer Programs
2. Nonlinear Programs

Chinneck: Tutorial on (In)feasibility 4

1. Analyzing Infeasible Math Programs

Two main approaches:

l Isolate an Irreducible Infeasible System
¡An infeasible set of constraints that becomes

feasible if any constraint removed

lFind a Maximum Feasible Subset
¡Maximum cardinality subset of constraints that

is feasible

Chinneck: Tutorial on (In)feasibility 5

1.1 Infeasibility Isolation

Using IISs

Cycle:
1. Isolate an IIS
2. Repair the

infeasibility
3. If still not feasible,

go to step 1.

B

D

F

Chinneck: Tutorial on (In)feasibility 6

1.1.1 General Methods for Finding IISs

lSuppose the solver is perfectly accurate in
deciding feasibility status of a set of
constraints
lGeneral methods for IIS isolation:
¡Deletion Filter
¡Additive Method
¡Elastic Filter
¡Additive/Deletion method

Chinneck: Tutorial on (In)feasibility 7

The Deletion Filter

INPUT: an infeasible set of constraints.
FOR each constraint in the set:

Temporarily drop the constraint from the set.
Test the feasibility of the reduced set:
IF feasible THEN return dropped constraint to the set.
ELSE (infeasible) drop the constraint permanently.

OUTPUT: constraints constituting a single IIS.

Chinneck: Tutorial on (In)feasibility 8

Deletion Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
l {B,C,D,E,F,G} infeasible. A deleted.
l {C,D,E,F,G} feasible. B reinstated.
l {B,D,E,F,G} infeasible. C deleted.
l {B,E,F,G} feasible. D reinstated.
l {B,D,F,G} infeasible. E deleted.
l {B,D,G} feasible. F reinstated.
l {B,D,F} infeasible. G deleted.
Output: the IIS {B,D,F}

Chinneck: Tutorial on (In)feasibility 9

Deletion Filter: Characteristics

lReturns exactly one IIS, even if there are
multiple IISs in the model
lWhich IIS?
¡IIS whose first member is last in the test list.

lSpeed: isn’t this slow?
¡time to isolate IIS is normally a small fraction of

time to find infeasibility initially
¡Due to advanced starts: each LP is very similar

to the previous one

Chinneck: Tutorial on (In)feasibility 10

The Additive Method

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
Step 0: Set T = I = ∅.
Step 1: Set T = I.

FOR each constraint ci in C:
Set T = T ∪ ci.
IF T infeasible THEN

Set I = I ∪ ci.
Go to Step 2.

Step 2: IF I feasible THEN go to Step 1.
OUTPUT: I is an IIS.

Chinneck: Tutorial on (In)feasibility 11

Additive Method: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
l {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all

feasible.
l {A,B,C,D,E,F} infeasible: I = {F} is feasible.
l {F,A}, {F,A,B}, {F,A,B,C} all feasible.
l {F,A,B,C,D} infeasible: I = {F,D} is feasible.
l {F,D,A} feasible.
l {F,D,A,B} infeasible: I = {F,D,B} infeasible. Stop.
Output: the IIS {F,B,D}

Chinneck: Tutorial on (In)feasibility 12

Additive Method: Characteristics

lReturns exactly one IIS, even if there are
multiple IISs in the model
lWhich IIS?
¡IIS whose last member is first in the test list.

lSpeed:
¡Similar to deletion filter due to basis re-use
¡If IIS is small and early in the list of constraints,

can use far fewer LP solutions that deletion filter

Chinneck: Tutorial on (In)feasibility 13

Speed-up: Grouping Constraints

lAdd/drop constraints in groups
¡In order, or by category

lElastic Filter: back up and do singly if
dropping a group causes feasibility
lAdditive Method: back up and do singly if

adding a group causes infeasibility

lCan speed up the methods
¡Fix group size? Adaptive group sizing?

Chinneck: Tutorial on (In)feasibility 14

Additive/Deletion Method

1. Apply additive method until first
infeasible subset of constraints is found.

2. Apply deletion filter to subset.

l More efficient.

Chinneck: Tutorial on (In)feasibility 15

Elasticizing Constraints

lMake all constraints elastic by adding elastic
variables, ei

l Elastic objective: Min Σei

Original constraint elastic version
g(x) ≥ bi g(x) + ei ≥ bi

g(x) ≤ bi g(x) - ei ≤ bi

g(x) = bi g(x) + ei’ - ei” = bi

Chinneck: Tutorial on (In)feasibility 16

The Elastic Filter

INPUT: an infeasible set of constraints.
1. Make all constraints elastic by incorporating nonnegative

elastic variables ei.
2. Solve the model using the elastic objective function.
3. IF feasible THEN

Enforce the constraints in which any ei>0 by
permanently removing their elastic variable(s).
Go to step 2.

ELSE (infeasible): Exit.
OUTPUT: the set of de-elasticized constraints contains at

least one IIS.

Chinneck: Tutorial on (In)feasibility 17

The Elastic Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
Elasticized constraints are underscored.
l {A,B,C,D,E,F,G} feasible. B stretched.
l {A,B,C,D,E,F,G} feasible. F stretched.
l {A,B,C,D,E,F,G} feasible. D stretched.
l {A,B,C,D,E,F,G} infeasible.
Output: the set {B,F,D}
¡Not necessarily an IIS until deletion filtered

Chinneck: Tutorial on (In)feasibility 18

The Elastic Filter: Characteristics

lAt least one member of every IIS will
stretch at each iteration
lNumber of iterations: at most equal to

cardinality of smallest IIS
¡Useful in finding small IISs

lOutput needs deletion filter to identify a
single IIS

Chinneck: Tutorial on (In)feasibility 19

1.1.2 Special Methods for LP

Bound-Tightening
l Standard presolver techniques: iterative

tightening of bounds. E.g.:
¡2x1 − 5x2 ≤ 10 where -10 ≤ x1,x2 ≤ 10
¡Apply constraint with x1 is at it’s lower bound: 2(-10) −

5x2 ≤ 10 ⇒ x2 ≥ -6.
¡Lower bound on x2 tightened.

lMay lead to detection of infeasibility.
lDifficult to deduce IIS from long sequence of

operations.

Chinneck: Tutorial on (In)feasibility 20

The Sensitivity Filter

lDrop all constraints to which the phase 1
objective is not sensitive
¡Insensitive if dual variable is zero
¡Can apply when infeasibility first detected

lCharacteristics:
¡Eliminates many constraints very quickly
¡Tends to lead to larger IISs

Chinneck: Tutorial on (In)feasibility 21

Sensitivity Filter: Characteristics

l Tends to isolate larger IISs

A B

C

D

B' A

C

D

a) before: two IISs,
{A,B} and {B,C,D}.

b) after: one IIS,
{B',C,D}.

Constraints
shift during
phase 1

Chinneck: Tutorial on (In)feasibility 22

Interior Point Methods

l Solution from interior point method can separate
the set of constraints into two parts:
¡ those that might be part of some IIS
¡ those that are irrelevant to any IIS.

l Theorem on strictly complementary partitions.
l Some advantages over the sensitivity filter,

which cannot always identify all the constraints
that are part of some IIS

Chinneck: Tutorial on (In)feasibility 23

Deletion/Sensitivity, Reciprocal Filters

Deletion/Sensitivity Filter
lApply sensitivity filter each time deletion

filter deletes a constraint permanently

Reciprocal Filter
lFor ranged constraints
lBarring simple bound reversal:
¡If one of the bounds is involved in an IIS, then

the other bound cannot be in the same IIS

Au
AL

BC

Chinneck: Tutorial on (In)feasibility 24

Simplex Pivoting

lA: p×n matrix (nonnegativity constraints
included in Ax ≤ b),
lTheorem: Ax ≤ b, x,b ≥ 0, is an IIS iff:
¡there exist (p-1) linearly independent rows, and
¡there exist λ > 0 such that Σλiaij= 0 and

Σλibi < 0.

lEfficient pivoting schemes to find such
systems

Chinneck: Tutorial on (In)feasibility 25

Simplex Pivoting: Characteristics

lProblem size blows up when equalities
converted
lGenerally slower than filtering methods
lNot commercially implemented

Chinneck: Tutorial on (In)feasibility 26

Guiding the IIS Search

l Mark some constraints prior to IIS search:
¡ remove immediately
¡ encourage removal
¡ discourage removal
¡ never remove

l Give constraints different weights during elastic filter
l Why might this be done?
¡ It is known that parts of the model are OK
¡ There are several “reflections” of the same IIS, some easier

to understand than others.
l Available in MINOS(IIS) [1994] and Cplex 9.0 [2003].

Chinneck: Tutorial on (In)feasibility 27

Finding Better IISs in LPs

l Model may have multiple IISs representing the same infeasibility
l IISs having few row constraints preferred
l General rules:

¡ Avoid the sensitivity filter
¡ Deletion filter: test row constraints before column bounds
¡ Retain the column bounds for as long as possible to permit more rows

to be eliminated during filtering
¡ Use elastic filtering on the row constraints.

l Most effective heuristic tested:
1. elastic filter the row constraints
2. deletion/sensitivity filter the row constraints while protecting the

variable bounds
3. sensitivity filter the variable bounds
4. deletion/sensitivity filter the variable bounds

Chinneck: Tutorial on (In)feasibility 28

Networks: Supply-Demand Balancing

l Logical reductions based on supply and demand
connected via balance nodes
¡Uses theorems by Gale, Fulkerson, Hoffman
¡Hao and Orlin: use maximum flow algorithm to find a

minimal "witness" set of nodes for which the net supply
and the total outflow capacity conflict.

l Similar to presolver bound reductions
lDifficult to arrive at solid diagnosis by following

the sequence of reductions
lMethods work only on simple network forms.

Chinneck: Tutorial on (In)feasibility 29

Networks: Aggregating Large IISs

Rows in the IIS:
c125: - x50 + x379 - x380 = -1825
c126: - x379 + x380 - x382 = -2535
c127: - x381 + x382 + x383 - x384 = -1658
c128: - x30 - x383 + x384 + x387 - x459 =

-15466
c147: - x69 + x435 - x437 = -338
c148: - x435 + x437 + x438 - x439 = -1037
c149: - x438 + x439 + x440 - x442 = -5713
c150: - x440 + x442 + x443 - x444 = -16
c151: - x443 + x444 + x446 - x448 = -1954
c153: - x446 + x448 + x449 - x450 = -4255
c154: - x449 + x450 + x451 - x453 = -5155
c155: - x451 + x453 + x454 - x455 = -1274
c156: - x454 + x455 + x456 + x457 - x458 - x463

= -1454
c157: - x387 - x456 + x458 + x459 = -6401
c158: - x457 + x463 + x464 - x491 = -14

c165: - x475 + x477 + x478 - x479 = -246
c166: - x478 + x479 + x480 - x482 = -232
c167: - x480 + x482 + x483 - x484 = -61
c168: - x483 + x484 + x485 - x486 = -1536
c169: - x485 + x486 + x487 - x488 = -3648
c170: - x487 + x488 + x489 - x490 = -3676
c171: - x464 - x489 + x490 + x491 = -1848

Column Bounds in the IIS:
x30 <= 12509
x50 <= 12509
x69 <= 14434
x475 <= 14434
x477 >= 0

Aggregate sum of the balance constraints:
- x30 - x50 - x69 - x475 + x477 = -60342

Before: 22 rows, 5 bounds, numerous variables
After: 1 row, 5 bounds, 5 variables

Chinneck: Tutorial on (In)feasibility 30

1.1.3 Special Methods for MIPs

lThree classes of
constraints:
¡Linear row

constraints (LC)
¡Variable bounds

(BD)
¡Integer

Restrictions (IR)

feasible
region

all integer point

LP

A

B

C

x

y

Chinneck: Tutorial on (In)feasibility 31

Nontermination in MIPs

all-integer point
LP-relaxation

x
1

2

3

4

5

6

solution point

y

minimize x+y
x,y are integers

Chinneck: Tutorial on (In)feasibility 32

Simple Deletion Filtering for MIPs

l Test rows, bounds, and integer restrictions
lCan suffer from nontermination
¡Test variable bounds last
¡ If computation limit exceeded on subproblem, retain

constraint and label it dubious
¡Get “infeasible subsystem” (IS) instead of IIS if there are

dubious constraints

l Very slow
¡Each test requires full B&B tree expansion
¡Test integer restrictions first: IR-LC-BD method
¡Often returns small IS instead of IIS

Chinneck: Tutorial on (In)feasibility 33

Additive Method for MIPs

lAssume initial LP is feasible
¡Add IRs to LC∪BD

lCannot identify dubious constraints
lDynamic Reordering variant:
¡When a subproblem is feasible:
lscan all constraints later in list; add all constraints

satisfied at current solution point to T

lAdditive/Deletion Method
¡Identifies dubious constraints via deletion filter

Chinneck: Tutorial on (In)feasibility 34

Using the Initial B&B Tree

l What can the initial B&B tree that detected
infeasibility tell us?

1. No IIS has IR set identical to the set of IRs
satisfied at any intermediate node.

2. Mark sensitive LCs and BDs at all leaf nodes.
IR∪{marked LCs}∪{marked BDs} is infeasible.
¡ Some LCs and BDs can be eliminated

3. LC∪BD∪{IRs on all branching variables} is
infeasible.
¡ IRs not in this set can be eliminated
¡ Get candidate ISs by looking at sets of IRs defined by

root-to-leaf paths.

Chinneck: Tutorial on (In)feasibility 35

Speed-ups for MIPs

lGrouping constraints for additive method,
deletion filter
¡Numerous schemes, including adaptive sizing

of groups

lSafety Bounds
¡Extra BDs to prevent nontermination
¡If triggered, then output is an IS

Chinneck: Tutorial on (In)feasibility 36

Testing MIP Algorithms

l 20 MIPLIB models altered to be infeasible
l Average time for initial detection of infeasibility:

0:0:6 (h/m/s)
l Average time for infeasibility analysis:
¡simple LC-IR-BD deletion filter: 9:12:46 (few dubious)
¡simple IR-LC-BD deletion filter: 2:27:44 (few dubious)
¡ IR-LC-BD deletion, groups of 4: 1:51:31 (few dubious)
¡simple additive method: 1:12:12 (3 killed)
¡dyn. reordering additive method: 0:19:41 (2 killed)
¡dyn. reorder. add./del. method: 2:25:21 (fewest dubious)

Chinneck: Tutorial on (In)feasibility 37

1.1.4 Special Methods for NLP

l NLP solvers are not perfectly accurate in deciding
feasibility.
¡ Factors: NLP algorithm and implementation, tolerances, initial

point, termination criteria, method of approximating derivatives,
etc.

¡ If feasibility detected: status is certain
if unable to find feasible pt.: status is unknown

l Minimal Intractable Subsystem (MIS): minimal set of
constraints causing NLP solver to report infeasibility with
a given set of parameter settings (including initial point,
tolerances, termination conditions, etc.)

l Missing constraints can cause math errors: sqrt(x), x = 0
¡ Guard constraints prevent math errors

Chinneck: Tutorial on (In)feasibility 38

Deletion Filter for NLPs

INPUT: an infeasible set of nonlinear constraints.
FOR each constraint in the set:

1. reset the initial point and solver parameters.
2. temporarily drop the constraint from the set.
3. test the feasibility of the reduced set and DO CASE:

i. solver reports feasibility:
return dropped constraint to the set.

ii. solver reports infeasibility (ordinary):
drop constraint permanently.

iii. solver reports infeasibility (math error):
a. mark dropped constraint as a guard.
b. return dropped constraint to the set.

OUTPUT: constraints constituting a single MIS (including guards).

Chinneck: Tutorial on (In)feasibility 39

Four Possible Outcomes

lModel is feasible:
¡correctly detected by solver. No analysis. (best)
¡reported infeasible by solver and MIS isolated.

(worst)
lModel is infeasible:
¡MIS is isolated which is also an IIS. (best)
¡MIS is isolated which is not an IIS. (acceptable)

lWorst case interpretation: this solver finds
this MIS intractable with these setting

Chinneck: Tutorial on (In)feasibility 40

IIS Isolation: State of the Art

lLP: mature
¡well developed
¡commercially implemented

lMIP: research opportunities
¡needs faster methods,
¡needs improved ability to find IISs vs. ISs

lNLP: research opportunities
¡needs more reliable methods
¡needs improved accuracy in deciding feasibility

Chinneck: Tutorial on (In)feasibility 41

1.2 Finding Maximum Feasible Subsets

l Equivalent Problems on an infeasible set of
linear constraints:
¡MAX FS: find max cardinality feasible subset
¡MIN ULR: find min cardinality subset of constraints to

remove so that remaining set is feasible
¡MIN IIS COVER: find smallest cardinality subset of

constraints to remove such that at least one constraint is
removed from every IIS

l Problem is NP-hard
¡Are there good heuristics?

lMIN IIS COVER is not unique

Chinneck: Tutorial on (In)feasibility 42

Method of Parker and Ryan

lUse a simplex pivoting method to generate IISs
one at time

l As each IIS is generated, add it to the set of
known IISs, then solve a set-covering problem
via integer programming

l Speed-ups:
¡Heuristics for generating new IISs that have few

overlaps with those already discovered
¡Heuristic solution of resulting integer programs

lNot used in practice

Chinneck: Tutorial on (In)feasibility 43

Chinneck’s Heuristic: Insights

lDefinitions:
¡SINF: value of elastic objective function
¡NINF: number of violated constraints

l Insights:
¡Eliminating a constraint in MIN IIS COVER should

reduce SINF more than eliminating some other
constraint

¡Constraints to which the elastic objective function is not
sensitive do not reduce SINF when removed

¡When phase 1 ends, NINF is an upper limit on |MIN IIS
COVER|. The set of violated constraints is a cover.

¡ If phase 1 NINF=1, then the violated constraint
constitutes a minimum cardinality IIS set cover

Chinneck: Tutorial on (In)feasibility 44

Chinneck’s Heuristic

0. Set up elastic LP
1. Solve elastic LP

If NINF=1, add constraint to CoverSet and exit.
Candidates = {constraints to which elastic objective is sensitive}

2. For each constraint in Candidates:
Delete the constraint and solve elastic LP.
If NINF=0, add constraint to CoverSet and exit.
If SINF smallest, make this constraint the winner.
Reinstate the constraint.

3. Add winner to CoverSet.
Delete winner permanently.
Go to step 1.

OUTPUT: CoverSet is a small cardinality IIS cover.

Chinneck: Tutorial on (In)feasibility 45

Chinneck’s Heuristic: Speed-ups

lRemember constraints that were sensitive when
winner deleted: don’t re-solve LP.

lReduce length of candidate list:
¡Constraint violated in elastic solution: good predictor of

the magnitude of ∆SINF due to deletion is
(constraint violation) × |(constraint sensitivity)|

¡Constraint not violated in elastic solution: good predictor
of relative magnitude of ∆SINF due to deletion is
|(constraint sensitivity)|.

¡Limit candidate list to top k in both lists

Chinneck: Tutorial on (In)feasibility 46

Chinneck’s Heuristic: Empirical Results

l29 infeasible LP models from Netlib
lOriginal heuristic: 29/29 correct min cover
lShorter candidate list:
¡List length 1: 25/29 correct min cover
¡List length 7: 27/29 correct min cover
¡Order of magnitude less effort

Chinneck: Tutorial on (In)feasibility 47

1.3 Software (1)

l MINOS(IIS) [research: from 1989]
¡ IIS isolation: Deletion, sensitivity, elastic, reciprocal filtering and

all combinations. Guide codes.
¡ MIN IIS COVER: Chinneck’s heuristics

l CLAUDIA [proprietary: from 1985]
¡ Several heuristics for finding ISs
¡ 1994: deletion filtering added to find IISs

l LINDO [commercial: from 1994]
¡ IIS isolation via deletion filter
¡ Classes IIS members as necessary or sufficient

l Cplex [commercial: from 1994]
¡ Deletion/sensitivity filter for speed, elastic filter followed by

deletion/sensitivity for small IISs. Row aggregation for equalities.
¡ 2003: weights for guiding IIS search

Chinneck: Tutorial on (In)feasibility 48

Software (2)

lOSL [commercial: from 1995]
¡Deletion/sensitivity and elastic filtering

l XPress-MP [commercial: from 1997]
¡Deletion/sensitivity and elastic filtering
¡2004: added to Mosel

l Frontline Systems [commercial: from 1997]
¡Deletion/sensitivity and elastic filtering
¡Excel add-in

lOR/MS Today LP Survey Dec. 2003
¡27 of 44 solvers or modelling systems surveyed have

infeasibility analysis capability (mostly IIS isolation)

Chinneck: Tutorial on (In)feasibility 49

1.4 Applications

1.4.1 Applications in Formulations
Analyzing LP Unboundedness
lprimal unbounded ⇒ dual infeasible
l IIS isolation on infeasible dual yields a

“minimal unbounded set” of variables in
the primal
lAvailable in LINDO

Chinneck: Tutorial on (In)feasibility 50

Formulating Network Models

lAdvanced networks:
¡generalized, processing
¡Additional structure: fixed ratios of flow at

nodes
lNetwork Viability:
¡Network structure: interconnection, flow

ratios, flow nonnegativity
¡Nonviable network: the network structure

does not allow some arcs to transport any
flow

Chinneck: Tutorial on (In)feasibility 51

IIS Isolation in Diagnosing Nonviability

lSet up viability testing LP:
¡Structural relationships (including flow ratios)
¡Creates a conic feasible region rooted at zero
¡Positivity constraint on arcs: xi = 1

l If infeasible, then network is nonviable
¡IIS isolation identifies a minimal nonviability

Chinneck: Tutorial on (In)feasibility 52

Example

1

2 3

4 5

1

2
3

4

5

6 7

8

> 10 < 10

a:1

b:1

c:2

a:3

b:2
c:5

a:1

b:2 c:3

2 3

4 5

4

5

6 7

8

b:1

c:2

b:2

c:5

a:1

c:3

>0
>0

Minimal Nonviable Subset

Chinneck: Tutorial on (In)feasibility 53

Formulating Multiple Objective LPs

l True MOLP: at least two objectives are in conflict
(optima at different extreme points).

l Types of relationships:
¡ Hard constraint: definitely a constraint (e.g. basic physical

relationship)
¡ Soft constraint: tentatively classified as constraint, but could be

an objective.
¡ Hard objective: definitely an objective.
¡ Soft objective: tentatively classified as objective, but could be a

constraint.

l Aspiration level:
¡ value assigned to RHS of a soft constraint
¡ RHS of soft objective when converted to constrant

Chinneck: Tutorial on (In)feasibility 54

MOLP Formulation Issues

l Final Classification of soft constraints and
objectives:
¡Should a soft constraint be converted to an objective?
¡Should a soft objective be converted to a constraint, and

if so, what should the aspiration value be?

l Simplification:
¡elimination of constraints and objectives, rewriting of

constraints, resetting of aspiration values etc. to yield a
simpler or clearer formulation.

¡Assigning lexicographic order to objectives

Chinneck: Tutorial on (In)feasibility 55

MOLP: Objectives Interaction Analysis

1.Find the extreme aspiration level for every
objective:
¡Discard all objectives but one. Find its optimum value.

2.Convert each objective to a constraint:
¡Use extreme aspiration level for RHS.

3.Set up new LP that includes all constraints and
all converted objectives. Solve.

4.Analyze.
¡Feasible? Not a true MOLP.
¡Find IISs. Each IIS will involve at least two conflicting

objectives.

Chinneck: Tutorial on (In)feasibility 56

MOLP: Analysis

l IIS involves only hard constraints and converted
hard objectives:
¡Abandon an objective? Set lexicographic order?

l IIS includes at least one converted soft objective
or soft constraint:
¡Reformulate soft constraint or soft objective?

lUse MIN IIS COVER approach on the converted
hard objectives:
¡Find fewest objectives to eliminate so that the rest can

reach their aspiration levels
l Evaluate degree of interference between

objectives using the objective interference table

Chinneck: Tutorial on (In)feasibility 57

1.4.2 Other Applications

Classification
l Find a hyperplane

that separates two
types of points with
the highest accuracy

lMinimizing squared
error:
¡one outlier unduly

affects plane

Chinneck: Tutorial on (In)feasibility 58

Classification

l Find separating hyperplane w1x1 + w2x2 + …+wJxJ = w0
l Given:

¡ I data points (i=1…I) in J dimensions (j=1…J)
¡ dij: value of attribute j for point i
¡ class of each point is known (Type 0 or Type 1).

l Define one linear inequality for each data point):
¡ for each Type 0 point: Σjdijwj ≤ w0 − ∈
¡ for each Type 1 point: Σjdijwj ≥ w0 + ∈
¡ ∈ is a small positive constant (often set at 1).
¡ Variables are the unrestricted wj and dij are known constants.

l Solve resulting set of constraints:
¡ Feasible? Points are linearly separable
¡ Infeasible? MIN IIS COVER gives small(est) number of

misclassified points.

Chinneck: Tutorial on (In)feasibility 59

Classification: Empirical Results

 CLIIS MISMIN
data set net

pts
no.

features
misclass

card.
%

correct
secs misclass

card.
%

correct
secs

breast cancer 683 9 11 98.4 17 12 98.2 0.7
pima 768 8 149 80.6 1662 150 80.5 1.5
bupa 345 6 86 75.1 159 90 73.9 0.6
wpbc 194 32 6 96.9 17 17 91.2 1.5
ionosphere 351 34 6 98.3 44 6 98.3 2.6
glass (type 2 vs.
others)

214 9 39 81.8 38 50 76.6 0.6

iris (versicolor
vs. others)

150 4 25 83.3 5 27 82.0 0.3

iris (virginica
vs. others)

150 4 1 99.3 0.4 1 99.3 0.3

new thyroid
(normal vs.
others)

215 5 11 94.9 3 14 93.5 0.3

Chinneck: Tutorial on (In)feasibility 60

Applications in the Literature (1)

l Training neural networks:
¡Each neuron is a separating hyperplane

lRadiation Therapy Dose Planning
¡Difficult to find a feasible solution

lDesign/Analysis of Protein Folding Potentials
¡ IIS analysis to determine errors in approximate linear

models

l Statistics:
¡Learning missing values from summary constraints

Chinneck: Tutorial on (In)feasibility 61

Applications in the Literature (2)

l Automatic Test Assembly
¡analysis of infeasible sets of constraints on test contents

l Backtracking in Constraint Logic Programming
¡ Infeasibility encountered as constraints added
¡Backtrack in IIS order instead of ordered added

l Various NP-hard Problems:
¡Satisfiability
¡Set-covering
¡Approximability of NP-hard problems
¡Etc.

Chinneck: Tutorial on (In)feasibility 62

2. Faster Feasibility

lMIP:
¡Must develop entire B&B tree to prove

infeasibility.

lNLP:
¡Difficult to reach a feasible point, if one exists,

reliably

lCan feasibility be reached faster?

Chinneck: Tutorial on (In)feasibility 63

2.1 Faster MIP Feasibility

l Branching variable selection can have a big
impact on speed to first feasible solution:
¡E.g. MIPLIB swath: 6206 nodes (Cplex 6.5, heuristics

off) vs. 27 nodes (new heuristic)

l State of the Art:
¡Select branching variable based on impact on objective

function (pseudo-costs, etc.)

lNew Idea:
¡Select branching variable based on impact on active

constraints at parent node LP relaxation optimum

Chinneck: Tutorial on (In)feasibility 64

Active Constraint Variable Selection

y

x

LP relaxation
before
branching

Branch on x Branch on y

Feasible
Region

Chinneck: Tutorial on (In)feasibility 65

Active Constraints: Overview

1. Calculate “weight” of each variable in
each active constraint (0 if the variable
does not appear in constraint).

2. For each variable, total the weights over
all of the active constraints.

3. Choose variable that has the largest total
weight.

l Dynamic variable ordering: changes at
each node.

Chinneck: Tutorial on (In)feasibility 66

Example Weighting Schemes

If variable i is in active constraint k:
A: Wik=1
E: Wik = |coeffik| / [Σ|coeff of all variables|]
I: choose varb having most “votes” in A-G
O: Wik = |coeffij| / (no. of int. var. in con. k)

l 24 new methods in all
l Tested vs. Cplex 6.5, Cplex 8.0 and OSL
¡Heuristics off, heuristics on
¡Speed metric: no. of B&B nodes

l 65 problems in MIPLIB 3.0 library

Chinneck: Tutorial on (In)feasibility 67

Empirical Results

method

times
within

10% of
best

times
faster/=
Cplex FSR

times
term.

QSR
over non-

term.
models

Avg.
nodes:

(avg.
nodes)/
(cplex
avg.

nodes)
avg. ratio

to best
A 35 42/2 0.68 5 0.42 40.18 0.1 1.81
 I 29 46/2 0.74 5 0.47 37.84 0.09 1.61
O 33 54/0 0.83 3 0.54 29.75 0.1 1.18

OSL 3.0 7 21/3 0.37 2 85.62 0.21 4.63
Cplex 6.5 15 1 408.46 19.34
Cplex 8.0 9 0 310.75 10.69

All 65 Models 50-55 Comparable Models

Chinneck: Tutorial on (In)feasibility 68

2.2 Faster NLP Feasibility

Goal: given arbitrary initial point, move to a
near-feasible point quickly
¡Unbounded variables? Ranges too wide?

l “near-feasible”?
¡Traditional: |RHS-LHS| ≤ tolerance
lFunction scaling means this varies widely!

¡New: Euclidean distance to feasible region
lThis is a variable-space measure

Chinneck: Tutorial on (In)feasibility 69

The Constraint Consensus Method

l Feasibility vector: for a violated constraint, a vector
indicating step to closest feasible point
¡ |feasibility vector| gives distance to feasibility
¡ Exact for linear constraints, approximation based on gradient for

nonlinear constraints
Method:
l Construct feasibility vector for each violated constraint
l Construct consensus vector by combining feasibility

vectors in various ways
l Take the step indicated by the consensus vector
l Repeat until close enough to feasibility

Simple: no LP solutions, line search, matrix inversion, etc.

Chinneck: Tutorial on (In)feasibility 70

Example Constraint Consensus Step

lNext step will reach feasibility

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5

Feasible region

B

A

Chinneck: Tutorial on (In)feasibility 71

Initial Point Heuristic

What if initial point is not given?
l New initial point heuristic avoids various problems:
¡ If doubly bounded: set at midpoint + (small random e)
¡ If single lower bound: set at bound + (small random e)
¡ If single upper bound: set at bound - (small random e)
¡ If unbounded both directions: set at zero + (small random e)

l Couple with CC algorithm, use to start NLP solvers
l Tested on ~230 CUTE models
¡At least one NL constraint
¡ Less than 300 constraints

l Impact on NL solver ability to reach feasibility
¡MINOS, SNOPT, KNITRO, DONLP2, CONOPT

Chinneck: Tutorial on (In)feasibility 72

New Heuristic + CC + solver

l Using feasibility distance 0.1 for CC algorithms
l Improves over new heuristic + solver

0.8770.8990.9390.6840.864modeller

FDfar

FDnear

DBbnd

DBavg

DBmax

simple

CONOPTDONLP2KNITROSNOPTMINOS

0.9040.9080.9170.7060.873

0.8900.8820.9040.6890.864

0.8900.8990.9210.6970.873

0.8900.8950.9080.7020.864

0.8820.9080.9120.6930.864

0.8770.8990.9080.6890.868

Chinneck: Tutorial on (In)feasibility 73

Useful Sources

General overview of state of the art:
l J.W. Chinneck (1997), “Feasibility and Viability” in Advances in

Sensitivity Analysis and Parametric Programming, T. Gal and H.J.
Greenberg (eds.), International Series in Operations Research and
Management Science, Vol. 6, pp. 14-1 to 14-41, Kluwer Academic
Publishers.

On constraint consensus method for NLPs:
l J.W. Chinneck (2003), “The Constraint Consensus Method for

Finding Approximately Feasible Points in Nonlinear Programs”,
INFORMS Journal on Computing, to appear.

On active constraints method for MIPs:
l J. Patel and J. Chinneck (2003), “Active-Constraint Variable

Ordering for Faster Feasibility of Mixed Integer Linear Programs”, in
review.

Other info/software:
l www.sce.carleton.ca/faculty/chinneck.html

