55

INFORMS Journal on Computing
Vol. 8, No. 1, Winter 1996

0899-1499/96 /0801-0055 $01.25
© 1996 INFORMS

Localizing and Diagnosing Infeasibilities in Networks

Joun W. CHINNECK [Systems and Computer Engineering, Carleton University, Ottawa, Ontario K15 5B6, Canada;
Email: chinneck@sce.carleton.ca

(Received: December 1993; revised: June 1995; accepted: August 1995)

Network models are among the largest linear programs solved,
but formulation can be a bottleneck. Errors may be introduced
during formulation, reformulation, or when combining several
smaller models into one large model (as is often done in econo-
metrics). Simply knowing that the model is infeasible is not
enough: where there are many nodes and arcs, the modeler
needs guidance as to where repairs are needed (localization),
and some indication of the cause of the error (diagnosis). The
state of the art flow balancing methods for analyzing infeasible
networks simply do not provide enough localization or diagno-
sis, and in addition cannot operate on advanced netforms. The
paper presents an infeasibility analysis procedure for all
classes of network models that localizes the error to a minimal
causative set of nodes, arcs, and constraints, and provides a
basic diagnosis. The procedure builds on previous work™® 5 ©
but tunes the methods for the special case of networks.
Examples are given, using solutions provided by PROFLOW,
software for the formulation, analysis and solution of net-
work models.

Because the ability to solve very large linear programs is
now widely available, the main burden in linear program
(LP) modeling has shifted to the initial formulation of a
correct model. Errors may be introduced during initial for-
mulation, during reformulation, or during the combination
of several small models into a single large model. Since the
models are so large, automated formulation assistance is
required, and the need is especially acute in the case of
network LPs, which are among the largest optimization
models known.

We concentrate here on analyzing infeasibility in network
models, a serious and all-too-common class of formulation
error. The goal is to develop methods that localize the infea-
sibility to a small part of the network and that suggest a
diagnosis of the error so that a repair can be effected.

Existing methods specifically for analyzing infeasible net-
works rely exclusively on the venerable supply and demand
balancing procedures developed by Gale,""”! Fulkerson,"!
Hoffman,"”?' and Ford and Fulkerson.""?! These procedures
have important disadvantages: (1) they often provide insuf-
ficient localization of the infeasibility, and (2) they apply
only to simple pure networks and so cannot analyze more
advanced netforms.

More recent methods for analyzing infeasibility in general
LPs!®~® 13 of course apply to all network forms and are an
important part of the procedure developed here. However,
better diagnostics are provided by combining these general
methods with a technique for analyzing networks for an-

other type of error (nonviability) in an ordered set of tests.
The procedure developed herein addresses the deficiencies
of the supply-demand balancing approaches. It provides a
better localization of the problem and an automated basic
diagnosis, and applies to all netforms, including generalized
and processing networks, and networks with extra side
constraints.

Examples are given to demonstrate the effectiveness of
the procedure. The calculations are carried out by PRO-
FLOW, a computer code developed by the author to formu-
late, analyze, and solve network models of all types.

1. A Taxonomy of Network Models

The most basic form of a network model is a pure network in
which all nodes either conserve flow (this is a regular node) or
are sources or sinks. Arcs conduct flow between nodes and
have a nonnegativity constraint as the lower flow bound and
an infinite upper bound, or possibly a positive lower and /or
upper flow bound. Arcs may also have an associated cost
per unit of flow. The idea is normally to minimize the total
cost of the flow while satisfying all constraints.

A generalized network includes at least one generalized arc.
A generalized arc has an associated multiplier or gain that
multiplies the flow into the tail of the arc to yield the flow
out of the head of the arc. See [15] for details on modeling
using generalized networks.

A processing network contains at least one processing node.
A processing node is constrained by fixed proportions of the
flows in the arcs incident on it (Figure 1). This is particularly
useful for modeling engineering or economic processes.
Simple examples include a food preparation process in
which fixed proportions of ingredients are combined into an
output product, or an oil refining process in which a crude
oil feedstock is broken into fixed proportions of output
products. In a pure processing network all of the processing
nodes conserve flow as well as enforce the fixed proportions.
In a nonconserving (NC) processing nefwork, at least one of the
processing nodes (called a nonconserving (NC) processing
node), does not conserve flow (the sum of the inflow propor-
tions does not equal the sum of the outflow proportions).
See [3, 5, 23] for details on modeling using processing net-
works.

Note that a generalized network is easily converted to a
NC processing network by replacing each generalized arc by
two arcs with an intervening NC processing node and ap-
propriate processing flow pr()[:,ortions.'5I

Subject classifications: Programming;: linear: algorithms, theory. Network /graphs: theory.

Chinneck

A set of defining equations: 06A-05D=0
06B-03D=0
06C-02D=0
0B6E-04D=0

equivalently: A/0.5=B/0.3=C/0.2=D/0.6 = E0.4

A
D
5
8 i
06
03 ‘
c - o4 \
0.2 E
— arc
— terminal
0.5 processing proportion
Figure 1. Example of a processing node.

It is also important to distinguish between the classes of
constraints appearing in a network model:

Structural constraints include (1) the flow conservation
equation for regular nodes, (2) a sufficient set of proportion
equations for processing nodes of both types,* and (3) the
arc flow nonnegativity constraints.

Flow bounds are the simple nonnegative upper or lower
bounds on the flow in an arc. Negative flow bounds are not
allowed. Unless otherwise stated, the lower flow bound is
assumed to be zero and the upper flow bound to be infinity.

Extra side constraints are any other constraints linking the
arc flow variables. Generalized upper or lower bounds and
other arbitrary constraint are in this category. “Side con-
straint” is a generic term denoting any constraint that is not
a simple flow conservation equation or a simple upper or
lower arc flow bound. Note the distinction here between two
subsets of side constraints: “processing node proportion
equations” and “extra side constraints.”

2. Supply-Demand Flow Balancing

As described by Greenberg and Murphy, the earliest
theorems used for analyzing infeasible pure networks deal
with supply and demand balances, including those by
Gale,"?! Fulkerson,""! Hoffman,”?! and Ford and Fulker-
son."? As Greenberg and Murphy point out, the guidance
provided by algorithms relying on these theorems is very
often insufficient to clearly identify the cause of the problem.
More exact localization is needed.

Hao and Orlin*'! apply the Gale-Fulkerson-Hoffman the-
orems in a maximum flow algorithm procedure for identi-
fying a “witness” set of nodes for which the net supply and
the total outflow capacity conflict. A useful feature is a
procedure for finding a minimal witness set.

Greenberg'"” ¥ provides additional localization through

a set of sophisticated heuristics derived by combining the
flow balance theorems and logic about network behaviour
(e.g. path and cycle generation); this has been implemented
in the ANALYZE software.""”! When certain conditions in-
dicating infeasibility are recognized, tracing back through
the series of manipulations helps to localize the cause. At
their best, Greenberg's algorithms provide an effective lo-
calization and diagnosis of the network infeasibility. At
worst, the localization provided by the basic flow balance
theorems is guaranteed.

The state-of-the-art algorithms specifically for the analysis
of infeasible networks all rely on flow balancing, which has
two important drawbacks. First, the diagnosis often fails to
provide a useful localization (though Hao and Orlin’s min-
imal witness set may help), and second, flow balancing does
not work on netforms beyond pure networks, for example
on generalized or processing networks. New methods are
needed, and are developed below.

3. Building Biocks: Recent Analytic Tools

Two new analytic tools developed in recent years are the
basic ingredients of the procedure developed in this paper:
IIS analysis for infeasible LPs, and nonviability analysis for
network models.

3.1. 1IS Analysis of Infeasible LPs

Van Loon™ introduced the term Irreducibly Inconsistent
System (1IS), now also known as an irreducible infeasible set, to
describe a set of constraints that is infeasible but that be-
comes feasible if any one constraint is removed. “Con-
straint” refers here to both rows and column bounds. Any
infeasible LP contains at least one IIS.

The utility of the concept lies in the fact that the TIS is
generally very much smaller than the original LP. This can
provide a tremendous degree of localization of the infeasi-
bility, in many cases as few as a couple of constraints from
among the thousands defining the entire model. The IIS
assists in the diagnosis of the problem by focusing attention
on a few constraints, at least one of which must be changed
if feasibility is to be achieved.

In a series of papers, Chinneck!”” ®* and Chinneck and
Dravnieks'®! showed how to isolate 11Ss quickly and gave
heuristics for finding small 1ISs where there are several in
the model."”! They further provided the first implementation
of an IIS-finder by modifying a version of MINOS to create
MINOS(IIS)."* # The network analysis code PROFLOW, de-
scribed in Section 4.2, uses MINOS(IIS) to solve the network
models, and to analyze infeasibilities. Versions of Chin-
neck’s IIS-finding algorithms have since been implemented
in other codes, including CPLEX' and LINDO.*7! A related
precursor algorithm also appears in the proprietary BP Oil
code CLAUDIA."?* 231

For our purposes here, it is sufficient to know that IIS-
isolation is practical and effective, and is available as an
integral part of implemented LP software. For details of the
method and for references to related work, see '°~%).

57

Localizing and Diagnosing Infeasibilities

20]

Figure 2. An infeasible pure network."®

3.1.1. TIS Analysis of Network Models

A difference between flow balancing and IIS isolation meth-
ods is that the 1IS also reports nonnegativity constraints that
are implicated in the infeasibility, whereas flow balancing
methods do not. Since a nonnegativity constraint in an IIS
may indicate a reversed arc, this is important information.
See Figure 2 for example, which has previously been ana-
lyzed by Greenberg!'® and Greenberg and Murphy.*”!
Greenberg and Murphy identify the infeasibility as nodes 5
and 8, the upper bounds on arcs 6 and 7, and the lower
bound on arc 14. The IIS lists the same constraints, but also
includes the nonnegativity restriction on arc 10.

Many network representations have one redundant struc-
tural equation, normally an “environment” node showing
the conservation of the flows exiting and entering the net-
work itself. The redundant equation is often omitted implic-
itly by allowing nodes to act as sources or sinks. If the
redundant structural equation is explicitly retained, then
there are always two representations for each IIS: (i) an
“internal” [IS which includes only nodes and arcs internal to
the network, and (ii) an “external” IIS which includes the
environment node. Experience shows that humans can more
easily interpret the “internal” IIS, leading to the rule of
thumb that if the redundant environment equation is in-
cluded in the model, it is better to explicitly remove it before
applying the IIS analysis to avoid finding the sometimes
confusing “external” IIS.

IIS isolation has three main advantages over flow balanc-
ing for analyzing infeasible networks: (1) it provides a
greater degree of localization of the infeasibility by guaran-
teeing the isolation of a single 115, (2) involved nonnegativity
constraints are explicitly identified so that reversed arcs are
more easily identified, and (3) it is easily combined with
other methods so that once an IS is found, other standard
methods, even supply and demand balancing, can be ap-
plied to this small portion of the original network, instead of
to the entire model.

3.1.2. Aggregation of Network IISs

Network models sometimes have very large IISs, usually
because incompatible input and output restrictions are
linked via a large number of flow conservation equations.
While this gives a lengthy list of constraints and flow
bounds in the IIS, the infeasibility is conceptually simple: the
upper limit on the input flows is less than the lower limit on
the output flows, for example. Fortunately, aggregation of
the IIS constraints can make this clear.

Aggregation refers to the summing of the regular node
equations in the IIS to yield a simpler overall expression.
This amounts to condensing the “bridge” of flow conser-
vation equations linking the incompatible input and out-
put flow restrictions, creating a single easily-understood
equation. The basic idea of aggregation is not new,**! but
it has only recently been applied to assist in the formula-
tion of LPs. For example, an AGGREGAT command is
available in ANALYZE,'" but the rows are weighted by
the dual prices during the summation. Aggregating large
network IISs by simple summing of the rows has been
implemented by Ed Klotz in version 3.0 of the CPLEX
optimizer."”!

Consider the following small example as analyzed by
CPLEX, which automatically provides the aggregation of the
equality rows.

Rows in the IIS:

¢125: — x50 + x379 — x380 = —1825

cl126: — x379 + x380 — x382 = —2535

c127: — x381 + x382 + x383 — x384 = —1658
¢128: — x30 — x383 + x384 + x387 — x459 = —15466
cl47: — x69 + x435 — x437 = —338

cl148: — x435 + x437 + x438 — x439 = —1037
cl49: — x438 + x439 + xd40 — x442 = —5713
c150: — x440 + x442 + x443 — x444 = —16
c151: — x443 + x444 + x446 — x448 = —1954
c153: — x446 + x448 + x449 — x450 = —4255
c154: — x449 + x450 + x451 — x453 = —5155
cl55: — x451 + x453 + x454 — x455 = —1274
cl56: — x454 + x455 + x456 + x457 — x458 — x463 = —1454
c157: — x387 — x456 + x458 + x459 = —6401
c158: — x457 + x463 + x464 — x491 = —14
cl65: — x475 + x477 + x478 — x479 = —246
cl66: — x478 + x479 + x480 — x482 = —232
c167: — x480 + x482 + x483 — x484 = —61
cl68: — x483 + x484 + x485 — x486 = —1536
cl169: — x485 + x486 + x487 — x488 = —3648
c170: — x487 + x488 + x489 — x490 = —3676
cl71: — x464 — x489 + x490 + x491 = —1848

Column Bounds in the [IS:
x30 <= 12509
x50 <= 12509

x69 <= 14434
x475 <= 14434
x477 >= 0

Aggregated IS Rows:
— x30 — x50 — x69 — x475 + x477 = —60342

The diagnosis of the error is difficult to make using only the
listing of the rows and column bounds in the IIS, but is quite
easily made by looking at the aggregated row and the col-
umn bounds.

Note that to be effective, simple summing of the regular
nodes depends on using a consistent format for the regular
node equations (e.g. outflows — inflows). Fortunately, re-
versals of the convention are easy to fix automatically.

Chinneck

(a)

6: processing proportion

(b) 1

Figure 3. Simple examples of nonviable networks: (a)
directed cutset, (b) full rank cycle of processing nodes.

3.2. Viability Analysis

Viability analysis™ *! is concerned with detecting and
analyzing errors in the underlying structure of a network
model that prevent one or more arcs from conducting flow.
The network is first stripped of all nonstructural constraints
(arc lower bounds are reset to zero, arc upper bounds are
reset to infinity). If the structural constraints alone force one
or more of the arc flows to zero, then the network is nonvi-
able. Simple examples of nonviability include a directed
cutset or a cycle of processing nodes of full rank (Figure 3).

Nonviability is usually an indication of a modeling error:
why include arcs in the model if they can never conduct
flow? Algorithms for localizing and diagnosing nonviability
have been developed'™ ' and implemented. One small-scale
prototype implementation'' is appropriate only for pure
processing networks and uses a complex but more revealing
algorithm. A second implementation in the PROFLOW soft-
ware (Section 4.2) is suitable for very large problems and
uses the IIS finding algorithms to localize a nonviability.

A nonviable network does not cause infeasibility, but a
simple transformation converts a nonviability localization
problem into an infeasibility localization problem that can
be attacked using IS methods.'™ The transformation works
as follows. The feasible region of the stripped-down struc-
tural model investigated during viability analysis is a con-
vex polyhedral cone. In a viable model, all variables can take
on positive values simultaneously, but in a nonviable model
one or more flow variables are restricted to zero. By adding
a positivity constraint on every variable (generally a lower
bound of 1), nonviability shows up as infeasibility, and IIS
isolation methods can then be used to localize the cause of
the nonviability.

The structural constraints examined during viability test-
ing define the basic oriented interconnections of the net-

work. This set of constraints is sometimes referred to as the
“model,” where “instances of the model” are created by
adding strictly positive flow bounds and extra side con-
straints. In practice, the basic “model” often persists for long
periods of time because the physical infrastructure of the
modeled system does not change, whereas nonstructural
constraints such as flow bounds and side constraints may
change often, reflecting new conditions of output demands,
input availabilities, etc.

4. A Procedure for Analyzing Infeasibie Networks

The recommended procedure for analyzing infeasible net-
works uses an ordered sequence of tests to extract extra
diagnostic information. The diagnosis is improved by estab-
lishing confidence in the model at various levels, moving
from the most fundamental (the underlying structure of the
node interconnections and arc orientations), to consider-
ations of individual node and arc capacity interactions (often
related to the sizes of physical equipment), to overall input
and output constraints. The ordered set of tests is given in
Algorithm 1. There are two important orderings in the set of
tests, as explained next.

Algorithm 1. The Sequence of Tests.

1. Assemble only the structural equations and apply
the viability test. If the network is nonviable, then
localize the nonviability and exit.

2. Add the simple arc flow bounds and test
feasibility. If the network is infeasible, then
localize the IIS and exit.

3. Add the extra side constraints and test feasibility.
If the network is infeasible, then localize the 1IS
and exit.

The first ordering requires that viability testing be carried
out before feasibility testing because nonviability has special
meaning when analyzing infeasible networks. Specifically, if
a network is nonviable and a strictly positive lower flow
bound is imposed on a nonviable arc, then the model will be
infeasible. Further, any attempts to repair the model by
adjusting the lower flow bound to some other strictly posi-
tive value cannot succeed. The viability error in the under-
lying network structure must be repaired before model in-
stances are examined.

The second ordering examines the structural constraints
plus simple flow bounds (step 2) before the entire model,
which includes the extra side constraints (step 3). Simple
flow bounds are usually limiting physical factors such as
pipe diameter which often persist in the model for lengthy
periods, like the underlying structure. It is therefore useful
to check that these are not the cause of infeasibilities in
conjunction with the structure before examining the effect of
any other constraints. Extra side constraints are often some
form of aggregate input or output requirement. These are
most likely to change in creating a model instance.

In addition to localizing the error, the ordering of the tests
in Algorithm 1 provides basic diagnostic information on the
cause of the error: structure, equipment sizing, or input/
output requirements.

Localizing and Diagnosing Infeasibilities

4.1. Algorithm Efficiency

The IIS finding routines that drive all three steps of Algo-
rithm 1 are remarkably fast. Many versions of the algorithms
are available, with the fastest having an average time ratio
(time to find IIS: time to complete initial phase 1 signaling
infeasibility) of 0.9, and the recommended method that gives
the most useful IISs having an average time ratio of 3.4.17
The time taken to complete all three steps of the algorithm (if
necessary), is considerably less than three times the time
taken to complete one step because the final solution of one
step can be used as an advanced start for the next step. Such
advanced start capabilities are available in MINOS(IIS),
which is embedded in PROFLOW and in other modemn
solvers.

At the (extremely unlikely) worst, with all three algorithm
steps experiencing a time ratio of 3.4, the time ratio for the
entire algorithm would be approximately 10. In other words,
at worst it might take at most about 10 times as long to run
the complete algorithm as to detect phase 1 infeasibility in
the first place, but in most cases the time ratio will be much
smaller. These are very favourable figures, especially con-
sidering that the real issue is minimizing human time for
model debugging. In practice, managers are glad to expend
machine time to reduce human time. For a relatively small
expenditure of machine time, the algorithm provides an
isolation and a preliminary diagnosis of the error.

IIS localization algorithms have not yet been incorpo-
rated in specialized codes for solving network models
(which can be 10-200 times faster than the general sim-
plex method,""- * '* 18! but this should be straightforward.
The speed advantage of a specialized network code de-
pends heavily on the number of side constraints (such as
processing proportion equations) and extra side con-
straints. Using a specialized network code in place of a
general LP code such as MINOS(IIS) will also speed the
analysis process.

4.2. The PROFLOW Software

PROFLOW is a software tool that has been developed by
the author for formulating, analyzing, and solving network
models of all types, and that incorporates most of the ele-
ments of the algorithm described above. The main features
are (1) an intuitive language for describing network models
of all types, including extra side constraints, (2) automatic
setup and solution of the minimum cost network flow op-
timization, (3) automatic localization of nonviabilities on
request, (4) automatic IIS localization of infeasibilities, (5) a
friendly interface including windowing, pull-down menus,
context-sensitive help, a full-featured editor, easy browsing
of solutions, and automatic checking of the network descrip-
tion for syntax errors and basic network errors such as
unconnected arcs. An example of the PROFLOW network
description language can be seen in Figure 5.

MINOS(IIS) is the embedded solver and provides the I1S
localization when needed for either nonviability or infeasi-
bility analysis. At present, the ordered set of tests described
in Algorithm 1 must be set up manually, but it is intended
that this will be automated in future.

jn:3 is terminal:proportion

extra side constraint: x1 + x2 >= 35

Figure 4. Small example network.

5. Examples

An initial small illustrative example is given in Figure 4. To
understand the error-localizing power of the algorithms,
imagine that the small network of Figure 4 is attached to a
very large network via more arcs incident on node 1. The
self-explanatory PROFLOW language description of the net-
work is given in Figure 5.

The state-of-the-art flow balancing methods cannot be
applied in this example because it is not an ordinary pure
network. Attempting to apply flow balancing by relaxing
the proportion constraints on the processing nodes and by
ignoring the extra side constraints leads to the incorrect
conclusion that the network is feasible (i.e., a flow of 10 units
in arcs 5, 6, 7, 8).

Using PROFLOW to apply the general LP IS isolation
algorithm leads to the IIS listed in Figure 6, which is the
portion of the network shown in Figure 7. This is indeed a
modeling error that needs repair, but it is not the only
problem, as shown below.

Analysis by the recommended procedure turns up addi-
tional errors needing repair. The viability analysis in step 1
reveals the nonviability listed in Figure 8, which is the
portion of the network shown in Figure 9. No amount of
positive flow can be sustained on the arcs in Figure 9 until
the nonviability is repaired, in this case by correcting the
accidental reversal of arc 4. When the orientation of arc 4 is
corrected, step 1 now concludes that the model is viable.

Step 2 adds the flow bounds and tests the feasibility of the
model. This reveals the same IIS identified in Figures 6 and
7. The infeasibility is due to the incorrect assignment of an
upper flow bound of 10 to arc 7, which limits the output of
the process represented by node 3. When the flow bound on
arc 7 is correctly set to 15, the next application of Step 2
shows the model is now flow-bound feasible.

Step 3 adds the extra side constraint and tests the feasi-
bility of the whole model. The IIS listed in Figure 10 and
pictured in Figure 11 is revealed. Knowing that the model is
flow-bound-feasible, it is natural to focus on the extra side

Chinneck

DEFNETWORK paper ey 1:

REGULAR: nodel, nodas;
DEFPROCESSOR second. node:
ITABEL=nodeZ;
OEFTERMINAL top_termm:
LABEL=terma; RATIO=1,0;
DEFTERMINAL side term:
LABElL=termb; RATIO=l.0
DEFTERMINAL bot beym:
LABE[=termc: RATIO=Z.(:
ENDPROTESSOR;

o

ENDTERMINALZ

ENDTERMINAL

ENDTERMINAL:

TDEFPROCESSOR third node:
LABEL=nodel;
DEFTERMINAL top_ term:

LABEL=terma; BATIO=3.
DEFTERMINAL side term:
LABEL=tammb; RATIO=2.0
DEFTERMINAL. bot_term:
LABEL=termo; RATIO=5.07
ENRERQCESSOR;

=)

7 ENUTHRMINAL;

ERDTHRMINAL;

=]

EWNDTHRAMINAL:

DEFEROCESSOR. fourth_noder
LABEl=nodid;
DEFTERMINAL ‘tep term:
LABBL=terma; REATIO=1,0;
DEFTERMINAL left term:
LABElL=tarmb: RATIO=2.0;
DEFTERMINARL right term:
LABEL=Lerme; RATID=3.0;
ENDPROCESSOR:

ENDTEEMINAL
ENDTERMINRL

ENUTERMINAL;

PEFEDGE firat arc: LABEL=arcl; COSf=-5.0;
FROMNODE= (noded, termb) ;. TONODE=(nodel]:
DEFEDGE ‘sacond arc: LABEL=arc2; COET=-5.0
FROMNODE= {node2, terma) ; TONODE=(nodsl]: ENDEDGE:
DEFEDGE third arc: LABEL=arcdj COST=2.5:
FROMNODE= {nodel) ; TONODE={rodeld, terma)
DEFEDGE fourth are: LAREL=arcd; cOST=2.0;
FROMNODE= {nodeS) ; TONODE={fodsl); ENDEDISE:
DEFEDGE f£ifth are: LABEL=arch;
FROMNOQDE= {nodeZ, termb) ; TONODE~{noded, termb); ENDEDGE:
PEFEDGE sixth arc: LABEL=arch; MINFLOW=10.0;
FROMNGDE= (noded, terma] i TONODE=(node2, terms): ENDEDGE?
DEFEDGE seventh arc: LABEL=arai: MAXFLOW=10.0J

ENTEDGE;

ENDEDGE;
| feversed!)

FROMNODE= (noded, terme] ;' TONODE=(nodeS] ; ENDEDGE;
DEFENGE @ighth arc: LABEL=araB;
FROMNODE® (nodeb) ; TORODE=[noded, ternc)? ENDEDGE;

BIDECONS extra_side; arcl + arc2 > 35.0)

ENDRETWORK,

Figure 5. PROFLOW language description of example 1.

115 gerierated by infeasibility:

Columng ——————=—=—===-=-

lower bound
upper bound

ROWs —————————=====—=

fixed value
fixed value

NODEZ [TERMC: TERMB]
NGDE3 ['ERMC : TERMB |

Figure 6. PROFLOW output identifying an IIS.

constraint, determining in this case that the lower bound of
35 on the total output of the network is too high.

This example shows that flow balancing is ineffective for
network forms beyond pure ordinary networks. In addition,
the general LP IIS isolation applied directly to the model
provides only part of the diagnosis: the underlying non-
viable structure should be corrected first, since any
strictly positive lower bound on a nonviable arc will cause
infeasibility.

Figure 7. Network portion isolated by the IIS.

115 generated by nonviability:

--------------- COLUNAE =i
RRC4 lower bound
ARCE lower bound
------- - Rows ——
NODEZ [TERMC : TERMB] fixed value
NODES [TERMC: TERME) fixed value
NODE4 [TERMC : TERMA] fixed value

NODES fixed value

Figure 8. Step | nonviability isolated by PROFLOW.

Since they are too large to show graphically, a second and
third example are summarized below. Processing network
model MODEL61I is a multiperiod forest growth and har-
vest model consisting of 190 nodes (100 processing, 88 reg-
ular, 2 external), 367 arcs, and 6 side constraints. Algorithm
step 1 shows that the model is viable, but step 2 finds an 1IS
consisting of 8 ares and 13 nodes. This is a small portion of
the total model (arcs: 8/367 = 0.02, nodes: 13/190 = 0.07),
and allows swift identification and correction of an incor-
rectly set arc lower bound. Algorithm step 3 isolates an IIS
involving 2 side constraints, 11 arcs, and no nodes. This is
again a small portion of the model (arcs: 11/367 = 0.03,
nodes: 0/190 = 0.0, side constraints: 2/6 = 0.3).

Processing network model EX73AI was generated as part
of a method for analyzing software designs by a processing
network transformation,”® and consists of 158 nodes (88
processing, 70 regular) and 211 arcs. Algorithm step 1 shows
that the model is nonviable, and the isolated nonviability
consists of 25 arcs and 21 nodes, an effective isolation (arcs:
25/211 = 0.12, nodes: 21/158 = 0.13). When the nonvi-
ability is corrected, a small infeasibility (2 arc bounds, one
regular node) is detected and corrected. There are no side
constraints.

>0

Figure 9. Portion of network isolated by the nonviability.

118 generated by infeasibility:

ARET

valle
value
value
flxed value
fized value
lower ‘bound

fixed
fixed
Lixed

IRMC : TERMA |
EXTRA 3SIDE

Figure 10. Step 3 IIS isolated by PROFLOW.

6. Conclusions

The procedure for the analysis of infeasible network models
presented here provides an improved analysis for several
reasons. First, it applies to all network forms. Flow balancing
methods, the current state of the art, apply only to pure
ordinary networks and may provide insufficient informa-
tion to give a useful localization or to form a complete
diagnosis even for this class of models.

Second, the general LP 1IS isolation applied directly to the
network model does not extract all of the possible diagnostic
information. By including nonviability analysis and by ex-
amining various classes of constraints in an ordered series of
tests, the new procedure provides added diagnostic value. It
first determines whether the basic structure is workable (i.e.,
viable), then whether the flow capacities (e.g., equipment
capacities) are feasible, and finally whether the side con-
straints (e.g., total input and output limits) are feasible.

Finally, the suggested procedure is easily implemented,
making use of known building blocks which are easily in-

61

Localizing and Diagnosing Infeasibilities

[a:3 is terminal:;proportion

5

extra side constraint: x1 + x2 >= 35

Figure 11. Network portion isolated by the Step 3 1IS.

corporated into standard network modeling systems. A pro-
totype implementation, PROFLOW, already exists.

Acknowledgments

The support of this research by the Natural Sciences and Engi-
neering Research Council of Canada through a research grant to the
author is gratefully acknowledged. Marco Lavoie did an excellent
job of programming the PROFLOW interface. Thanks also to Har-
vey |. Greenberg (University of Colorado at Denver) for advice
during the preparation of early drafts of this paper.

References

1. C-HJ. CHEN and M. ENGQUIST, 1986. A Primal Simplex Ap-
proach to Pure Processing Networks, Management Science 32,
1582-1598.

2. 5. CHEN and R. SAIGAL, 1977. A Primal Algorithm for Solving a
Capacitated Network Flow Problem with Additional Linear
Constraints, Networks 7, 59-79.

3.].W. CHINNECK, 1990. Formulating Processing Network Models:
Viability Theory, Naval Research Logistics 37, 245-261.

4.].W. CHINNECK, 1990. VIABLEL: Code for Identifying Nonvi-
abilities in Processing Network Models, technical note in
the Operations Research Software Exchange Program column,
European Journal of Operational Research 44, 119.

. J.W. CHINNECK, 1992. Viability Analysis: A Formulation Aid For
All Classes of Network Models, Naval Research Logistics 39,
531-543.

6. J.W. CHINNECK and E.W. DRAVNIEKS, 1991. Locating Minimal
Infeasible Constraint Sets in Linear Programs, ORSA Journal on
Computing 3, 157-168.

7.].W. CHINNECK, 1993. Finding the Most Useful Subset of Con-
straints for Analysis in an Infeasible Linear Program, Technical
report SCE-93-07, Systems and Computer Engineering, Carleton
University, Ottawa, Canada.

8.].W. CHINNECK, 1994. MINOS(IIS): Infeasibility Analysis Using
MINQOS, Computers & Operations Research 21, 1-9.

n

10.

11.

13.

14.

15.

16.

17.

18.

19.

Chinneck

. CPLEX OPTIMIZATION INC., 1994. Using the CPLEX Callable Li-

brary and CPLEX Mixed Integer Library, version 2.2, software
manual.

L.R. FORD and D.R. FULKERSON, 1962. Flows in Networks, Prince-
ton University Press, Princeton, NJ.

D.R. FULKERSON, 1959. A Network Flow Feasibility Theorem
and Combinatorial Applications, Canadian Journal of Mathematics
11, 440-451.

. D. GALE, 1957. A Theorem in Networks, Pacific Journal of Math-

ematics 7, 1073-1082.

J. GLEESON and]. RYAN, 1990. Identifying Minimally Infeasible
Subsystems of Inequalities, ORSA Journal on Computing 2, 61-63.
F. GLOVER and D. KLINGMAN, 1981. The Simplex SON Algo-
rithm for LP/Embedded Network Problems, Mathematical Pro-
gramming Study 15, 148-176.

F. GLOVER, D. KUNGMAN and N.V. PHILLIPS, 1992. Network
Models in Optimization and Their Applications in Practice, John
Wiley & Sons Inc., New York.

H.]. GREENBERG, 1987. Computer-Assisted Analysis for Diag-
nosing Infeasible or Unbounded Linear Programs, Mathematical
Programming Studies 31, 79-97.

H.]. GREENBERG, 1987. Diagnosing Infeasibility for Min-Cost
Network Flow Models, Part I: Dual Infeasibility, IMA Journal of
Mathematics in Management 1, 99-109.

H.]. GREENBERG, 1988. Diagnosing Infeasibility for Min-Cost
Network Flow Models, Part II: Primal Infeasibility, IMA Journal
of Mathematics Applied in Business and Industry 2, 1-12.

H.]. GREENBERG, 1993. A Computer-Assisted Analysis System for

20.

21.

24.

26.

27,

28.

29.

Mathematical Programming Models and Solutions: A User’s Guide
for ANALYZE, Kluwer Academic Publishers, Boston.

H.]. GREENBERG and F.H. MURPHY, 1991. Approaches to Diag-
nosing Infeasible Linear Programs, ORSA Journal on Computing
3, 253-261.

J. HAO and].B. ORLIN, 1992. Diagnosing Infeasibilities for Min-
imum Cost Flow Problems, TIMS/ORSA Conference, Orlando
Florida, April 26-29.

. A.]. HOFFMAN, 1960. Some Recent Applications of the Theory of

Linear Inequalities to Extremal Combinatorial Analysis, Proceed-
ings of Symposia on Applied Mathematics 10.

. J. KOENE, 1982. Minimal Cost Flow in Processing Networks, a Primal

Approach, Ph.D. thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands. Also released as CWI Tract 4,
1984,

R.A. MAIN, 1993. Infeasibility Analysis Using CLAUDIA-L,
Technical report, BP Oil International.

. RA. MAIN, 1993. Infeasibility Analysis Using CLAUDIA-II,

Technical report, BP Qil International.

K.G. MURTY, 1983. Linear Programming, John Wiley & Sons, New
York.

L. SCHRAGE, 1991. LINDO: An Optimization Modelling System, 4th
ed., The Scientific Press, San Francisco.

J. vaN LOON, 1981. Irreducibly Inconsistent Systems of Linear
Inequalities, European Journal of Operational Research 8, 283-288.
Z.YOU, 1993. Localization and Diagnosis of Structural Problems in
Petri Net Models, M.Sc. thesis, Systems and Computer Engineer-
ing, Carleton University, Ottawa, Canada.

Copyright 1996, by INFORMS, all rights reserved. Copyright of Journal on Computing
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.

