
 1

Improving Solver Success in Reaching Feasibility for Sets of
Nonlinear Constraints

Walid Ibrahim

College of Information Technology
United Arab Emirates University

John W. Chinneck

Systems and Computer Engineering
Carleton University

Ottawa, Ontario K1S 5B6
Canada

chinneck@sce.carleton.ca

August 3, 2005

Abstract
Whether a given nonlinear solver can reach a feasible point for a set of nonlinear constraints
depends heavily on the initial point provided. We develop a range of computationally cheap
constraint consensus algorithms that move from a given initial point to a better final point that is
then passed to the nonlinear solver. Empirical tests show that this added step greatly improves
the success rate of various nonlinear solvers in reaching feasibility, and reduces the effort they
expend in doing so. We also develop a new initial point placement heuristic for use when an
initial point is not provided by the modeller. Empirical tests show much improved performance
for this new heuristic, both alone and in conjunction with the constraint consensus algorithms.

1. Introduction
Finding a feasible point for a set of linear constraints is not difficult, but it can be extremely
challenging when the set has one or more nonlinear members. This is an important problem:
feasibility is the only goal in some applications, and some nonlinear solution algorithms require a
feasible starting point before they can proceed to optimality (e.g. the Generalized Reduced
Gradient algorithm [Drud 1994], feasible sequential quadratic programming [Lawrence and Tits
2001], or methods of feasible directions [Lasdon 1970]).

The problem can be stated formally as follows. Given a set of a set of I constraints c1…cI, in J
variables x1…xJ of the form ci(x) {≤, ≥, =} bi where bi is a constant, with variable bounds l ≤ x ≤
u, find x such that all of the constraints and variable bounds are satisfied. An initial point x0 may
possibly be provided by the modeller. For the purposes of this paper, at least one constraint is
nonlinear. There is no objective function, or if one is present, it is ignored.

The initial point provided by the modeller greatly influences the ability of a nonlinear solver to
find a feasible point for a set of constraints that has at least one nonlinear member. In the best
case, a knowledgeable modeller provides a good initial point that allows the solver to proceed to

 2

feasibility without difficulty. In the worst case, the initial point is poorly chosen by a novice or
inept modeller so that the solver is unable to find a feasible point at all, or perhaps more
frequently, no initial point is given whatsoever. The difficulty of achieving feasibility is
increased when the modeller fails to provide appropriate bounds on the variables. This is
common in practice when the modeller knows little about the model, for example during the
original formulation. The variables are often treated as unbounded in one or both directions in
this case, so there are few clues as to where to set the initial point. Simple heuristics are usually
used in this case.

A common approach to finding a feasible solution for a set of nonlinear constraints, given an
initial point, is to use the solver to minimize a penalty function (e.g. sum of the squares of the
individual constraint violations) during a phase one procedure whose sole purpose is to find a
feasible point (see e.g. section 14.5 of Rardin [1998]). A variety of other approaches, internal to
the nonlinear solvers, may also be used. Some algorithms move towards feasibility and
optimality simultaneously, such as infeasible-path interior point methods (see e.g. Wright
[1997]), filter methods [Gould et al. 2004]), and the common heuristic of optimizing a weighted
sum of the original objective function and the phase one objective function.

There are, however, two classes of algorithms that operate before the initial point is turned over
to the nonlinear solver: (i) initial point placement heuristics that are used when the modeller does
not provide an initial point, and (ii) inexpensive algorithms for improving a given initial point
prior to passing it to the nonlinear solver (especially important when the modeller provides an
inappropriate initial point that is far from feasibility). This paper develops algorithms in both
classes and shows that they can dramatically improve solver success rates in finding feasible
points for sets of constraints that have at least one nonlinear member. The heuristics are simple,
fast, and reliable. In addition, we examine the case of improving a relatively good initial point
by applying an inexpensive heuristic in order to reduce the amount of costly nonlinear solver
computation.

The new heuristics for improving a given initial point are variations on the constraint consensus
method [Chinneck 2003], briefly reviewed next. This is a type of simultaneous component-
averaging gradient projection algorithm (see e.g. Censor [2001]). The main idea is to improve
the current point by making a move that arises as a result of the “consensus of opinion” among
the currently violated constraints as to the direction and distance in which to move to achieve
feasibility. These movements are repeated until a stopping condition is met.

The first step in the constraint consensus method is to find the feasibility vector for each
constraint that is violated at the current point x. This is fvi = vidi∇ci(x)/||∇ci(x)||2 for the ith
constraint where:

• ∇ci(x) is the gradient of the constraint, and ||∇ci(x)|| is its length.
• vi is the constraint violation |ci(x) – bi|, or zero for satisfied constraints,
• di is +1 if it is necessary to increase c(x) to satisfy the constraint, and –1 if it is necessary

to decrease ci(x) to satisfy the constraint.
The feasibility vector shows how to move from the current point to the nearest feasible point for
an individual constraint. It is exact for linear constraints, but just an estimate for nonlinear
constraints. The length of the feasibility vector for the ith constraint is denoted by ||fvi||.

 3

The second step is to combine the feasibility vectors for all of the violated constraints to arrive at
the consensus vector that is actually used to make the updating move. This is done in a
component-wise manner: only the violated constraints that include a particular variable in c(x)
are able to “vote” on the movement in that dimension. In the original algorithm the movement in
each dimension is obtained by averaging the relevant component of each eligible feasibility
vector; the resulting consensus vector specifies both the direction and distance of movement. The
current point is updated by applying the consensus vector. The first and second steps repeat until
the stopping conditions are met.

The algorithm terminates successfully if the length of every feasibility vector is less than the
feasibility distance tolerance α, and unsuccessfully if either (i) the first condition is not met and
the length of the consensus vector is less than the movement tolerance β or (ii) a preset number
of iterations µ is exceeded. When successful, the final point is within an estimated Euclidean
distance α of satisfying every constraint, where α might be quite large (e.g. 100) depending on
the purpose at hand (e.g. finding the order of magnitude of a suitable starting point for the
nonlinear solver). The movement tolerance β is used to detect situations in which the algorithm
gets stuck or is proceeding very slowly.

The basic constraint consensus method is shown in Algorithm 1. NINF is the number of violated
constraints (“Number of INFeasibilities”) at the current point, sj is the sum of the feasibility vector
components in the jth dimension, nj is the number of violated constraints that involve variable j,

Inputs:
• a set of I constraints c1…cI, in J variables x1…xJ
• an initial point x,
• a feasibility distance tolerance α,
• a movement tolerance β,
• a maximum number of iterations µ.

1. Repeat µ times:
1.1. NINF = 0; for all j: nj = 0, sj = 0.
1.2. For every constraint ci:

1.2.1. If ci is violated then:
1.2.1.1. Calculate feasibility vector fvi and the feasibility distance ||fvi||
1.2.1.2. If ||fvi|| > α then:

• NINF = NINF + 1.
• For every variable xj in ci: nj ← nj +1; sj ← sj + fvij

1.3. If NINF = 0, then exit successfully.
1.4. For every variable xj:

1.4.1. If nj ≠ 0 then tj = sj/nj, else tj = 0.
1.5. If ||t|| ≤ β then exit unsuccessfully.
1.6. x ← x + t.
1.7. If any xj exceeds its bounds, reset onto the nearest bound.

2. Exit unsuccessfully.

Algorithm 1: Basic Constraint Consensus

 4

and t is the consensus vector. For simplicity, details of how the basic algorithm tolerates
numerical errors are not shown. Briefly, the algorithm ignores constraints that experience a
numerical error at the current point (e.g. divide by zero) and carries on, hoping that the problem
will not recur at the newly updated point. If the algorithm returns a final point at which at least
one constraint experiences a numerical error, then the termination is deemed unsuccessful. See
Chinneck [2003] for details.

There is a variety of previous work on relatively complex feasibility-seeking procedures to be
used as part of a solver phase-one procedure (see, e.g. Elwakeil and Arora [1995]). However
there has been very little previous work on inexpensive methods for improving a given initial
point, not necessarily all the way to feasibility. Chen and Kostreva [1999] describe a feasible
directions method that is limited to solving nonlinear inequalities, and is to be used prior to
optimization via the method of feasible directions. Gertz et al [2003] describe an approach that
computes an affine scaling step by solving a system of linear equations related to a Newton
iteration. Their algorithm is specifically for interior point methods in that it also provides initial
values of other multipliers and parameters used by such methods.

Heuristic methods for selection of the initial point when none is provided have received much
less attention, and do not have an extensive literature. Some solvers provide a nonlinear “crash”
heuristic to set the initial point, see e.g. the procedure used in MINOS [Murtagh and Saunders
1983], but details differ between implementations and are often confidential. A widely-applied
heuristic (referred to here as the “standard” heuristic) is as follows:

• if the variable is doubly bounded: set at midpoint,
• if the variable is singly bounded: set at bound closest to zero,
• if the variable is unbounded in both directions: set at zero.

The remainder of the paper presents new constraint consensus algorithms in Section 2 and a
more effective modification of the standard initial point placement algorithm in Section 3.
Experiments to determine the effectiveness of these methods in providing good starting points
for nonlinear solvers are then described and conclusions are drawn.

2. New Constraint Consensus Algorithms
The basic constraint consensus method treats all of the eligible feasibility vectors equally.
However there may be value in choosing to emphasize the effect of the longest or shortest
feasibility vector. This is the approach taken in the variations developed in Section 2.1. It may
also be valuable to consider the number of constraints voting for a movement in the positive
versus negative direction in a particular component. This is the basis of the algorithm variations
developed in Section 2.2.

2.1 Feasibility-Distance Based Algorithms
The feasibility-distance based algorithms use the length of the feasibility vector associated with
each violated constraint to set the consensus vector. In the “near” mode used in the FDnear
algorithm, the consensus vector is set equal to the shortest feasibility vector on the assumption
that it is better to move to satisfy the smallest violation first because this keeps the point in a
region where the gradients are good approximations of the functions. In the “far” mode used in
the FDfar algorithm, the opposite assumption is made and the consensus vector is set equal to

 5

the longest feasibility vector because this is likely to provide the most rapid movement towards
feasibility. In both cases, dimensions that do not appear in the selected shortest or longest
feasibility vector are set by averaging as in the basic constraint consensus scheme. Details are
shown in Algorithm 2, where fd is the maximum or minimum feasibility distance, and z is the
shortest or longest feasibility vector. The FDfar approach is related to the “remotest set control”
class of projection algorithms [Censor and Zenios 1997, p. 80].

2.2 Direction-Based Algorithms
The direction-based algorithms conduct a “vote” on whether to move in the positive or the
negative direction for each dimension prior to deciding how far to move. In some variants, the
direction vote is the simple count of how many violated constraints would prefer an increase in a
dimension versus how many would prefer a decrease in that dimension. In other variants, the
vote is settled by the size of the largest proposed movement in the positive versus negative
direction: whichever direction has the largest proposed movement wins the vote. Once this vote
settles the question of whether to increase or to decrease in the dimension, there are several ways
to decide how far to move.

The DBavg method decides the direction of movement in a dimension by a simple count of the
number of votes for positive or negative movement, and the magnitude of the movement is
decided by averaging the projections in the winning direction, as shown in Algorithm 3. s+

j and
s−j are the sums of the feasibility vector components in the positive and negative directions for
variable j and n+

j and n−j are the number of violated constraints that vote for movement in the
positive and negative directions for variable j.

In the DBmax variant, the direction vote is conducted by looking at the size of the largest
proposed movement in each of the positive and negative directions: the largest proposed
movement determines both the direction and the size of the component in the consensus vector.
See Algorithm 4. This is again related to the “remotest set control” projection algorithm [Censor
and Zenios 1997, p. 80], but is applied in a component-wise manner.

In the bound-type direction-based variant DBbnd, the direction vote is settled by a simple count
of the number of votes for an increase or a decrease in the component. The size of the movement
in each component depends on the types of constraints that include that variable. Movements in
the selected direction suggested by equality constraints are totalled; for inequalities only the
largest movement in the selected direction is added because the largest movement will satisfy all
of the inequalities. The resulting total is then reduced to an average. See Algorithm 5. n=+

j and
n=−

j represent the number of votes for the positive and negative directions for the jth variable
recorded by violated equality constraints and max+

j and max−j represent the largest positive and
negative feasibility vector components for the jth variable in violated inequality constraints.

While all of the constraint consensus methods deal well with constraint scaling, they are
vulnerable to discrepancies in variable scaling. The effect of uneven variable scaling could be
more pronounced in the DBmax and DBbnd variants, so care should be taken with variable
scaling prior to application of these heuristics.

Inputs:
• a set of I constraints c1…cI, in J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• a maximum number of iterations µ
• mode (near, far)

1. Repeat µ times:
1.1. NINF = 0; k = 0; for all j in x: nj = 0, sj = 0, zj = 0.
1.2. If mode = near then fd = ∞, else fd = 0.
1.3. For each constraint ci:

1.3.1. If ci is violated then:
1.3.1.1. Calculate feasibility vector fvi and feasibility distance ||fvi||.
1.3.1.2. If ||fvi|| > α then:

1.3.1.2.1. NINF = NINF + 1
1.3.1.2.2. For each variable j in ci:
• sj = sj + fvij ; nj = nj + 1
• If ((mode = near) and (||fvi|| < fd)) or ((mode = far) and (||fvi|| > fd)) then:

o k = i
o z ← fvi

1.4. If NINF = 0, exit successfully with final point x.
1.5. For each variable xj:

1.5.1. If xj appears in ck then tj = zj.
1.5.2. Else if nj≠0 then tj = sj / nj, else tj = 0.

1.6. If ||t|| < β, then exit unsuccessfully.
1.7. x ← x + t
1.8. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Algorithm 2: Feasibility-Distance Based Constraint Consensus (FDnear, FDfar).
 6

3. An Improved Initial Point Placement Heuristic
There are two main problems with the standard heuristic for initial point placement (as described
near the end of the Introduction). First, it sets many variables to zero, which can cause numerical
errors, e.g. for a constraint that includes a term such as 1/x. Second, since many variables are
given similar bounds by the modeller (e.g. unbounded or singly bounded), many of the variables
are also given the same initial values. This can also cause numerical errors, e.g. in constraints
that include terms like 1/(x1-x2).

 7

For these reasons, we propose a simple modification to this heuristic that superimposes a random
perturbation ∆ on the initial values proposed above. The revised heuristic operates as follows:

• if the variable is doubly bounded: set at midpoint + ∆,
• if the variable has a single lower bound: set at bound + ∆,
• if the variable has a single upper bound: set at bound − ∆,
• if the variable is unbounded in both directions: set at zero + ∆,

where ∆ is a uniformly distributed random number between 0 and 1 (or suitably smaller if the
bounds on the variable define a smaller range).

Note that we use a positive perturbation when the variable is unbounded in both directions. This
avoids numerical problems caused by some functions (e.g. square root) when the variable really
should have been specified as nonnegative, or even as positive (e.g. the derivative of the square
root blows up at zero).

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations µ

1. Repeat µ times:
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0.

1.2. For each constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and feasibility distance ||fvi||.
1.2.1.2. If ||fvi|| > α then

1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:

• If fvij > 0 then s+
j = s+

j + fvij and n+
j ← n+

j + 1
• If fvij < 0 then s−j = s−j + fvij and n−j ← n−j + 1

1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If n+
j = n−j and (n+

j + n−j) > 0 then tj = (s+
j + s−j) / (n+

j + n−j)
1.4.2. Elseif n+

j > n−j then tj = s+
j / n+

j
1.4.3. Else tj = s−j/ n−j

1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Algorithm 3: Average Direction-Based (DBavg) Constraint Consensus

 8

This revision avoids many of the numerical problems associated with the original heuristic while
retaining its main features. As shown later, it provides a useful initial point for the solver more
often than the original version.

4. Experimental Setup
The goal of the experiments is to show that the right combination of the new initial point
placement and constraint consensus algorithms improves the success of standard NLP solvers in
reaching feasibility, both when provided with an initial point by the modeller and when no such
initial point is given. When an initial point is provided, we first run a constraint consensus
algorithm to find an improved point, and then pass this final point to the solver. When no initial
point is provided, we first apply the new randomized standard initial point placement heuristic,
then run a constraint consensus algorithm to improve the point, and then pass this final point to
the solver. We also examine the effectiveness of the new initial point placement heuristic used
alone.

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations µ

1. Repeat µ times:
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0.

1.2. For each constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and feasibility distance ||fvi||.
1.2.1.2. If ||fvi|| > α then

1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:

• If fvij > 0 then
o n+

j ← n+
j + 1

o If fvij > s+
j then s+

j ←fvij
• Else if fvij < 0

o n−j ← n−j + 1
o If fvij < s−j then s−j ←fvij

1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If n+
j = n−j then tj = (s+

j + s−j) / 2
1.4.2. Elseif n+

j > n−j then tj = s+
j

1.4.3. Else tj = s−j
1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Algorithm 4: Maximum Direction-Based (DBmax) Constraint Consensus

 9

The main performance metric is the fraction of models for which a given NLP solver is able to
reach feasibility. As shown later, the methods developed in this paper increase the success
fraction greatly. We also look at the effort required by each solver to reach feasibility (generally
the number of iterations or number of function and gradient evaluations) with and without first

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations µ

1. Repeat µ times:
1.1. NINF = 0; for all j: s+

j =0, s−j =0, n+
j =0, n−j =0, n=+

j =0, n=−
j =0, max+

j =0, max−j =0.
1.2. For each constraint ci:

1.2.1. If ci is violated then:
1.2.1.1.Calculate feasibility vector fvi and feasibility distance ||fvi||.
1.2.1.2.If ||fvi|| > α then

1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:
• If fvij > 0 then

o n+
j ← n+

j +1
o If cj is an equality constraint then s+

j ← s+
j+fvij and n=+

j ← n=+
j+1

o Else if fvij > max+
j then max+

j ←fvij
• If fvij < 0 then

o n−j ← n−j +1
o If cj is an equality constraint then s−j ← s−j+fvij and n=−

j ← n=−
j+1

o Else if fvij < max−j then max−j←fvij
1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If max+
j ≠ 0 then

1.4.1.1. s+
j ← s+

j + max+
j

1.4.1.2. n=+
j ← n=+

j+1
1.4.2. If max−j ≠ 0 then

1.4.2.1. s−j ← s−j + max−j
1.4.2.2. n=−

j ← n=−
j + 1

1.4.3. If n+
j = n−j then

1.4.3.1. tj = (s+
j + s−j)/(n=+

j + n=−
j)

1.4.4. Else if n+
j > n−j then tj = s+

j/n=+
j

1.4.5. Else tj = s−j/n=−
j

1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Algorithm 5: Direction-Based and Bound-Based (DBbnd) Constraint Consensus

 10

applying the new heuristics. The effort associated with the heuristics themselves is generally
minimal.

4.1 Test Models
We used 231 models from the CUTE suite of test models [Bongartz et al 1995]. The selection
criteria were: (i) each model has at least one nonlinear constraint, and (ii) each model has fewer
than 300 variables and fewer than 300 constraints. The second criterion was necessitated by our
use of limited-size editions of some of the nonlinear solvers. Summary statistics for the 231
models are given in Table 1. The original objective function is replaced by a dummy objective
function (maximize f(x) = 0) so that the solver halts at the first feasible solution. This choice of
objective function may have some effect on solvers that work towards feasibility and optimality
simultaneously.

The CUTE models are specified in the AMPL modelling language [Fourer et al 2003]. AMPL
has a number of presolving options that can simplify the model prior to submission to a solver,
and thereby also affect the initial point sent to the solver. To avoid confounding effects, the
AMPL presolver is turned off in all experiments. If the user does not provide an initial value for
a variable, then AMPL tentatively sets its value to zero. Of course the solver itself is free to reset
any initial point that it is given, prior to launching its main solution algorithm.

 average minimum maximum
number of variables 24.1 2 300
 singly bounded 2.5 0 100
 doubly bounded 7.4 0 202
 Fixed 0.2 0 12
 Free 14.0 0 288
number of constraints 24.2 1 256
 linear equalities 2.4 0 60
 nonlinear equalities 10.7 0 150
 linear inequalities 3.5 0 128
 nonlinear inequalities 7.6 0 200
nonzeroes in Jacobian 421.1 2 12797
nonzeroes in Hessian 177.2 1 6105

Table 1: Summary Statistics for Test Models.

Most of the models (199/231 or 86%) provide a suggested initial point, presumably selected by a
knowledgeable modeller as a good starting point. We compare solver success rate in reaching
feasibility when starting at the modeller-supplied initial point versus the solver success rate when
using our initial point placement and improvement algorithms instead. We wish to show that
these new algorithms can provide performance equal to that of a knowledgeable modeller in
selecting initial points from which to launch nonlinear solvers.

4.2 Initial Point Placement Heuristics
An initial point placement heuristic must be applied when no initial point is provided by the
modeller, or when the initial point that is provided is not complete in all dimensions. We
consider the following initial point placement methods:

 11

• Random placement of initial points within the variable bounds.
• The origin (all variables set at 0.0).
• The standard heuristic (see latter part of Section 1).
• The new randomized standard heuristic (see Section 3).
• The CUTE-supplied initial point, with unspecified variables set to zero (labelled as

CUTE/origin point).

4.3 Constraint Consensus Parameters
The feasibility tolerance α is varied in the experiments assessing the new constraint consensus
variants (Section 5.1). Values of 100, 10, 1, and 0.1 are used to assess the effect of this
parameter. For the later experiments (Sections 5.2 and 5.3), α is fixed at 0.1. The rationale is
that it is worth spending a small amount of extra effort during the constraint consensus phase
(which is computationally cheap) to provide the nonlinear solver with a starting point that is
closer to feasibility. Initial experiments, not reported here, show that using the smaller α does
indeed boost the nonlinear solver success rate.

The movement tolerance β is fixed at 0.001 in all experiments. This is sufficient to detect poor
performance of the algorithm. The maximum number of iterations µ is fixed at 500 in all
experiments.

In the case of unsuccessful termination of the constraint consensus method (movement vector too
short or number of iterations exceeded), the current point at termination is passed to the
nonlinear solver on the grounds that it may still be an improvement over the initial point.

4.4 Nonlinear Solvers
Five well-known and well-respected commercially available nonlinear solvers were used in the
experiments:

• MINOS 5.5 [Murtagh and Saunders 1983] solves a sequence of subproblems using
linearized versions of the constraints and an objective function based on the Lagrangian.

• SNOPT 6.1-1 [Gill, Murray and Saunders 1997] uses a sequential quadratic programming
algorithm with quasi-Newton approximations to the Hessian of the Lagrangian.

• KNITRO 4.0 [Waltz and Nocedal 2003] solves a sequence of subproblems using a barrier
method and trust regions. It also uses Hessian information.

• DONLP2 [Spellucci 1998] uses a sequential quadratic programming method involving an
L1 merit function and a quasi-Newton approximation to the Hessian.

• CONOPT 3.13 [Drud 1994] uses an efficient Generalized Reduced Gradient algorithm.
Hessian information is used.

Default parameter settings were used for all solvers. The KNITRO iprint parameter was set to 1
to reduce the amount of printed output.

 12

5. Experimental Results

5.1 New Constraint Consensus Algorithms
We first assess the new constraint consensus algorithms prior to using them to provide points to
launch the nonlinear solvers. In these experiments we measure the fraction of models for which
each algorithm terminates successfully (i.e. does not terminate unsuccessfully due to a consensus
vector with length less than β or more than µ iterations). One hundred uniformly distributed
random initial points within the variable bounds are tested for each model; hence each success
fraction is measured over 23,100 trials.

The success rates are summarized in Table 2, along with the fraction of models that terminate
unsuccessfully due to numerical errors or excessive iterations (statistics on the relatively rare
termination due to the consensus vector being too short are not shown). The best numbers in
each column are shown in bold. Table 2 shows that all of the new variants have better success
rates than the basic method, with the exception of FDnear, which is uniformly worse. For
FDnear, the shorter steps lead to fewer cases of numerical error, but more steps in total, thus
more cases in which the iteration limit is reached. The DBmax method dominates the other
methods in terms of success rate. As expected, the success fraction drops as α decreases,
generally because more solutions exceed the iterations limit.

 Success Numerical Error Too Many Iterations
α 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1

Basic 0.551 0.531 0.516 0.444 0.230 0.226 0.212 0.205 0.218 0.241 0.268 0.335
DBmax 0.578 0.559 0.535 0.477 0.240 0.236 0.224 0.221 0.183 0.205 0.242 0.301
DBavg 0.558 0.539 0.519 0.460 0.231 0.227 0.214 0.209 0.211 0.234 0.267 0.330
DBbnd 0.558 0.539 0.521 0.461 0.232 0.228 0.214 0.206 0.209 0.233 0.265 0.330
FDnear 0.520 0.504 0.486 0.418 0.220 0.215 0.202 0.203 0.260 0.281 0.311 0.379
FDfar 0.571 0.551 0.531 0.466 0.239 0.236 0.222 0.220 0.189 0.213 0.247 0.314

Table 2: Exit Status for the Constraint Consensus Variants (in Fraction of Models Tested).

Table 4 and Table 5 examine the effort required for the various algorithms to reach feasibility at
different values of α. For a fair comparison, we examine effort on only the subset of the models
for which every algorithm terminated successfully. Table 3 shows the fraction of the models in
this subset at each value of α.

α 100 10 1 0.1
Fraction of Models 0.504 0.483 0.466 0.397

Table 3: Fraction of Models for Which All Constraint Consensus Algorithms Terminated Successfully.

Table 4 shows the effort required at various values of α, in terms of the average number of
constraint consensus iterations required over the subset of models. The best results in each
column are shown in bold. Both the DBmax and the FDfar algorithms require noticeably fewer
iterations than the other methods to reach feasibility across the subset of models while FDnear
always requires the most. Note that the number of iterations generally increases between α=100
and α=0.1 because it takes longer to get closer to feasibility. However there are fluctuations due
to the differing success fractions (shown in Table 3).

 13

α 100 10 1 0.1
Basic 41.1 41.0 48.3 48.2
DBmax 32.4 31.8 37.1 38.8
DBavg 39.6 39.9 46.1 46.8
DBbnd 37.7 37.8 44.3 43.7
FDnear 51.6 52.3 61.7 63.4
FDfar 31.4 31.2 36.8 38.7

Table 4: Average Number of Constraint Consensus Iterations over Compared Subset.

Table 5 shows the effort in terms of the number of gradient evaluations for each constraint
consensus method over the compared subset of models. The best result in each column is shown
in bold. This is the total number of individual gradient evaluations (recall that gradients are
evaluated only for the violated constraints). The number of function evaluations is not shown,
but this is easily calculated because every function is evaluated at every iteration to determine its
current feasibility status.

α 100 10 1 0.1
Basic 713.9 589.6 687.5 558.9
DBmax 573.1 458.8 523.2 380.2
DBavg 662.6 547.0 623.3 509.4
DBbnd 657.6 532.7 617.2 482.3
FDnear 791.7 659.0 831.1 645.2
FDfar 595.2 472.2 538.3 461.5

Table 5: Average Number of Gradient Evaluations over Compared Subset.

5.2 Solver Success in Reaching Feasibility
Finding a feasible point involves the combination of (i) a given initial point or initial point
placement heuristic, (ii) a constraint consensus algorithm, and (iii) an NLP solver. Table 7
summarizes the solver success fraction for all 175 combinations studied here (5 initial point
placement alternatives × 7 constraint consensus alternatives × 5 NLP solvers). The best success
fraction in each column is shown in boldface; results within 0.01 of the best success fraction are
shown in bold italics. Note that one model corresponds to 1/231 ≈ 0.0043 of the total models, so
it takes about 2 models to make a difference of 0.01 in the success fraction results.

Table 8 measures the effort used by each solver for the various combinations of initial point
placement and constraint consensus alternatives. It shows the number of solver iterations for a
comparable subset of models. The comparable subset consists of all of the models for which a
given initial point placement and solver combination reaches feasibility for every constraint
consensus alternative. Table 9 shows the number of models that is included in each calculation.
As can be seen in Table 8, using any constraint consensus method reduces solver effort in all
cases, with just two exceptions (both of which are for algorithm combinations that are not
recommended, as shown later). In some combinations, using a constraint consensus method
reduces the number of solver iterations by more than half.

More specific analysis follows below.

 14

5.2.1 Initial Point Placement
The effect of the initial point placement method alone can be seen in Table 7 by looking at the
row labelled “none” in each block. With few exceptions, the solver success fraction increases in
the order shown in the table:

1. random initial point
2. origin initial point
3. standard heuristic initial point
4. randomized standard heuristic initial point
5. CUTE/origin initial point.

As expected, the CUTE/origin initial point normally provides the highest solver success fraction
when constraint consensus is omitted, but there are exceptions: the randomized standard heuristic
provides better results than the CUTE/origin initial point for SNOPT. It is especially interesting
to note the dramatic improvement in solver success fraction between the standard heuristic and
the randomized heuristic in all cases.

Note that the solver success fraction using only the randomized standard heuristic (without a
subsequent constraint consensus improvement) is close to the overall best success fraction for
DONLP2. This shows the impact that a good initial point placement heuristic can have.

5.2.2 Reaching Feasibility without a Nonlinear Solver
Some combinations of the initial point algorithm and a constraint consensus method are able to
achieve feasibility directly, eliminating the need to apply a nonlinear solver at all. Table 6
summarizes the fraction of the 231 models in which this happens. We consider a model to be
feasible if every constraint is satisfied or violated by no more than 0.000001, a tolerance
commonly used in solvers.

As shown in Table 6, applying any constraint consensus method greatly increases the number of
models for which a feasible point is found without applying a nonlinear solver.

 Initial Point Placement Method
CC Random Origin Standard Randomized Std CUTE/origin

none 0.026 0.216 0.212 0.065 0.156
Basic 0.108 0.286 0.281 0.152 0.247

DBmax 0.104 0.281 0.277 0.160 0.251
DBavg 0.108 0.281 0.277 0.152 0.251
DBbnd 0.108 0.281 0.277 0.160 0.251
FDnear 0.121 0.286 0.281 0.152 0.255
FDfar 0.100 0.290 0.286 0.152 0.247

Table 6: Fraction of Models Feasible Before an NLP Solver is Applied.

It is also interesting to note that the simpler initial point placement heuristics (origin and standard
heuristic) more often result in feasible points, finding them even more often than the relatively
good CUTE/origin point. This likely reflects the fact that the origin itself is more frequently a
feasible point in this set of test problems. The randomized standard heuristic is less successful in

 15

choosing a feasible point by itself or in combination with a constraint consensus method, but still
provides better launch points for the NLP solver, as shown in Table 7.

CC MINOS SNOPT KNITRO CONOPT DONLP2
Random Initial Point

none 0.364 0.420 0.714 0.580 0.550
Basic 0.541 0.602 0.745 0.654 0.584
DBmax 0.567 0.602 0.753 0.675 0.580
DBavg 0.554 0.593 0.771 0.675 0.567
DBbnd 0.558 0.606 0.749 0.675 0.567
FDnear 0.537 0.576 0.749 0.675 0.563
FDfar 0.541 0.615 0.766 0.662 0.576

Origin Initial Point
none 0.680 0.671 0.749 0.593 0.675
Basic 0.684 0.688 0.775 0.649 0.667
DBmax 0.688 0.688 0.775 0.649 0.680
DBavg 0.697 0.693 0.771 0.662 0.684
DBbnd 0.693 0.684 0.775 0.649 0.675
FDnear 0.697 0.688 0.766 0.649 0.684
FDfar 0.688 0.680 0.766 0.654 0.671

Standard Heuristic Initial Point
none 0.688 0.671 0.749 0.602 0.675
Basic 0.710 0.706 0.766 0.675 0.680
DBmax 0.719 0.706 0.762 0.671 0.688
DBavg 0.732 0.706 0.758 0.697 0.697
DBbnd 0.727 0.701 0.762 0.675 0.675
FDnear 0.719 0.706 0.758 0.671 0.688
FDfar 0.714 0.697 0.762 0.680 0.680

Randomized Standard Heuristic Initial Point
none 0.792 0.896 0.900 0.844 0.874
Basic 0.879 0.922 0.909 0.887 0.870
DBmax 0.874 0.922 0.905 0.892 0.874
DBavg 0.883 0.913 0.905 0.900 0.870
DBbnd 0.892 0.909 0.909 0.892 0.883
FDnear 0.883 0.905 0.905 0.879 0.874
FDfar 0.883 0.922 0.913 0.896 0.874

CUTE/Origin Initial Point
none 0.857 0.887 0.931 0.861 0.879
Basic 0.874 0.892 0.913 0.892 0.874
DBmax 0.896 0.892 0.918 0.896 0.883
DBavg 0.887 0.896 0.918 0.892 0.883
DBbnd 0.892 0.892 0.918 0.892 0.879
FDnear 0.887 0.896 0.922 0.900 0.883
FDfar 0.879 0.887 0.918 0.887 0.883

Table 7: Solver Success Fractions.

 16

CC MINOS SNOPT KNITRO CONOPT DONLP2
Random Initial Point

none 55.2 61.5 24.4 28.4 33.1
Basic 33.2 21.1 10.4 15.0 17.4
DBmax 30.2 18.2 13.3 14.8 16.7
DBavg 30.8 18.2 11.2 15.8 17.6
DBbnd 32.9 24.1 13.0 14.8 16.9
FDnear 24.9 29.7 10.9 15.6 18.3
FDfar 32.6 21.2 12.6 15.5 16.5

Origin Initial Point

none 33.5 28.3 17.9 11.1 7.4
Basic 31.9 25.7 11.7 10.1 5.6
DBmax 30.6 26.6 11.9 10.0 5.9
DBavg 31.0 26.4 11.3 10.1 5.5
DBbnd 31.2 26.0 12.3 10.0 5.6
FDnear 30.2 25.1 13.1 10.0 5.8
FDfar 31.3 28.4 14.3 10.2 6.2

Standard Heuristic Initial Point

none 35.7 24.0 17.7 12.1 6.6
Basic 20.0 16.9 14.2 9.7 4.6
DBmax 22.3 17.7 15.1 9.3 5.0
DBavg 23.3 18.2 13.7 9.4 4.9
DBbnd 20.9 22.3 14.4 9.5 5.1
FDnear 20.8 17.0 16.5 9.9 4.8
FDfar 22.0 17.9 16.7 9.7 5.1

Randomized Standard Heuristic Initial Point
none 38.6 26.4 15.0 17.4 21.1
Basic 19.0 17.9 14.3 11.0 8.8
DBmax 18.3 15.3 14.3 11.2 12.3
DBavg 19.1 18.3 16.9 11.3 9.0
DBbnd 19.0 19.0 13.6 11.4 9.7
FDnear 19.8 17.5 13.7 11.3 10.7
FDfar 20.5 19.2 11.6 10.8 9.4

CUTE/Origin Initial Point

none 25.2 20.7 17.1 12.8 8.5
Basic 14.1 11.8 12.9 9.0 4.2
DBmax 12.5 12.6 13.4 8.8 5.0
DBavg 14.4 14.9 14.0 9.2 4.0
DBbnd 13.9 12.6 14.5 9.4 5.6
FDnear 15.2 13.3 12.6 9.1 5.0
FDfar 14.0 11.5 11.4 9.1 5.0

Table 8: Solver Iterations over Compared Subsets.

5.2.3 When an Initial Point Is Provided
When an initial point is externally supplied by the modeller, the question is: how effective are
the various constraint consensus heuristics at improving solver success in reaching feasibility?

 17

We examine this question by using two sources of supplied initial points, and by looking at the
solver success rates both with and without applying the constraint consensus methods to the
supplied points.

Initial Point Heuristic MINOS SNOPT KNITRO CONOPT DONLP2
Random 80 90 148 121 112
Origin 153 154 170 133 147
Standard 152 153 176 134 145
Randomized Standard 180 200 201 188 190
CUTE/Origin 192 199 209 195 197

Table 9: Number of Models in Compared Subset.

We use two sources of supplied initial points to simulate the extremes of modeller skill in
choosing initial points:

• The initial points provided with the CUTE models. These are presumably good initial
points selected by the model donor and are taken as representative of the judgement of a
knowledgeable modeller. 33 of the 231 models (14%) do not include initial points; as
described in Section 4.2, unspecified variables are assigned a value of zero.

• Random initial points. These simulate the worst-case judgement of a novice or inept
modeller.

It would be best to try numerous random initial points for each model in the second case, e.g.
100. However this would necessitate (100 random initial points)×(231 models)×(6 heuristic
methods)×(5 nonlinear solvers) = 693,000 nonlinear solutions, which is clearly impractical.
Instead we have used a single random initial point, uniformly distributed within the variable
bounds, for each model-method-solver combination, for a total of 6,930 nonlinear solutions.

The results are summarized in Table 7 in the blocks for “Random Initial Point” and
“CUTE/Origin Initial Point”. The “none” row under “Random Initial Point” shows that the
unassisted solvers differ markedly in their native ability to achieve feasibility from a poorly
chosen initial point. KNITRO significantly outperforms the other solvers in this regard. When
given a good initial point (the CUTE/Origin point), all of the solvers perform quite well in
achieving feasibility without using a constraint consensus method, achieving success fractions
about equal to (or greater than) the fraction of models for which an initial point is provided in the
CUTE set. KNITRO again outperforms the other solvers.

Applying a constraint consensus algorithm to a poor (random) initial point prior to submission to
the nonlinear solver always improves the solver success rate dramatically. MINOS and SNOPT
show the biggest boosts in success rate when a constraint consensus algorithm is applied. Which
constraint consensus algorithm is applied can make a noticeable difference, depending on the
solver, or more accurately, the solver algorithm. As we will see throughout the results, the
results for KNITRO often differ significantly from those for the other solvers since it is the only
barrier method algorithm in the group.

Considering the four solvers MINOS, SNOPT, CONOPT and DONLP2, we see that the DBmax
algorithm very often gives a large improvement in solver success rate when applied to a poor

 18

(random) starting point. DBmax is always the best method to apply to a poor initial point, or
within about 0.01 of the best method. DBmax is also uniformly successful when applied to a
good (CUTE/origin) initial point, though the improvement is smaller (up to 0.039). DBavg,
DBbnd, and FDnear also perform well for a good initial point. Given that the quality of the
initial point is not known beforehand, we conclude that, for non-barrier-method solvers, the
DBmax constraint consensus algorithm should be used whenever an initial point is supplied by
the modeller. Given the good performance of DBmax as a stand-alone method (Table 2), this is
not surprising.

As shown in Table 8, applying the DBmax algorithm in either case (random initial point, or
CUTE/origin initial point) also always reduces the number of non-barrier-method solver
iterations in reaching feasibility. In fact using DBmax usually results in the smallest or close to
smallest number of solver iterations for the initial point and solver combination.

For barrier method solvers such as KNITRO, the conclusion is slightly different. This is because
barrier method algorithms perform poorly when points are placed directly on the limiting values
of constraints – exactly where the constraint consensus methods tend to put them. As Table 7
shows, for a poor (random) initial point, applying any constraint consensus method improves
barrier solver success, simply because it moves the point to within a reasonable range of
feasibility. However the improvement in solver success rate is relatively smaller than for the
other solvers, with a maximum improvement of 0.057 when DBavg is applied. When a
constraint consensus method is applied to a good (CUTE/origin) initial point, the barrier solver
success rates actually decline (maximum decline is 0.018, and 0.013 for DBavg), because more
points are moved directly onto constraint boundaries. Results are similar when DBmax and
FDfar are used with good initial points.

When the quality of the supplied point is not known in advance, we conclude that, for barrier-
method solvers, it is best to apply the DBavg constraint consensus algorithm. However, when a
trusted initial point is used (e.g. the result of a previous solution of the same model under slightly
different conditions), then it is best to omit the use of constraint consensus at all.

As shown in Table 8, applying the DBavg method when an initial point is supplied reduces the
number of solver iterations for barrier solvers. The reduction is quite marked in the case of a
poorly chosen (random) initial point.

5.2.4 When an Initial Point Is Not Provided
When the modeller does not provide an initial point, one must be found algorithmically. A
suitable combination of an initial point placement method and a constraint consensus algorithm
can yield points from which the NLP solver is able to achieve feasibility reliably and with less
effort. The solver success results collected in Table 7 under the blocks labelled “Origin Initial
Point”, “Standard Heuristic Initial Point”, and “Randomized Standard Heuristic Initial Point”
cover the various combinations of initial point placement algorithms and constraint consensus
alternatives.

As Table 7 shows, the best solver success fractions in the three blocks mentioned above are
always achieved using a combination of the randomized standard initial point placement

 19

heuristic and a constraint consensus method. Which constraint consensus algorithm is best to
use varies slightly by solver, however it is worth noting that the FDfar algorithm is always the
best or within 0.01 of best success fraction for all of the solvers. Results for the DBmax variant
are not much worse. Again this is not surprising since FDfar and DBmax give the best results
when used as stand-alone algorithms (Table 2).

It is especially interesting to compare the results for the “Randomized Standard Heuristic Initial
Point” with FDfar constraint consensus and the “CUTE/Origin Initial Point” with no constraint
consensus in Table 7, since these are the best results obtained algorithmically and the best results
obtained using modeller-supplied initial points, respectively. For all of the non-barrier-method
solvers, the algorithmically generated points provide solver success rates that are better (MINOS,
SNOPT, CONOPT), or insignificantly worse (DONLP2) than the success rates obtained from the
modeller-supplied CUTE/origin initial points. This means that, for non-barrier-method solvers,
algorithmic methods eliminate the need for expert modeller judgement as to where to place the
initial point. This greatly improves the chances of successfully finding a feasible point for
modellers of all skill levels.

For the KNITRO barrier method solver, the best solver success fraction is obtained when the
CUTE/Origin initial point is used directly, without first applying a constraint consensus method.
The best algorithmic method provides a solver success fraction that is 0.018 lower. Still, when
an initial point is not provided by the modeller, using the randomized standard heuristic initial
point and any of the constraint consensus algorithms is the best thing to do, providing a solver
success rate that is comparable to the best obtained when using a high quality modeller-supplied
initial point.

The general conclusion is that when an initial point is not provided by the modeller, the best
recourse is the randomized initial point placement heuristic followed by the FDfar algorithm, for
all solvers, both barrier and non-barrier type. As shown in Table 8, this also reduces the number
of solver iterations significantly.

5.2.5 Constraint Consensus Special Cases: Feasibility and Numerical Error
There are two special cases of constraint consensus output: (i) the output point is feasible within
the NLP solver tolerances (as opposed to the looser constraint consensus tolerances), and (ii) the
output point has a numerical error.

As previously shown in Table 6, every combination of an initial point placement algorithm and a
constraint consensus method produces points that are immediately feasible for some models. We
duplicated all of our experiments with these models removed, leaving a subset of “harder”
models. While the success fractions are lower than those in Table 7 (as expected), the pattern of
the results is virtually identical, hence these results are not given in detail.

The reduction in the success fractions when the trivial models are removed ranges from 0.013 to
0.021 for the CUTE/origin initial point placement and from 0.004 to 0.008 for the randomized
standard initial point placement heuristic. The smaller reductions in success fraction for the
randomized standard initial point placement heuristic show that this fully algorithmic method is
more robust for this harder subset of the problems.

 20

We also studied the success rate when a solver is started from the point produced when the
constraint consensus step terminates without being able to recover from a numerical error in a
constraint evaluation. First, note that this outcome is quite rare for all of the initial point
placement algorithms other than the random initial point. Since random initial point placement
is not recommended, this will not be a significant problem in practice.

We used the faulty points that constraint consensus generated when starting from random initial
points to test the ability of the solvers to reach feasibility under these difficult conditions. There
is quite a variation. The rank ordering from best to worst is KNITRO (52-56% success on these
models, depending on the constraint consensus variant), DONLP2 (30-34%), CONOPT (22-
28%), SNOPT (9-10%) and MINOS (0%). More significantly, we observed that in virtually all
cases, if the solver fails to reach feasibility from the faulty point output by the constraint
consensus method, it also fails to reach feasibility from the original initial point (i.e. when the
constraint consensus step is omitted). The constraint consensus step does no harm under these
conditions.

5.2.6 Relative Time Cost of Constraint Consensus Algorithms
We have generally assumed that the amount of time taken by the simple constraint consensus
algorithms is much smaller than the time taken by the solvers. We verified this by running the
experiments with software timing probes in place. Over all models (including those in which the
point produced by constraint consensus is already feasible) and all solvers, the ratio of average
solver time to average constraint consensus time varies from 9.1 to 2209.8.

For the two cases of most interest (CUTE/origin initial point and randomized standard initial
point heuristic), the minimum ratio of the average solver time to the average constraint
consensus time is 15.7, and the maximum ratio is 906.2.

The constraint consensus methods consume very little time compared to the solvers.

5.2.7 Default vs. Optional Application of Constraint Consensus Algorithms
It is a good idea to use a constraint consensus algorithm if it almost always produces a better
result and only rarely degrades performance. Since the constraint consensus algorithms run
quickly, the most important measure of performance is their impact on solver success in reaching
feasibility. The average statistics on solver success in Table 7 mask the fact that applying a
constraint consensus algorithm actually prevents the solver from reaching feasibility for some
models. We examine this phenomenon in Table 10. For brevity, the table includes results only
for those combinations of initial point placement heuristic and constraint consensus algorithm
that have been recommended above.

Each cell in Table 10 includes 3 numbers, of the form a (b-c). b is the number of models for
which the solver succeeds with the constraint consensus method in place, but fails when it is not
used. c is the opposite: the number of models for which the solver fails when constraint
consensus is used, but succeeds without it. a is the difference between b and c. For the rest of
the models in the test set, the solver succeeds both with and without constraint consensus, or fails
both with and without constraint consensus. As the table shows, while constraint consensus does
occasionally prevent the solver from reaching feasibility, it is far more likely to help it find a

 21

feasible point when it could not otherwise do so. As usual, results are slightly different for the
barrier method solver KNITRO. For KNITRO, applying the DBavg constraint consensus
method from the CUTE/origin initial point actually has a negative net effect.

initial pt CC MINOS SNOPT KNITRO CONOPT DONLP2
random DBmax 47 (47-0) 42 (43-1) 22 (27-5) 7 (17-10)
random DBavg 13 (22-9)

randomized std FDfar 21(23-2) 6 (11-5) 3 (7-4) 12 (14-2) 0 (7-7)
CUTE/Origin DBmax 9 (11-2) 1 (5-4) 8 (9-1) 1 (6-5)
CUTE/Origin DBavg -3 (2-5)

Table 10: Net Success Using Constraint Consensus.

These results show that the constraint consensus method should be applied by default in most
cases. Over the entire set of 231 models it is relatively rare to find cases in which the solver
would succeed when constraint consensus is omitted, but fail when it is applied. The opposite
case is much more common, and hence the net effect of including constraint consensus is quite
positive.

6. Conclusions
The most important conclusion arising from this study is that a fully automated method can
provide initial points for nonlinear solvers that are as good as, and often better than, initial points
provided by a knowledgeable modeller, in terms of solver success in finding a feasible point. In
addition, solver effort in reaching feasibility is reduced.

A second general conclusion is that it is always better to apply a constraint consensus algorithm
even when an initial point is provided, prior to passing the point to the nonlinear solver. In the
case of novice modellers, the probability of solver success is greatly increased. In the case of
expert modellers who provide a good initial point, solver computational effort is reduced. The
exception is the use of a trusted initial point with a barrier solver, in which case it is better to
forego the constraint consensus algorithm.

Several more specific conclusions can be drawn from the experimental results:

• Some of the new constraint consensus variants significantly outperform the original basic
algorithm in terms of successful termination within an estimated distance α of every
constraint. The best of the new methods in this regard is DBmax, closely followed by
FDfar. The common element here is a bias towards moving to satisfy the largest
constraint violation.

• Considered in isolation, the randomized standard heuristic is the best of the initial point

placement heuristics. It provides a significant improvement in solver success rates
compared to the original non-randomized version.

• With few exceptions, applying a constraint consensus method reduces solver effort in

reaching feasibility. It also increases the number of models for which a feasible point is
found directly, eliminating the need to use the solver at all.

 22

• When an initial point is provided by the modeller, applying a constraint consensus

method always increases the solver success fraction and reduces the solver effort.
DBmax is the best constraint consensus variant to use for the non-barrier solvers. Results
are more mixed for the barrier solvers; DBavg is recommended in this case since it
improves solver success significantly for poorly chosen initial points while reducing
solver effort. For trusted initial points, it is best to avoid the use of constraint consensus
at all in the case of barrier solvers.

• When an initial point is not provided by the modeller, very good success fractions are

given by combining the randomized standard initial point placement heuristic and the
FDfar constraint consensus variant. Success fractions for this combination are close to
and in some cases better than the success fractions provided by the very good modeller-
provided starting points in the CUTE set. Solver iterations are also reduced.

As noted above, results differ for barrier and non-barrier solvers. This is likely because the
constraint consensus methods tend to find starting points at which many of the constraints are
tight, which causes difficulties for barrier-method solvers. It should be straightforward to
include a post-processing step to move slightly away from the boundaries prior to forwarding the
output point to a barrier solver.

The contributions of this paper include the development of several new and better variants of the
basic constraint consensus algorithm, the development of an improved initial point placement
heuristic, and the demonstration that a combination of these elements can provide high quality
initial points for nonlinear solvers. We have also shown that using a constraint consensus
algorithm is always a good idea for non-barrier solvers, even when an initial point is provided.

Numerous avenues of research on this topic remain, most notably further variations of the
constraint consensus algorithms that may provide better performance. For example, various
weightings of the two elements in the DBbnd algorithm (equality and inequality constraints)
should be examined. One suggestion is to weight the inequalities by their cardinality. An
exhaustive examination of the effect of the constraint consensus parameters (α,β,µ) should also
be undertaken. Preliminary investigations show that good results can sometimes be obtained
when the maximum number of steps is severely limited (e.g. µ=10). We also plan to examine in
some detail the few cases in which solvers succeed without using a constraint consensus
algorithm, but fail with it in place. Finally, it may be interesting to examine the properties of the
final points returned by the different methods: are some closer to optimality than others for
example?

Acknowledgements
Michael Saunders of Stanford University provided helpful comments on early drafts of this
paper, as did Richard Waltz of Northwestern University. The support of this research via a
Discovery Grant to John Chinneck from the Natural Sciences and Engineering Research Council
of Canada is gratefully acknowledged.

 23

References
Bongartz, I., Conn, A. R., Gould, N., and Toint, P.L. (1995). “CUTE: constrained and
unconstrained testing environment”, ACM Transactions on Mathematical Software 21, no. 1, pp.
123-160. See http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/cute/index.html for CUTE
models in AMPL format.

Y. Censor, D. Gordon, and R. Gordon. 2001. Component Averaging: An Efficient Iterative
Parallel Algorithm for Large and Sparse Unstructured Problems. Parallel Computing 27 777-
808.

Y. Censor and S.A. Zenios. 1997. Parallel Optimization: Theory, Algorithms, and
Applications. Oxford University Press, New York.

Chen, X.B. and Kostreva, M.M. (1999). “Global Convergence Analysis of Algorithms for
Finding Feasible Points in Norm-Relaxed MFD”, Journal of Optimization Theory and
Applications 100, no. 2, pp. 287-309.

Chinneck, J.W. (2003). “The Constraint Consensus Method for Finding Approximately Feasible
Points in Nonlinear Programs”, INFORMS Journal on Computing 16, no. 3, pp. 255-265.

Drud, A.S. (1994). “CONOPT -- A Large Scale GRG Code”, ORSA Journal on Computing 6, pp.
207-216.

Elwakeil, O.A. and Arora, J.S. (1995). “Methods for Finding Feasible Points in Constrained
Optimization”, AIAA Journal 33, pp. 1715-1719.

Fourer, R., Gay, David M., and Kernighan, B. (2003). AMPL: A Modeling Language for
Mathematical Programming, 2nd Edition, Thomson Brooks/Cole, Pacific Grove, CA, USA.

Gertz, M., Nocedal, J., and Sartenaer, A. (2003). "A Starting-Point Strategy for Nonlinear
Interior Methods," Report OTC 2003/4, Optimization Technology Center, Northwestern
University, Evanston, IL, USA , March.

Gill, P.E., Murray, W. and Saunders, M.A. (1997). “SNOPT: An SQP algorithm for large-scale
constrained optimization”, Report SOL 97-3, Systems Optimization Laboratory, Stanford
University. See http://www.sbsi-sol-optimize.com/.

Lasdon, Leon S. (1970). Optimization Theory for Large Systems, Macmillan Company, New
York.

Lawrence, C.T. and Tits, A.L. (2001). “A Computationally Efficient Feasible Sequential
Quadratic Programming Algorithm”, SIAM Journal on Optimization 11, no. 4, pp. 1092-1118.

Murtagh, B.A. and Saunders, M.A. (1983). “MINOS 5.4 User's Guide”, Report SOL 83-20R,
Systems Optimization Laboratory, Stanford University (revised February 1995). See
http://www.sbsi-sol-optimize.com/.

http://www.sbsi-sol-optimize.com/

 24

Rardin, R.L. (1998). Optimization in Operations Research, Prentice Hall, Upper Saddle
River, NJ, USA.

Spellucci, P. (1998). “An SQP method for general nonlinear programs using only equality
constrained subproblems”, Mathematical Programming 82, no. 3, pp. 413-448.

Waltz, R.A. and Nocedal, J. (2003). “KNITRO User's Manual”, Technical Report OTC 2003/05,
Optimization Technology Center, Northwestern University, Evanston, IL, USA, April. See
http://www.ziena.com/knitro.html.

Wright, S.J. (1997). Primal-Dual Interior Point Methods, Siam Press.

	Improving Solver Success in Reaching Feasibility for Sets of Nonlinear Constraints
	Abstract
	1. Introduction
	2. New Constraint Consensus Algorithms
	2.1 Feasibility-Distance Based Algorithms
	2.2 Direction-Based Algorithms

	3. An Improved Initial Point Placement Heuristic
	4. Experimental Setup
	4.1 Test Models
	4.2 Initial Point Placement Heuristics
	4.3 Constraint Consensus Parameters
	4.4 Nonlinear Solvers

	5. Experimental Results
	5.1 New Constraint Consensus Algorithms
	5.2 Solver Success in Reaching Feasibility
	5.2.1 Initial Point Placement
	5.2.2 Reaching Feasibility without a Nonlinear Solver
	5.2.3 When an Initial Point Is Provided
	5.2.4 When an Initial Point Is Not Provided
	5.2.5 Constraint Consensus Special Cases: Feasibility and Numerical Error
	5.2.6 Relative Time Cost of Constraint Consensus Algorithms
	5.2.7 Default vs. Optional Application of Constraint Consensus Algorithms

	6. Conclusions
	Acknowledgements

	References

