
Experiments in Using Google's Go

Language for Optimization

Research

John W. Chinneck

Systems and Computer Engineering

Carleton University, Ottawa, Canada

Motivation

 Challenges for optimization algorithms:
◦ Always: faster solutions for bigger problems

◦ New: massive scale up to handle big data

 Hardware has evolved:
◦ Multiple processors are everywhere

◦ Even phones have quad core processors!

◦ Recent purchase: 16-core machine for $2000

 Conclusion:
◦ New optimization algorithms must be parallel

◦ Must handle big data problems

◦ Must take advantage of parallel hardware

 2 Golang for Optimization

Language Selection Criteria
 Shortest distance between idea and implementation

◦ I’m an algorithms guy, not a programming specialist

◦ Easy to learn and program

◦ Parallelism built-in and easy to use

 Fast execution

◦ Needed for comparisons to commercial solvers

◦ Compiled language execution speed

 Nice to have:

◦ Multi-platform (Windows, linux, Apple)

◦ Fast compilation

◦ Integrated Development Environment (IDE)

◦ Low cost / free

◦ Active user community (especially optimizers)

Golang for Optimization 3

Go Language Design Criteria

 Language specification simple enough to

hold in a programmer's head.

 Built-in concurrency

 Others

◦ Automatic garbage collection

◦ Fast compilation and execution

◦ Simple system for dependencies

 I hate header files

Golang for Optimization 4

Helpful features in Go
 Simplicity

◦ No header files!

◦ Simple scoping. E.g. externally visible package-level variable: just
capitalize the first letter

◦ No type inheritance

◦ No method or operator overloading

◦ No circular dependencies among packages

◦ No pointer arithmetic

 Very strict compiler prevents common errors

◦ No mixed-type arithmetic: you must explicitly cast types.

 Enforced efficiency

◦ Unused variables are an error

 Enforced common format

◦ Just run gofmt: takes care of indenting etc. in a standard way

 Call C code directly

◦ Use cgo or gccgo

 Debugger

 Golang for Optimization 5

Example optimization application

 Goal: quickly find a feasible solution for a system of
linear equalities and inequalities

 Concurrent Constraint Consensus (CC) projection
◦ Very fast initial movement towards feasibility, but bogs

down later

 Main idea:
◦ Define an initial launch box for random sampling

◦ Repeat:
 Randomly select multiple CC start points by Latin Hypercube

sampling in the launch box

 Multiple parallel CC runs for limited number of iterations

 Update incumbent (point closest to feasibility)

 Reinitialize a smaller launch box centred around incumbent

 Semi-successful...

Golang for Optimization 6

Packages

Golang for Optimization 7

package solver
// Controls the solution process

import (
"fmt"
"lp"
"math"
"math/rand"
"sort"
"strconv"
"time"

)

// Package global variables
var PrintLevel int // controls the level of printing. Setting it equal to zero turns printing off
var FinalBox int // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type IMPACT struct {

Row int
Sum int

}

func Solve(AlphaIn float64, BetaIn float64, MaxItnsIn int, MaxSwarmPtsIn int, plinfyIn float64, ...
...

External Reference to a Package Variable:

solver.PrintLevel = 0 // PrintLevel = 0 turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

Language Elements

 Statements:

◦ Only one kind of loop: for

 Index over a range, or over the length of a vector

 Can act like a while loop

◦ If-then-else

◦ Select / Case

◦ Etc.

 General data structures

 Arrays and “slices” (vectors)

 Generally simple and intuitive

Golang for Optimization 8

Functions

Golang for Optimization 9

//===
// Given an input point at which some of the variables may violate their bounds, this
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func EnforceBounds(PtIn []float64) (PtOut []float64) {
PtOut = make([]float64, len(PtIn))
for j:=0; j<lp.NumCols; j++ {

if PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = lp.LP.Cols[j].BndLo
continue

}
if PtIn[j] > lp.LP.Cols[j].BndUp {

PtOut[j] = lp.LP.Cols[j].BndUp
continue

}
PtOut[j] = PtIn[j]

}
return

}

Concurrency

 Make any routine concurrent by the go keyword
◦ Spawns a new asynchronous thread

 Communication is via channels
◦ Channels have defined types
 Could be a structure holding many items

◦ Return results via channels

 Channels allow:
◦ Blocking to wait for something to be received

◦ Receive something from one of several channels

◦ Etc.

 There is also a sync package
◦ Mutex, lock, wait, etc.

Golang for Optimization 10

Concurrency example

Golang for Optimization 11

NumCPUs := runtime.NumCPU()
...
MaxPts := 2 * NumCPUs
...
chPoint := make(chan []float64)
...

for itn := 0; itn < MaxItns; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for i := 0; i < MaxPts; i++ {

go CC(Point[i], chPoint, i)
}

// Retrieve the CC output points
for i := 0; i < MaxPts; i++ {

Point[i] = <-chPoint
}

} // end of large iteration loop

Concurrency: observations

 Even identical processes may return

results in a different order than they were

instantiated!

◦ Interruptions from other processes, etc.

 Go takes care of everything

◦ You can have many simultaneous threads

Golang for Optimization 12

Packages

 Many built-in, see http://golang.org/pkg/

◦ E.g. sorting, database, etc.

 External projects:

◦ https://code.google.com/p/go-
wiki/wiki/Projects

◦ E.g. Mathematics, machine learning

◦ CVX (ported from the CVX python package)

◦ A particle swarm optimizer

◦ Linear algebra routines, e.g. BLAS

◦ Graph theory algorithms

Golang for Optimization 13

http://golang.org/pkg/
https://code.google.com/p/go-wiki/wiki/Projects
https://code.google.com/p/go-wiki/wiki/Projects
https://code.google.com/p/go-wiki/wiki/Projects

Learning Go is easy

 Start at the tour of Go:
http://tour.golang.org/#1

 Go documentation:
http://golang.org/doc/
includes video tours, docs, examples

 Online books:
http://www.golang-book.com/

 The Go playground:
http://play.golang.org/

 Go home:
http://golang.org/

 Searching online for Go information:
search on “golang”

Golang for Optimization 14

http://tour.golang.org/
http://golang.org/doc/
http://www.golang-book.com/
http://www.golang-book.com/
http://www.golang-book.com/
http://play.golang.org/
http://golang.org/

IDEs for Go

 See http://geekmonkey.org/articles/20-

comparison-of-ides-for-google-go

 I like Eclipse (called Goclipse):

https://code.google.com/p/goclipse/

Golang for Optimization 15

http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
https://code.google.com/p/goclipse/

Golang for Optimization 16

Things that tripped me up

 Copying a vector (called a slice in Go)

◦ copy(BestPt, CCPoint)

 Concurrency

◦ Concurrent processes usually return (or

write on the channel) in a different order than

they were launched

Golang for Optimization 17

Conclusions
 Easy to learn

◦ Mostly intuitive

◦ Good online learning, reference, and practice tools

 Concurrency easy to program

◦ Takes some practice if new to concurrency

 Very fast compilation, fast execution

 Multi-platform (Windows, linux, Apple)

 Good IDEs

 Free

 But relatively little supporting software for optimization (yet)

 Bottom line:

◦ Good language for general coding of parallel algorithms for optimization

 Supported by Google, so likely to be around for a while

 Potential alternative: Julia

Golang for Optimization 18

Julia

 Julia could be good alternative:
http://julialang.org/ or
http://istc-bigdata.org/index.php/open-big-
data-computing-with-julia/

 Fast

 Concurrency built-in
◦ More complicated to use?

 Larger optimization user community
◦ Built-in matrix routines (Matlab-like)

◦ Many optimization interfaces already:

◦ https://jump.readthedocs.org/en/release-
0.4/jump.html

Golang for Optimization 19

http://julialang.org/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
https://jump.readthedocs.org/en/release-0.4/jump.html
https://jump.readthedocs.org/en/release-0.4/jump.html
https://jump.readthedocs.org/en/release-0.4/jump.html

