New Parallel Programming Languages
for Optimization Research

John W. Chinneck, Stephane Ernst
Systems and Computer Engineering
Carleton University, Ottawa, Canada

Motivation

e Challenges for optimization algorithms:
o Always: faster solutions for bigger problems
> New: massive scale up to handle big data

e Hardware has evolved:

o Multiple processors are everywhere
> Even phones have quad core processors!
> Recent purchase: 16-core machine for $2000

e Conclusion:
> New optimization algorithms must be parallel
> Must handle big data problems
> Must take advantage of parallel hardware

Language Selection Criteria

e Shortest distance between idea and implementation
> I’'m an algorithms guy, not a programming specialist
> Easy to learn and program
o Parallelism (concurrency) built-in and easy to use
e Fast execution
> Needed for comparisons to commercial solvers
> Compiled language execution speed
e Nice to have:
° Multi-platform (Windows, linux, Apple)

(¢]

Fast compilation

(¢]

Integrated Development Environment (IDE)

(¢]

Low cost / free

(¢]

Active user community (especially optimizers)

Go Language: Design Criteria

* Language specification simple enough to
hold in a programmer's head.

e Built-in concurrency
e Others

> Automatic garbage collection
> Fast compilation and execution

> Simple system for dependencies
| hate header files

Helpful Features of Go

e Simplicity
> No header files!

> Simple scoping. E.g. externally visible package-level variable: just
capitalize the first letter

> No type inheritance

> No method or operator overloading

> No circular dependencies among packages

> No pointer arithmetic
e Very strict compiler prevents common errors

> No mixed-type arithmetic: you must explicitly cast types.
e Enforced efficiency

> Unused variables are an error
e Enforced common format

° Just run gofmt: takes care of indenting etc. in a standard way
e Call C code directly

> Use cgo or gccgo

e Debugger

Packages

package solver
// Controls the solution process

import (
"fmt"
“lp" These are the names of Go Packages, some

"math" e
math/range bUilt-in, some | created. Each can expose

"sort" H H
ver o« variables and routines.
"time"
)
// Package global variables
var PrintLevel 1int // controls the level of printing. Setting it equal to zero turns printing off
var FinalBox int // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type IMPACT struct {

Row int

Sum int

}

func Solve(Alphaln float64, Betaln float64, MaxItnsIn int, MaxSwarmPtsIn int, plinfyIn floaté4,

External Reference to a Package Variable:

solver.PrintlLevel = @ // PrintLevel = © turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

Language Elements

* Statements are minimal and simple:

> Only one kind of loop: for
Index over a range, or over the length of a vector
Can act like a while loop

o |f-then-else
o Select / Case
o Etc.

* General data structures
e Arrays and “slices” (vectors)
» Generally simple and intuitive

Functions

// Given an input point at which some of the variables may violate their bounds, this
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func EnforceBounds(PtIn []float64) (PtOut []floate4) {
PtOut = make([]float64, len(PtIn))
for j:=0; j<lp.NumCols; j++ {
if PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = 1p.LP.Cols[j].BndLo
continue
}
if PtIn[j] > 1lp.LP.Cols[j].BndUp {
PtOut[j] = 1lp.LP.Cols[j].BndUp
continue
}
PtOut[j] = PtIn[j]
}

return

Concurrency

e Make any routine concurrent by the go keyword
o Spawns a new asynchronous thread
e Communication via channels

o Channels have defined types
Could be a structure holding many items

o Return results via channels

e Channels allow:
> Blocking to wait for something to be received
> Receive something from one of several channels
> Etc.
* There is also a sync package
> Mutex, lock, wait, etc.

Concurrency example

NumCPUs := runtime.NumCPU()
MaxPts := 2 * NumCPUs

chPoint :

make(chan []float64)

for itn :

0; itn < MaxItns; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for i := 0; 1 < MaxPts; i++ {
go CC(Point[i], chPoint, i) Addlng the g0 keyword
before calling a routine
// Retrieve the CC output points
for i := 0; i < MaxPts; i++ { Spawns a concurrent

Point[i] = <-chPoint goroutine

}

}

} // end of large iteration loop

Concurrency:
hard lessons for a newbie

e Return order:

o Routines return results in a different order
than they were instantiated

° Interruptions from other processes, etc.
* Reads and writes to common memory:

> Unpredictable order of reads/writes

> Best to communicate solely via channels
where possible

Go Packages

e Many built-in, see
> E.g. sorting, database, etc.
* External projects:

o

> E.g. Mathematics, machine learning

o CVX (ported from the CVX python package)
° A particle swarm optimizer

o Linear algebra routines, e.g. BLAS

> Graph theory algorithms

http://golang.org/pkg/
https://code.google.com/p/go-wiki/wiki/Projects

Learning Go is easy

e Start at the tour of Go:

e Go documentation:

includes video tours, docs, examples
e Online books:

e The Go playground:
* Go home:

 Searching online for Go information:
search on “golang”

http://tour.golang.org/
http://golang.org/doc/
http://www.golang-book.com/
http://play.golang.org/
http://golang.org/

IDEs for Go

e See http://geekmonkey.org/articles/20-
comparison-of-ides-for-google-go

e | like Eclipse (called Goclipse):
https://code.google.com/p/goclipse/

Golang for Optimization 14

http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
https://code.google.com/p/goclipse/

File Edit Source Navigate Search Project Run Window Help

1237 // Status values: 9:

success), 1:(max iterations reached or failure), 2:(numerical problem
Loat64, MaxItnsIn int, MaxSwarmPtsIn int, plinfyIn

Loagt64, featolln

1239

1240 // Set up the swarm of points and related info

1241 MaxSwarmPts = MaxSwarmPtsIn

1242 Swarm = make([][]float64, MaxSwarmPts)

1243 for i := @; i < MaxSwarmPts; i++ {

1244 Swarm[i] = make([]float64, lp.NumCols)

1245

1246 SwarmMaxViol = make([]float64, MaxSwarmPts)

1247 SwarmSINF = make([]float64, MaxSwarmPts) // SINF at each of the swarm points

1243 SwarmSFD = make([]float64, MaxSwarmPts) // sum of the feasibility distances at each of the swarm points

1249 IncumbentPt = make([]float64, lp.NumCols)

1258 // IncumbentUp = make([]int, lp.NumCols)

1251 // IncumbentDown = make([]int, 1lp.NumCols)

1252 // IncumbentSame = make([]int, 1lp.NumCols)

1253 IncumbentSINF = math.MaxFloat64 // Initial huge value

1254 IncumbentSFD = math.MaxFloat64 // Initial huge value

1255 //IncumbentNINF = -1 // Initial impossible value

1256 IncumbentNINF = math.MaxInt32

1257

1258 // To keep statistics on updates to the incumbent

1259 NumUpdate = make([]int, 23)

1268 FracUpdate = make([]floaté4, 23)

1261

1262 // Set up box-related data structures

1263 BoxBndLo = make([]floaté64, lp.LP.NumCols) // Sample box lower bounds

1264 BoxBndUp = make([]floaté4, 1lp.LP.NumCols) // Sample box upper bounds

1265 -
< m »

Bl console 2

<terminated> CCLPv4.go [Go Application] CCLPv6.exe

i e e R o A AR SRR =k SR S G c e S Quick Access | 5| 8me (@&
[Project Explorer 52 = 8 G| CCLPv 6] solvergo 82 ¢ Ipread = 8 2= Outline 52 | A=y
BEg|le ¥ 1225 B © IMPACT struct -
£1 ccLpGo 1226 _ = UpdateIncumbentSFD(CCPoint, SFD, NINF, PointID) @ GetViolation(icon int, CCPoint [Jfloat64) (FV'
1227 // _ = UpdateIncumbents(CCPoint, SFD, SINF, NINF, PointID CCOriginall (Pointin [[float64, chPoint chan
1 CCLPv2 o% ig i . choi
L7 CCLPv3 1229 //chPoint <- CCPoint CCOriginal2(Pointln []float64, chPoint chan —,
&7 CCLPwv4 123@ chPoint <- BestPt CCImpact(Pointln [Ifloat64, chPoint chan [If
7 CCLPYS 1231 //wG.Done() CCSeqImpact(Pointln [Jfloats4, chPoint cha
i &9 CCLPvG 1232) return Solve(Alphaln float64, Betaln floatb4, Maxitn
1233 = = 5
&7 HelloWorld 1234 Testh_nt(Pomtln []f_Ioat64) (Status, NINF, Ni
1235// NewPoints1(Round int)
1236 // The overall solution control routine. Must be called first to give global variables their values 3 NewPoints2(Round int)

SwarmSearchd () (Status int)
SwarmSearch5() (Status int)
CheckForldenticalPts() (Someldentical bool)
IdenticalPts(Pointl [Ifloat64, Point2 [Ifloat6d
Updatelncumbent(Pointln [Jfloat64, SINFin f
Updatelncumbents(Pointln [Jfloat64, SFDin,
UpdatelncumbentSFDforNINF(PointIn [Jfloa’
UpdatelncumbentSFD(Pointln [Ifloat64, SFD
Project(Pt0 [Jfloat64, UpdateVector []float64]
SwarmProject(Pt0 [Ifloat64, UpdateVector [}
SwarmProjectl (Pt0 []float64, UpdateVector [
GetSFD(Pointln [Jfloat6d) (Status int, SFDout
GetMultiplier(X0, X1 [Ifloat64, CBIndex int, C
QuadApprox(Pt0, Pt1, Pt2 [Ifloat64, YO0, Y1, Y
AngleConCon(Conl, Con2 int) (Status int, A
AngleConVarb(Con, Varb int) (Status int, An
AngleFV(Conl int, Multl float64, Con2 int, C
UpdateSwarm(Ptln [Jfloat64, SFDin float64, P
UpdateSwarm1 (PtIn [Ifloat64, PtNum int, SF
GetCV(Pt [Ifloat64, Mode int) (Status int, CV
GetCV1(Pt [Jfloat6d) (Status int, CVO [Jfloatte
EnforceBounds(Ptln [Jfloat6d) (PtOut [Jfloatil |
SortBylmpact () ()

(s BySum) Len() int

m

i X% BEEE 2 E-riv=0

1.51 Total Time (s)
©.29200000000000004 Model Read-in Time (s)
1.218 Calculation Time (s)

No feasible point found. Incumbent SFD: 238.77760248176588 NINF: 1851
Smallest NINF: 2147483647

Total incumbent updates 51

Golang for Optimization

Go: Conclusions

* Easy to learn
> Mostly intuitive
> Good online learning, reference, and practice tools
» Concurrency easy to program
> Takes some practice if new to concurrency
* Very fast compilation, fast execution
o Multi-platform (Windows, linux, Apple)
* Good IDEs
* Free
o But relatively little supporting software for optimization (yet)
e Bottom line:

> Good language for general coding of parallel algorithms for optimization

Supported by Google, so likely to be around for a while

* Potential alternative: Julia

Julia Language: Design Criteria

 Targets high-performance numerical and
scientific computing
° Large mathematical function library
e Dynamic language
* Parallel and distributed computing built-in
 Call Fortran/C libraries directly

o Call other languages via libraries, e.g. Python

* Garbage collection

Helpful Features of Julia

e Matlab-like features:
° Interactive shell
° Define arrays simply
> Plotting (via libraries)
* Runs very quickly (C speed)
> Uses the LLVM JIT compiler

* Free and open source

Concurrent Programming in Julia

* Message-passing interface

e Remote reference

> Used by any process to refer to an object stored
on a particular process

e Remote call

> Request by one process to call a function on
another (or the same) process: spawns a
concurrent call

> GGenerates a remote reference
o Can wait and fetch result
° (@spawn macro makes this easier

Coroutines: produce and consume

» Coroutines (tasks) are like goroutines
> Lightweight interruptible threads

e Produce and consume data is like a
channel

Julia Resources

e Julia info:

or

e Many optimization interfaces already:

(0]

(o)

(0]

JuliaOpt umbrella group for Julia-based
optimization projects:

JuMP modelling language for math programs:

Connections to many solvers: COIN Cbc/CLP,
Cplex, Gurobi, IPOPT, Knitro, etc.

http://julialang.org/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://www.juliaopt.org/
https://jump.readthedocs.org/en/release-0.4/jump.html

Comparing Go and Julia

Writing concurrent -Easy for multi-core -Syntax more convoluted
programs - not obvious for distributed - built-in support for
systems distributed systems
Matlab-like features None -Arrays
-Interactive system
Syntax -Simple, unambiguous, clear A little more convoluted
-Simple dependency system
Optimization libraries, Small Extensive, links to solvers,
tools, community modelling language, active
community
Compilation speed Blazing. Like working with a Just-in-time compiler is
scripted language fast
Execution speed Like C or Fortran Like C or Fortran
Calling other - C via libraries -Directly call C, Fortran

languages -Call Python via libraries

Conclusions

e Go and Julia are good choices for
concurrent programming

* Go is simpler, but has less uptake in the
optimization community

e Julia has good support in the optimization
community

Looking for a good post-doc

 Topic: concurrent optimization

* About Ottawa, Canada:
> Canada’s capital
> Many fine museums, outdoor festivals
> Canoeing, kayaking, hiking, camping, skiing
> Close(ish) to Montreal
o English/French bilingual

o Must like snow

