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Motivation

·Challenges for optimization algorithms:
ƁAlways: faster solutions for bigger problems

ƁNew: massive scale up to handle big data

·Hardware has evolved:
ƁMultiple processors are everywhere

ƁEven phoneshave quad core processors!

ƁRecent purchase: 16-core machine for $2000

·Conclusion:
ƁNew optimization algorithms must be parallel

ƁMust handle big data problems

ƁMust take advantage of parallel hardware
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Language Selection Criteria
·Shortest distance between ideaand implementation

ƁIõm an algorithms guy, not a programming specialist

ƁEasy to learn and program

ƁParallelism (concurrency) built-in and easy to use

·Fast execution

ƁNeeded for comparisons to commercial solvers

ƁCompiledlanguage execution speed

·Nice to have:

ƁMulti-platform (Windows, linux,  Apple)

ƁFast compilation

ƁIntegrated Development Environment (IDE)

ƁLow cost / free

ƁActive user community (especially optimizers)
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Go Language: Design Criteria 

·Language specification simple enough to 

hold in a programmer's head.

·Built-in concurrency

·Others

ƁAutomatic garbage collection

ƁFast compilation and execution

ƁSimple system for dependencies 

¶I hate header files
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Helpful Features of Go
· Simplicity

ƁNo header files!

ƁSimple scoping. E.g. externally visible package-level variable: just 
capitalize the first letter

ƁNo type inheritance

ƁNo method or operator overloading

ƁNo circular dependencies among packages

ƁNo pointer arithmetic

· Very strict compiler prevents common errors

ƁNo mixed-type arithmetic: you must explicitly cast types.

· Enforced efficiency

ƁUnused variables are an error

· Enforced common format

ƁJust run gofmt: takes care of indenting etc. in a standard way

· Call C code directly

ƁUse cgoor gccgo

· Debugger
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Packages
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package solver
// Controls the solution process

import  (
"fmt"
"lp"
"math"
"math/rand"
"sort"
"strconv"
"time"

)

// Package global variables
var  PrintLevel int      // controls the level of printing. Setting it equal to zero turns printing off
var  FinalBox int        // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type  IMPACT struct  {

Row   int
Sum   int

}

func  Solve(AlphaIn float64 , BetaIn float64 , MaxItnsIn int , MaxSwarmPtsIn int , plinfyIn float64 , ...
...

External Reference to a Package Variable:

solver.PrintLevel = 0 // PrintLevel = 0 turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

These are the names of Go Packages, some 

built-in, some I created. Each can expose 

variables and routines.



Language Elements

·Statements are minimal and simple:

ƁOnly one kind of loop: for

¶Index over a range, or over the length of a vector

¶Can act like a while loop

ƁIf-then-else

ƁSelect / Case

ƁEtc.

·General data structures

·Arrays and “slices” (vectors)

·Generally simple and intuitive
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Functions
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//=======================================================================================
// Given an input point at which some of the variables may violate their bounds, this 
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func  EnforceBounds(PtIn [] float64 ) (PtOut [] float64 ) {
PtOut = make([] float64 , len (PtIn))
for  j:=0; j<lp.NumCols; j++ {

if  PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = lp.LP.Cols[j].BndLo
continue

}
if  PtIn[j] > lp.LP.Cols[j].BndUp {

PtOut[j] = lp.LP.Cols[j].BndUp
continue

}
PtOut[j] = PtIn[j]

}
return

}



Concurrency

·Make any routine concurrent by the gokeyword
ƁSpawns a new asynchronous thread

·Communication via channels
ƁChannels have defined types
¶Could be a structure holding many items

ƁReturn results via channels

·Channels allow:
ƁBlocking to wait for something to be received

ƁReceive something from one of several channels

ƁEtc.

·There is also a syncpackage
ƁMutex, lock, wait, etc.
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Concurrency example
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NumCPUs := runtime.NumCPU()
...
MaxPts := 2 * NumCPUs
...
chPoint := make( chan [] float64 )
...

for  itn := 0; itn < Max Itns ; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for  i := 0; i < MaxPts; i++ {

go CC( Point [i], chPoint, i)
}

// Retrieve the CC output points
for  i := 0; i < MaxPts; i++ {

Point [i] = <-chPoint
}

} // end of large iteration loop

Adding the gokeyword 

before calling a routine 

spawns a concurrent 

goroutine



Concurrency: 

hard lessons for a newbie

·Return order:

ƁRoutines return results in a different order 

than they were instantiated

ƁInterruptions from other processes, etc.

·Reads and writes to common memory:

ƁUnpredictable order of reads/writes

ƁBest to communicate solely via channels 

where possible
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Go Packages

·Many built-in, see http://golang.org/pkg/

ƁE.g. sorting, database, etc.

·External projects:

Ɓhttps://code.google.com/p/go-
wiki/wiki/Projects

ƁE.g. Mathematics, machine learning

ƁCVX (ported from the CVX python package)

ƁA particle swarm optimizer

ƁLinear algebra routines, e.g. BLAS

ƁGraph theory algorithms
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Learning Go is easy

·Start at the tour of Go:
http://tour.golang.org/#1

·Go documentation:
http://golang.org/doc/
includes video tours, docs, examples

·Online books:
http://www.golang-book.com/

·The Go playground:
http://play.golang.org/

·Go home:
http://golang.org/

·Searching online for Go information:
search on “golang”
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IDEs for Go

·See http://geekmonkey.org/articles/20-

comparison-of-ides-for-google-go

·I like Eclipse (called Goclipse):

https://code.google.com/p/goclipse/
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Go: Conclusions
· Easy to learn

ƁMostly intuitive

ƁGood online learning, reference, and practice tools

· Concurrency easy to program

ƁTakes some practice if new to concurrency

· Veryfast compilation, fast execution

· Multi-platform (Windows, linux, Apple)

· Good IDEs

· Free

· Butrelatively little supporting software for optimization (yet)

· Bottom line: 

ƁGood language for general coding of parallel algorithms for optimization

¶ Supported by Google, so likely to be around for a while

· Potential alternative: Julia
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Julia Language: Design Criteria

·Targets high-performance numerical and 

scientific computing

ƁLarge mathematical function library

·Dynamic language

·Parallel and distributed computing built-in

·Call Fortran/C libraries directly

ƁCall other languages via libraries, e.g. Python

·Garbage collection
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Helpful Features of Julia

·Matlab-like features:

ƁInteractive shell

ƁDefine arrays simply

ƁPlotting (via libraries)

·Runs very quickly (C speed)

ƁUses the LLVM JIT compiler

·Free and open source
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Concurrent Programming in Julia

·Message-passing interface

·Remote reference

ƁUsed by any process to refer to an object stored 
on a particular process

·Remote call

ƁRequest by one process to call a function on 
another (or the same) process: spawns a 
concurrent call

ƁGenerates a remote reference

ƁCan waitand fetchresult

Ɓ@spawn macro makes this easier
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Coroutines: produce and consume

·Coroutines(tasks) are like goroutines

ƁLightweight interruptible threads

·Produceand consumedata is like a 

channel
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Julia Resources

·Julia info:
http://julialang.org/or
http://istc-bigdata.org/index.php/open-big-
data-computing-with-julia/

·Many optimization interfaces already:
ƁJuliaOptumbrella group for Julia-based 

optimization projects: http://www.juliaopt.org/

ƁJuMPmodelling language for math programs: 
https://jump.readthedocs.org/en/release-
0.4/jump.html

ƁConnections to many solvers: COIN Cbc/CLP, 
Cplex, Gurobi, IPOPT, Knitro, etc.
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Comparing Go and Julia
Go Julia

Writing concurrent 

programs

-Easy for multi-core 

- not obvious for distributed 

systems

-Syntax more convoluted

- built-in support for 

distributed systems

Matlab-like features None -Arrays

-Interactive system

Syntax -Simple,unambiguous, clear

-Simple dependency system

A little more convoluted

Optimization libraries,

tools, community

Small Extensive,links to solvers, 

modelling language, active 

community

Compilation speed Blazing. Like working with a 

scripted language

Just-in-time compiler is 

fast

Execution speed Like C or Fortran Like C or Fortran

Calling other 

languages

- C via libraries -Directly call C,Fortran

-Call Python via libraries
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Conclusions

·Go and Julia are good choices for 

concurrent programming

·Go is simpler, but has less uptake in the 

optimization community

·Julia has good support in the optimization 

community
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Looking for a good post-doc

·Topic: concurrent optimization

·About Ottawa, Canada:

ƁCanada’s capital

ƁMany fine museums, outdoor festivals

ƁCanoeing, kayaking, hiking, camping, skiing

ƁClose(ish) to Montreal

ƁEnglish/French bilingual

·Must like snow
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