
New Parallel Programming Languages

for Optimization Research

John W. Chinneck, Stephane Ernst

Systems and Computer Engineering

Carleton University, Ottawa, Canada

Motivation

 Challenges for optimization algorithms:
◦ Always: faster solutions for bigger problems

◦ New: massive scale up to handle big data

 Hardware has evolved:
◦ Multiple processors are everywhere

◦ Even phones have quad core processors!

◦ Recent purchase: 16-core machine for $2000

 Conclusion:
◦ New optimization algorithms must be parallel

◦ Must handle big data problems

◦ Must take advantage of parallel hardware

2Golang for Optimization

Language Selection Criteria
 Shortest distance between idea and implementation

◦ I’m an algorithms guy, not a programming specialist

◦ Easy to learn and program

◦ Parallelism (concurrency) built-in and easy to use

 Fast execution

◦ Needed for comparisons to commercial solvers

◦ Compiled language execution speed

 Nice to have:

◦ Multi-platform (Windows, linux, Apple)

◦ Fast compilation

◦ Integrated Development Environment (IDE)

◦ Low cost / free

◦ Active user community (especially optimizers)

Golang for Optimization 3

Go Language: Design Criteria

 Language specification simple enough to

hold in a programmer's head.

 Built-in concurrency

 Others

◦ Automatic garbage collection

◦ Fast compilation and execution

◦ Simple system for dependencies

 I hate header files

Golang for Optimization 4

Helpful Features of Go
 Simplicity

◦ No header files!

◦ Simple scoping. E.g. externally visible package-level variable: just
capitalize the first letter

◦ No type inheritance

◦ No method or operator overloading

◦ No circular dependencies among packages

◦ No pointer arithmetic

 Very strict compiler prevents common errors

◦ No mixed-type arithmetic: you must explicitly cast types.

 Enforced efficiency

◦ Unused variables are an error

 Enforced common format

◦ Just run gofmt: takes care of indenting etc. in a standard way

 Call C code directly

◦ Use cgo or gccgo

 Debugger

Golang for Optimization 5

Packages

Golang for Optimization 6

package solver
// Controls the solution process

import (
"fmt"
"lp"
"math"
"math/rand"
"sort"
"strconv"
"time"

)

// Package global variables
var PrintLevel int // controls the level of printing. Setting it equal to zero turns printing off
var FinalBox int // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type IMPACT struct {

Row int
Sum int

}

func Solve(AlphaIn float64, BetaIn float64, MaxItnsIn int, MaxSwarmPtsIn int, plinfyIn float64, ...
...

External Reference to a Package Variable:

solver.PrintLevel = 0 // PrintLevel = 0 turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

These are the names of Go Packages, some

built-in, some I created. Each can expose

variables and routines.

Language Elements

 Statements are minimal and simple:

◦ Only one kind of loop: for

 Index over a range, or over the length of a vector

 Can act like a while loop

◦ If-then-else

◦ Select / Case

◦ Etc.

 General data structures

 Arrays and “slices” (vectors)

 Generally simple and intuitive

Golang for Optimization 7

Functions

Golang for Optimization 8

//===
// Given an input point at which some of the variables may violate their bounds, this
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func EnforceBounds(PtIn []float64) (PtOut []float64) {
PtOut = make([]float64, len(PtIn))
for j:=0; j<lp.NumCols; j++ {

if PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = lp.LP.Cols[j].BndLo
continue

}
if PtIn[j] > lp.LP.Cols[j].BndUp {

PtOut[j] = lp.LP.Cols[j].BndUp
continue

}
PtOut[j] = PtIn[j]

}
return

}

Concurrency

 Make any routine concurrent by the go keyword
◦ Spawns a new asynchronous thread

 Communication via channels
◦ Channels have defined types

 Could be a structure holding many items

◦ Return results via channels

 Channels allow:
◦ Blocking to wait for something to be received

◦ Receive something from one of several channels

◦ Etc.

 There is also a sync package
◦ Mutex, lock, wait, etc.

Golang for Optimization 9

Concurrency example

Golang for Optimization 10

NumCPUs := runtime.NumCPU()
...
MaxPts := 2 * NumCPUs
...
chPoint := make(chan []float64)
...

for itn := 0; itn < MaxItns; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for i := 0; i < MaxPts; i++ {

go CC(Point[i], chPoint, i)
}

// Retrieve the CC output points
for i := 0; i < MaxPts; i++ {

Point[i] = <-chPoint
}

} // end of large iteration loop

Adding the go keyword

before calling a routine

spawns a concurrent

goroutine

Concurrency:

hard lessons for a newbie

 Return order:

◦ Routines return results in a different order

than they were instantiated

◦ Interruptions from other processes, etc.

 Reads and writes to common memory:

◦ Unpredictable order of reads/writes

◦ Best to communicate solely via channels

where possible

Golang for Optimization 11

Go Packages

 Many built-in, see http://golang.org/pkg/

◦ E.g. sorting, database, etc.

 External projects:

◦ https://code.google.com/p/go-
wiki/wiki/Projects

◦ E.g. Mathematics, machine learning

◦ CVX (ported from the CVX python package)

◦ A particle swarm optimizer

◦ Linear algebra routines, e.g. BLAS

◦ Graph theory algorithms

Golang for Optimization 12

http://golang.org/pkg/
https://code.google.com/p/go-wiki/wiki/Projects

Learning Go is easy

 Start at the tour of Go:
http://tour.golang.org/#1

 Go documentation:
http://golang.org/doc/
includes video tours, docs, examples

 Online books:
http://www.golang-book.com/

 The Go playground:
http://play.golang.org/

 Go home:
http://golang.org/

 Searching online for Go information:
search on “golang”

Golang for Optimization 13

http://tour.golang.org/
http://golang.org/doc/
http://www.golang-book.com/
http://play.golang.org/
http://golang.org/

IDEs for Go

 See http://geekmonkey.org/articles/20-

comparison-of-ides-for-google-go

 I like Eclipse (called Goclipse):

https://code.google.com/p/goclipse/

Golang for Optimization 14

http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
https://code.google.com/p/goclipse/

Golang for Optimization 15

Go: Conclusions
 Easy to learn

◦ Mostly intuitive

◦ Good online learning, reference, and practice tools

 Concurrency easy to program

◦ Takes some practice if new to concurrency

 Very fast compilation, fast execution

 Multi-platform (Windows, linux, Apple)

 Good IDEs

 Free

 But relatively little supporting software for optimization (yet)

 Bottom line:

◦ Good language for general coding of parallel algorithms for optimization

 Supported by Google, so likely to be around for a while

 Potential alternative: Julia

Golang for Optimization 16

Julia Language: Design Criteria

 Targets high-performance numerical and

scientific computing

◦ Large mathematical function library

 Dynamic language

 Parallel and distributed computing built-in

 Call Fortran/C libraries directly

◦ Call other languages via libraries, e.g. Python

 Garbage collection

Golang for Optimization 17

Helpful Features of Julia

 Matlab-like features:

◦ Interactive shell

◦ Define arrays simply

◦ Plotting (via libraries)

 Runs very quickly (C speed)

◦ Uses the LLVM JIT compiler

 Free and open source

Golang for Optimization 18

Concurrent Programming in Julia

 Message-passing interface

 Remote reference

◦ Used by any process to refer to an object stored
on a particular process

 Remote call

◦ Request by one process to call a function on
another (or the same) process: spawns a
concurrent call

◦ Generates a remote reference

◦ Can wait and fetch result

◦ @spawn macro makes this easier

Golang for Optimization 19

Coroutines: produce and consume

 Coroutines (tasks) are like goroutines

◦ Lightweight interruptible threads

 Produce and consume data is like a

channel

Golang for Optimization 20

Julia Resources

 Julia info:
http://julialang.org/ or
http://istc-bigdata.org/index.php/open-big-
data-computing-with-julia/

 Many optimization interfaces already:
◦ JuliaOpt umbrella group for Julia-based

optimization projects: http://www.juliaopt.org/

◦ JuMP modelling language for math programs:
https://jump.readthedocs.org/en/release-
0.4/jump.html

◦ Connections to many solvers: COIN Cbc/CLP,
Cplex, Gurobi, IPOPT, Knitro, etc.

Golang for Optimization 21

http://julialang.org/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://www.juliaopt.org/
https://jump.readthedocs.org/en/release-0.4/jump.html

Comparing Go and Julia
Go Julia

Writing concurrent

programs

-Easy for multi-core

- not obvious for distributed

systems

-Syntax more convoluted

- built-in support for

distributed systems

Matlab-like features None -Arrays

-Interactive system

Syntax -Simple, unambiguous, clear

-Simple dependency system

A little more convoluted

Optimization libraries,

tools, community

Small Extensive, links to solvers,

modelling language, active

community

Compilation speed Blazing. Like working with a

scripted language

Just-in-time compiler is

fast

Execution speed Like C or Fortran Like C or Fortran

Calling other

languages

- C via libraries -Directly call C, Fortran

-Call Python via libraries

Golang for Optimization 22

Conclusions

 Go and Julia are good choices for

concurrent programming

 Go is simpler, but has less uptake in the

optimization community

 Julia has good support in the optimization

community

Golang for Optimization 23

Looking for a good post-doc

 Topic: concurrent optimization

 About Ottawa, Canada:

◦ Canada’s capital

◦ Many fine museums, outdoor festivals

◦ Canoeing, kayaking, hiking, camping, skiing

◦ Close(ish) to Montreal

◦ English/French bilingual

 Must like snow

A Fast MINLP Heuristic 24

