
New Parallel Programming Languages

for Optimization Research

John W. Chinneck, StephaneErnst

Systems and Computer Engineering

Carleton University, Ottawa, Canada

Motivation

·Challenges for optimization algorithms:
ƁAlways: faster solutions for bigger problems

ƁNew: massive scale up to handle big data

·Hardware has evolved:
ƁMultiple processors are everywhere

ƁEven phoneshave quad core processors!

ƁRecent purchase: 16-core machine for $2000

·Conclusion:
ƁNew optimization algorithms must be parallel

ƁMust handle big data problems

ƁMust take advantage of parallel hardware

2Golangfor Optimization

Language Selection Criteria
·Shortest distance between ideaand implementation

ƁIõm an algorithms guy, not a programming specialist

ƁEasy to learn and program

ƁParallelism (concurrency) built-in and easy to use

·Fast execution

ƁNeeded for comparisons to commercial solvers

ƁCompiledlanguage execution speed

·Nice to have:

ƁMulti-platform (Windows, linux, Apple)

ƁFast compilation

ƁIntegrated Development Environment (IDE)

ƁLow cost / free

ƁActive user community (especially optimizers)

Golang for Optimization 3

Go Language: Design Criteria

·Language specification simple enough to

hold in a programmer's head.

·Built-in concurrency

·Others

ƁAutomatic garbage collection

ƁFast compilation and execution

ƁSimple system for dependencies

¶I hate header files

Golang for Optimization 4

Helpful Features of Go
· Simplicity

ƁNo header files!

ƁSimple scoping. E.g. externally visible package-level variable: just
capitalize the first letter

ƁNo type inheritance

ƁNo method or operator overloading

ƁNo circular dependencies among packages

ƁNo pointer arithmetic

· Very strict compiler prevents common errors

ƁNo mixed-type arithmetic: you must explicitly cast types.

· Enforced efficiency

ƁUnused variables are an error

· Enforced common format

ƁJust run gofmt: takes care of indenting etc. in a standard way

· Call C code directly

ƁUse cgoor gccgo

· Debugger

Golang for Optimization 5

Packages

Golang for Optimization 6

package solver
// Controls the solution process

import (
"fmt"
"lp"
"math"
"math/rand"
"sort"
"strconv"
"time"

)

// Package global variables
var PrintLevel int // controls the level of printing. Setting it equal to zero turns printing off
var FinalBox int // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type IMPACT struct {

Row int
Sum int

}

func Solve(AlphaIn float64 , BetaIn float64 , MaxItnsIn int , MaxSwarmPtsIn int , plinfyIn float64 , ...
...

External Reference to a Package Variable:

solver.PrintLevel = 0 // PrintLevel = 0 turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

These are the names of Go Packages, some

built-in, some I created. Each can expose

variables and routines.

Language Elements

·Statements are minimal and simple:

ƁOnly one kind of loop: for

¶Index over a range, or over the length of a vector

¶Can act like a while loop

ƁIf-then-else

ƁSelect / Case

ƁEtc.

·General data structures

·Arrays and “slices” (vectors)

·Generally simple and intuitive

Golang for Optimization 7

Functions

Golang for Optimization 8

//===
// Given an input point at which some of the variables may violate their bounds, this
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func EnforceBounds(PtIn [] float64) (PtOut [] float64) {
PtOut = make([] float64 , len (PtIn))
for j:=0; j<lp.NumCols; j++ {

if PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = lp.LP.Cols[j].BndLo
continue

}
if PtIn[j] > lp.LP.Cols[j].BndUp {

PtOut[j] = lp.LP.Cols[j].BndUp
continue

}
PtOut[j] = PtIn[j]

}
return

}

Concurrency

·Make any routine concurrent by the gokeyword
ƁSpawns a new asynchronous thread

·Communication via channels
ƁChannels have defined types
¶Could be a structure holding many items

ƁReturn results via channels

·Channels allow:
ƁBlocking to wait for something to be received

ƁReceive something from one of several channels

ƁEtc.

·There is also a syncpackage
ƁMutex, lock, wait, etc.

Golang for Optimization 9

Concurrency example

Golang for Optimization 10

NumCPUs := runtime.NumCPU()
...
MaxPts := 2 * NumCPUs
...
chPoint := make(chan [] float64)
...

for itn := 0; itn < Max Itns ; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for i := 0; i < MaxPts; i++ {

go CC(Point [i], chPoint, i)
}

// Retrieve the CC output points
for i := 0; i < MaxPts; i++ {

Point [i] = <-chPoint
}

} // end of large iteration loop

Adding the gokeyword

before calling a routine

spawns a concurrent

goroutine

Concurrency:

hard lessons for a newbie

·Return order:

ƁRoutines return results in a different order

than they were instantiated

ƁInterruptions from other processes, etc.

·Reads and writes to common memory:

ƁUnpredictable order of reads/writes

ƁBest to communicate solely via channels

where possible

Golang for Optimization 11

Go Packages

·Many built-in, see http://golang.org/pkg/

ƁE.g. sorting, database, etc.

·External projects:

Ɓhttps://code.google.com/p/go-
wiki/wiki/Projects

ƁE.g. Mathematics, machine learning

ƁCVX (ported from the CVX python package)

ƁA particle swarm optimizer

ƁLinear algebra routines, e.g. BLAS

ƁGraph theory algorithms

Golang for Optimization 12

http://golang.org/pkg/
https://code.google.com/p/go-wiki/wiki/Projects

Learning Go is easy

·Start at the tour of Go:
http://tour.golang.org/#1

·Go documentation:
http://golang.org/doc/
includes video tours, docs, examples

·Online books:
http://www.golang-book.com/

·The Go playground:
http://play.golang.org/

·Go home:
http://golang.org/

·Searching online for Go information:
search on “golang”

Golang for Optimization 13

http://tour.golang.org/
http://golang.org/doc/
http://www.golang-book.com/
http://play.golang.org/
http://golang.org/

IDEs for Go

·See http://geekmonkey.org/articles/20-

comparison-of-ides-for-google-go

·I like Eclipse (called Goclipse):

https://code.google.com/p/goclipse/

Golang for Optimization 14

http://geekmonkey.org/articles/20-comparison-of-ides-for-google-go
https://code.google.com/p/goclipse/

Golang for Optimization 15

Go: Conclusions
· Easy to learn

ƁMostly intuitive

ƁGood online learning, reference, and practice tools

· Concurrency easy to program

ƁTakes some practice if new to concurrency

· Veryfast compilation, fast execution

· Multi-platform (Windows, linux, Apple)

· Good IDEs

· Free

· Butrelatively little supporting software for optimization (yet)

· Bottom line:

ƁGood language for general coding of parallel algorithms for optimization

¶ Supported by Google, so likely to be around for a while

· Potential alternative: Julia

Golang for Optimization 16

Julia Language: Design Criteria

·Targets high-performance numerical and

scientific computing

ƁLarge mathematical function library

·Dynamic language

·Parallel and distributed computing built-in

·Call Fortran/C libraries directly

ƁCall other languages via libraries, e.g. Python

·Garbage collection

Golang for Optimization 17

Helpful Features of Julia

·Matlab-like features:

ƁInteractive shell

ƁDefine arrays simply

ƁPlotting (via libraries)

·Runs very quickly (C speed)

ƁUses the LLVM JIT compiler

·Free and open source

Golang for Optimization 18

Concurrent Programming in Julia

·Message-passing interface

·Remote reference

ƁUsed by any process to refer to an object stored
on a particular process

·Remote call

ƁRequest by one process to call a function on
another (or the same) process: spawns a
concurrent call

ƁGenerates a remote reference

ƁCan waitand fetchresult

Ɓ@spawn macro makes this easier

Golang for Optimization 19

Coroutines: produce and consume

·Coroutines(tasks) are like goroutines

ƁLightweight interruptible threads

·Produceand consumedata is like a

channel

Golang for Optimization 20

Julia Resources

·Julia info:
http://julialang.org/or
http://istc-bigdata.org/index.php/open-big-
data-computing-with-julia/

·Many optimization interfaces already:
ƁJuliaOptumbrella group for Julia-based

optimization projects: http://www.juliaopt.org/

ƁJuMPmodelling language for math programs:
https://jump.readthedocs.org/en/release-
0.4/jump.html

ƁConnections to many solvers: COIN Cbc/CLP,
Cplex, Gurobi, IPOPT, Knitro, etc.

Golang for Optimization 21

http://julialang.org/
http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/
http://www.juliaopt.org/
https://jump.readthedocs.org/en/release-0.4/jump.html

Comparing Go and Julia
Go Julia

Writing concurrent

programs

-Easy for multi-core

- not obvious for distributed

systems

-Syntax more convoluted

- built-in support for

distributed systems

Matlab-like features None -Arrays

-Interactive system

Syntax -Simple,unambiguous, clear

-Simple dependency system

A little more convoluted

Optimization libraries,

tools, community

Small Extensive,links to solvers,

modelling language, active

community

Compilation speed Blazing. Like working with a

scripted language

Just-in-time compiler is

fast

Execution speed Like C or Fortran Like C or Fortran

Calling other

languages

- C via libraries -Directly call C,Fortran

-Call Python via libraries

Golang for Optimization 22

Conclusions

·Go and Julia are good choices for

concurrent programming

·Go is simpler, but has less uptake in the

optimization community

·Julia has good support in the optimization

community

Golang for Optimization 23

Looking for a good post-doc

·Topic: concurrent optimization

·About Ottawa, Canada:

ƁCanada’s capital

ƁMany fine museums, outdoor festivals

ƁCanoeing, kayaking, hiking, camping, skiing

ƁClose(ish) to Montreal

ƁEnglish/French bilingual

·Must like snow

A Fast MINLP Heuristic 24

