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Motivation

 Challenges for optimization algorithms:
◦ Always: faster solutions for bigger problems

◦ New: massive scale up to handle big data

 Hardware has evolved:
◦ Multiple processors are everywhere

◦ Even phones have quad core processors!

◦ Recent purchase: 16-core machine for $2000

 Conclusion:
◦ New optimization algorithms must be parallel

◦ Must handle big data problems

◦ Must take advantage of parallel hardware
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Language Selection Criteria
 Shortest distance between idea and implementation

◦ I’m an algorithms guy, not a programming specialist

◦ Easy to learn and program

◦ Parallelism (concurrency) built-in and easy to use

 Fast execution

◦ Needed for comparisons to commercial solvers

◦ Compiled language execution speed

 Nice to have:

◦ Multi-platform (Windows, linux,  Apple)

◦ Fast compilation

◦ Integrated Development Environment (IDE)

◦ Low cost / free

◦ Active user community (especially optimizers)
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Go Language: Design Criteria 

 Language specification simple enough to 

hold in a programmer's head.

 Built-in concurrency

 Others

◦ Automatic garbage collection

◦ Fast compilation and execution

◦ Simple system for dependencies 

 I hate header files
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Helpful Features of Go
 Simplicity

◦ No header files!

◦ Simple scoping. E.g. externally visible package-level variable: just 
capitalize the first letter

◦ No type inheritance

◦ No method or operator overloading

◦ No circular dependencies among packages

◦ No pointer arithmetic

 Very strict compiler prevents common errors

◦ No mixed-type arithmetic: you must explicitly cast types.

 Enforced efficiency

◦ Unused variables are an error

 Enforced common format

◦ Just run gofmt: takes care of indenting etc. in a standard way

 Call C code directly

◦ Use cgo or gccgo

 Debugger
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Packages
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package solver
// Controls the solution process

import (
"fmt"
"lp"
"math"
"math/rand"
"sort"
"strconv"
"time"

)

// Package global variables
var PrintLevel int     // controls the level of printing. Setting it equal to zero turns printing off
var FinalBox int       // Captures the last box commenced so it can be printed out

// Structures needed for sorting the impact list
type IMPACT struct {

Row   int
Sum   int

}

func Solve(AlphaIn float64, BetaIn float64, MaxItnsIn int, MaxSwarmPtsIn int, plinfyIn float64, ...
...

External Reference to a Package Variable:

solver.PrintLevel = 0 // PrintLevel = 0 turns off the printing so you can run through a set of files

External Reference to a package routine:

Point, Status = solver.Solve(Alpha, Beta, MaxItns, MaxSwarmPts, plinfy, featol)

These are the names of Go Packages, some 

built-in, some I created. Each can expose 

variables and routines.



Language Elements

 Statements are minimal and simple:

◦ Only one kind of loop: for

 Index over a range, or over the length of a vector

 Can act like a while loop

◦ If-then-else

◦ Select / Case

◦ Etc.

 General data structures

 Arrays and “slices” (vectors)

 Generally simple and intuitive
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Functions
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//=======================================================================================
// Given an input point at which some of the variables may violate their bounds, this 
// routine returns an output point in which all of the variables have been reset onto their
// closest bound, if necessary.

func EnforceBounds(PtIn []float64) (PtOut []float64) {
PtOut = make([]float64, len(PtIn))
for j:=0; j<lp.NumCols; j++ {

if PtIn[j] < lp.LP.Cols[j].BndLo {
PtOut[j] = lp.LP.Cols[j].BndLo
continue

}
if PtIn[j] > lp.LP.Cols[j].BndUp {

PtOut[j] = lp.LP.Cols[j].BndUp
continue

}
PtOut[j] = PtIn[j]

}
return

}



Concurrency

 Make any routine concurrent by the go keyword
◦ Spawns a new asynchronous thread

 Communication via channels
◦ Channels have defined types

 Could be a structure holding many items

◦ Return results via channels

 Channels allow:
◦ Blocking to wait for something to be received

◦ Receive something from one of several channels

◦ Etc.

 There is also a sync package
◦ Mutex, lock, wait, etc.
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Concurrency example
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NumCPUs := runtime.NumCPU()
...
MaxPts := 2 * NumCPUs
...
chPoint := make(chan []float64)
...

for itn := 0; itn < MaxItns; itn++ {

// Get new set of CC start points
NewPoints(itn)

// Run CC in parallel to improve each start point
for i := 0; i < MaxPts; i++ {

go CC(Point[i], chPoint, i)
}

// Retrieve the CC output points
for i := 0; i < MaxPts; i++ {

Point[i] = <-chPoint
}

} // end of large iteration loop

Adding the go keyword 

before calling a routine 

spawns a concurrent 

goroutine



Concurrency: 

hard lessons for a newbie

 Return order:

◦ Routines return results in a different order 

than they were instantiated

◦ Interruptions from other processes, etc.

 Reads and writes to common memory:

◦ Unpredictable order of reads/writes

◦ Best to communicate solely via channels 

where possible
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Go Packages

 Many built-in, see http://golang.org/pkg/

◦ E.g. sorting, database, etc.

 External projects:

◦ https://code.google.com/p/go-
wiki/wiki/Projects

◦ E.g. Mathematics, machine learning

◦ CVX (ported from the CVX python package)

◦ A particle swarm optimizer

◦ Linear algebra routines, e.g. BLAS

◦ Graph theory algorithms
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Learning Go is easy

 Start at the tour of Go:
http://tour.golang.org/#1

 Go documentation:
http://golang.org/doc/
includes video tours, docs, examples

 Online books:
http://www.golang-book.com/

 The Go playground:
http://play.golang.org/

 Go home:
http://golang.org/

 Searching online for Go information:
search on “golang”
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IDEs for Go

 See http://geekmonkey.org/articles/20-

comparison-of-ides-for-google-go

 I like Eclipse (called Goclipse):

https://code.google.com/p/goclipse/
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Go: Conclusions
 Easy to learn

◦ Mostly intuitive

◦ Good online learning, reference, and practice tools

 Concurrency easy to program

◦ Takes some practice if new to concurrency

 Very fast compilation, fast execution

 Multi-platform (Windows, linux, Apple)

 Good IDEs

 Free

 But relatively little supporting software for optimization (yet)

 Bottom line: 

◦ Good language for general coding of parallel algorithms for optimization

 Supported by Google, so likely to be around for a while

 Potential alternative: Julia
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Julia Language: Design Criteria

 Targets high-performance numerical and 

scientific computing

◦ Large mathematical function library

 Dynamic language

 Parallel and distributed computing built-in

 Call Fortran/C libraries directly

◦ Call other languages via libraries, e.g. Python

 Garbage collection
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Helpful Features of Julia

 Matlab-like features:

◦ Interactive shell

◦ Define arrays simply

◦ Plotting (via libraries)

 Runs very quickly (C speed)

◦ Uses the LLVM JIT compiler

 Free and open source
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Concurrent Programming in Julia

 Message-passing interface

 Remote reference

◦ Used by any process to refer to an object stored 
on a particular process

 Remote call

◦ Request by one process to call a function on 
another (or the same) process: spawns a 
concurrent call

◦ Generates a remote reference

◦ Can wait and fetch result

◦ @spawn macro makes this easier
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Coroutines: produce and consume

 Coroutines (tasks) are like goroutines

◦ Lightweight interruptible threads

 Produce and consume data is like a 

channel
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Julia Resources

 Julia info:
http://julialang.org/ or
http://istc-bigdata.org/index.php/open-big-
data-computing-with-julia/

 Many optimization interfaces already:
◦ JuliaOpt umbrella group for Julia-based 

optimization projects: http://www.juliaopt.org/

◦ JuMP modelling language for math programs: 
https://jump.readthedocs.org/en/release-
0.4/jump.html

◦ Connections to many solvers: COIN Cbc/CLP, 
Cplex, Gurobi, IPOPT, Knitro, etc.
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Comparing Go and Julia
Go Julia

Writing concurrent 

programs

-Easy for multi-core 

- not obvious for distributed 

systems

-Syntax more convoluted

- built-in support for 

distributed systems

Matlab-like features None -Arrays

-Interactive system

Syntax -Simple, unambiguous, clear

-Simple dependency system

A little more convoluted

Optimization libraries,

tools, community

Small Extensive, links to solvers, 

modelling language, active 

community

Compilation speed Blazing. Like working with a 

scripted language

Just-in-time compiler is 

fast

Execution speed Like C or Fortran Like C or Fortran

Calling other 

languages

- C via libraries -Directly call C, Fortran

-Call Python via libraries
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Conclusions

 Go and Julia are good choices for 

concurrent programming

 Go is simpler, but has less uptake in the 

optimization community

 Julia has good support in the optimization 

community
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Looking for a good post-doc

 Topic: concurrent optimization

 About Ottawa, Canada:

◦ Canada’s capital

◦ Many fine museums, outdoor festivals

◦ Canoeing, kayaking, hiking, camping, skiing

◦ Close(ish) to Montreal

◦ English/French bilingual

 Must like snow
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