A Fast Heuristic for GO and MINLP

0

John W. Chinneck, M. Shafique,

Systems and Computer Engineering Carleton University, Ottawa, Canada

Introduction

- Goal: Find a good quality GO/MINLP solution quickly.
 - Trade off accuracy for speed
 - No guarantee of finding optimum
- Target: very large, highly nonlinear GO/MINLP instances
- Method: use a fast approximate Global Optimizer within a B&B framework

The Fast Global Optimizer

- Why is nonconvex GO hard?
 - Multiple disconnected feasible regions
 - Multiple local optima
 - Many places to look for optima
- Two main categories of solution methods:
 - Space-covering global optimizers:
 - Accurate, but slow: inherent tree search
 - Multi-start local optimizers:
 - Faster, but not as accurate: whole space not searched
- Goal: fast and reasonably accurate GO
 - Trade a little accuracy for speed

GO Components

Main idea:

- Multi-start based (for speed)
- Better exploration of the variable space before launching the local solver (for accuracy)
 - Our main contribution

Main steps:

Goal: find local solver launch points that lead to global optimum

- I. Latin Hypercube sampling in a defined launch box
- 2. Constraint Consensus concentration
- 3. Clustering
- 4. Simple Search
- 5. Local solver launches

1. LHC Sampling in the Launch Box

Initial launch box based on empirical results:

- Most NLP solutions are in this range
- Shifted appropriately according to the bounds

2. Constraint Consensus (CC)^[1]

- Projection method: iteratively adjusts point to reduce constraint violation(s).
- Quickly moves initial point to near-feasible final point.
- Very fast: no matrix inversion, no line search
- Reduces local solver time, improves success

3. Clustering of CC end points (CB)

- Single linkage clustering: pts closer than critical distance assigned to same cluster
- Critical distance: based on distribution of inter-point distances
 - Small distances: points in same cluster
 - Large distances: points in different clusters
 - Choose critical distance based on this
- **Effect:** clusters correlate with feasible regions

4. Simple Search (SS)

- Derivative-free neighborhood search for better points
 - considers both feasibility and objective function
- Point quality metric (minimization):
 - Penalty function: $P(\mathbf{x}) = f(\mathbf{x}) + (maximum violation)^2$

- I. Interior random search
- 2. Exterior random search

Replace worst point

Continue until no improvement for several iterations

Experimental Setup: Software

- **OS:** Fedora 17, 64 bit. Compiler: GCC 4.7.2
- Modelling language: AMPL, presolver on
- Local solver: IPOPT 3.11.1, linear solver MA86 serial mode, default settings
- Parameter settings:
 - Time limit: 1800 seconds (half an hour)
 - Feasibility tolerance: 1×10^{-6} throughout
 - LHC parameters: 60 points, launch box edge length 2×10^4
 - CC parameters: max 100 iterations per CC run, time limit: 1 sec/run
 - CB parameter: max 25 clusters
 - SS parameters: at least 10 points per cluster, continue improving until three successive failures.
 - 2 rounds

Experimental Setup

- Hardware:
 - 4-core, 3.4 GHz, 64-bit Intel i7-2600, 16 GB RAM
- Compare to:
 - Knitro (multistart, parallel mode), SCIP, Couenne
 - BARON not available for AMPL input
- Test models:
 - Test set: 94 CUTEr ^[2] models having at least one nonlinear function (constraint or objective) and 300+ constraints (before AMPL presolve)
 - 48 have linear constraints with nonlinear objective
 - 46 have nonlinear constraints
 - Tuning set: a different set of 35 models

CCGO vs. KNITRO: First Incumbent

- Multistart: 5 runs of each method
- Comparing median values
- Time diff < 1 sec = same

Nonlinear Constraints (46)

	Linear Constraints (48)				
		CCGO	CCGO KNITRO		
	same	better	better		
Obj	15	15	18		
	0.313	0.313	0.375		
Speed	0	3	45		
	0.000	0.063	0.938		
Fails		0 0			

Comparable Subset (34)

		CCGO	KNITRO		
	same	better	better		
Obj	25	2	7		
	0.735	0.059	0.206		
Speed	0	24	10		
	0.000	0.706	0.294		
Fails		11	3		

CCGO vs. Knitro: Final Solution

- Multistart: 5 runs of each method
- Comparing median values
- Time diff < 1 sec = same

Nonlinear Constraints (46)

Compa	rable	Subs	et	(34)

	Enrear constraints (10)			
		CCGO	KNITRO	
	same	better	better	
Obj	20	7	21	
	0.417	0.146	0.438	
Speed	0	10	38	
	0	0.208	<i>0.792</i>	
Fails		0	0	

Linear Constraints (48)

		CCGO	KNITRO
	same	better	better
Obj	19	1	14
	0.559	0.029	0.412
Speed	1	29	4
	0.029	0.853	0.118
Fails		11	3

CCGO vs. Knitro: Conclusions

- Both are multistart methods
- Linear constraints:
 - similar first incumbent solutions, Knitro better final solutions
 - Knitro faster
- Nonlinear Constraints:
 - frequently similar first incumbents and final solutions, Knitro overall better solutions
 - CCGO faster
 - Knitro more robust (fewer failures)
- Questions
 - How much of the difference is due to the use of Ipopt in CCGO vs the Knitro local solver?

CCGO vs. SCIP and Couenne: First Incumbent CCGO median vs. others

Linear Constraints (48)

	CCGO Best	SCIP Best	Couenne Best
Obj	35 (76%)	2 (4%)	27 (59%)
Speed	4 (9%)	26 (57%)	30 (65%)
Fails	0 (0%)	9 (20%)	10 (22%)

Nonlinear Constraints (46)

	CCGO Best	SCIP Best	Couenne Best
Obj	26 (57%)	5 (11%)	32 (70%)
Speed	3 (7%)	(24%)	32 (70%)
Fails	(24%)	31 (67%)	12 (26%)

CCGO vs. SCIP and Couenne: Final Solution CCGO median vs. others

Linear Constraints (48)

	CCGO Best	SCIP Best	Couenne Best
Obj	37 (77%)	I (2%)	28 (58%)
Speed	43 (90%)	5 (10%)	0 (0%)
Fails	0 (0%)	9 (19%)	10 (21%)

Nonlinear Constraints (46)

	CCGO Best	SCIP Best	Couenne Best
Obj	26 (57%)	6 (13%)	36 (78%)
Speed	29 (63%)	7 (15%)	13 (28%)
Fails	(24%)	31 (67%)	12 (26%)

CCGO vs. SCIP and Couenne: Conclusions

- Linear Constraints:
 - CCGO much more robust
 - Ist inc.: CCGO best solns but slowest
 - Final: CCGO best solns, speed, robustness
- Nonlinear Constraints:
 - CCGO most robust
 - Ist inc.: Couenne best. CCGO good soln quality but slowest.
 - Final: CCGO good soln quality and fastest.
- SCIP and Couenne use initial heuristics that find an early incumbent.

Comparing all 4 Solvers: Nonlinear Constraints

Fraction of models having solution within 1% of best obj fcn value found

CLGU	KIILIO	JUIL	Coueime
63.0%	89.1 %	4.3%	71.7%

Solution returned for % of models

CCGO	Knitro	SCIP	Couenne
76.1%	93.5%	32.6%	73.9%

Towards MINLP

Goal: few local solver launches

- I. Solve GO problem approximately
 - LHC-CC-CB-SS, but no local solver launch
- 2. B&B using values for integer variables at approximate GO solution
- 3. When all integer variables fixed at integer values, launch local solver
- 4. Continue B&B as usual

Branching Issues

- Approximate solution affects branching
- MILP:
 - Exact solver
 - Branching tends to increase integrality
- MINLP with approximate GO solution:
 - Branching may not force early integrality
 - May have to branch until upper bound = lower bound

Branching Issues (contd)

- Round to integrality within a (larger) tolerance (e.g. 0.1)?
- Seed the initial random sample of the new subspace with a rounded solution. E.g.
 - Parent solution (11.6, 12.2, 9.5)
 - Down branch special point (11.6, 12.2, 9.0)
 - Up branch special point (11.6, 12.2, 10.0)
- Take action if too many open nodes
 - E.g. round integer variables and launch local solver to get a better incumbent

Spatial Branching

- Likely not needed
- If needed: CC start-end pairs map basins of attraction for feasible regions
 - Subdivide using CC start-end pairs to define basins of attraction

MINLP results to date

 Test set: 8 small general MINLP instances from minlplib2 ^[3].

Name	#Vars	#BinVars	#IntVars	#Cons
eg_all_s	8	0	7	28
eg_disc2_s	8	0	3	28
gear3	8	0	4	4
m7_ar4_1	112	0	42	269
m7_ar5_1	112	0	42	269
nvs01	3	0	2	3
o7_ar2_1	112	0	42	269
o7_ar3_1	112	0	42	269

- IPOPT runtime = maximum 50 seconds
- Kept track of first 100 nodes in B&B tree
- 5.1 integer-feasible solutions found on avg

Conclusions

- GO results are promising
 - Soln quality good
 - Soln speed very good for nonlinear constraints
- Future work:
 - GO parameter optimization
 - Incorporation of new heuristics for robustness and quick first incumbent
 - Improved integer branching

Looking for a good post-doc

- Topic: concurrent optimization
- About Ottawa, Canada:
 - Canada's capital
 - Many fine museums, outdoor festivals
 - Canoeing, kayaking, hiking, camping, skiing
 - Close(ish) to Montreal
 - English/French bilingual
- Must like snow