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Introduction

 Goal: Find a good quality GO/MINLP solution 
quickly.

◦ Trade off accuracy for speed

◦ No guarantee of finding optimum

 Target: very large, highly nonlinear GO/MINLP 
instances

 Method: use a fast approximate Global 
Optimizer within a B&B framework
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The Fast Global Optimizer

 Why is nonconvex GO hard?
◦ Multiple disconnected feasible regions

◦ Multiple local optima

◦ Many places to look for optima

 Two main categories of solution methods:
◦ Space-covering global optimizers: 
 Accurate, but slow: inherent tree search

◦ Multi-start local optimizers:
 Faster, but not as accurate: whole space not searched

 Goal: fast and reasonably accurate GO
◦ Trade a little accuracy for speed
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GO Components

Main idea: 

 Multi-start based (for speed)

 Better exploration of the variable space before launching the 
local solver (for accuracy)

◦ Our main contribution

Main steps:

Goal: find local solver launch points that lead to global optimum

1. Latin Hypercube sampling in a defined launch box

2. Constraint Consensus concentration

3. Clustering

4. Simple Search

5. Local solver launches
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1. LHC Sampling in the Launch Box
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Initial launch box based on empirical results:
• Most NLP solutions are in this range

• Shifted appropriately according to the bounds

A Fast MINLP Heuristic



2. Constraint Consensus (CC)[1]

 Projection method: iteratively adjusts point to reduce 
constraint violation(s).

 Quickly moves initial point to near-feasible final 
point.

 Very fast: no matrix inversion, no line search

 Reduces local solver time, improves success
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Constraint Consensus

 ***add illustration of CC move

7

CC start point

After 1 iteration
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3. Clustering of CC end points (CB)

 Single linkage clustering: pts closer than 
critical distance assigned to same cluster

 Critical distance: based on distribution of 
inter-point distances

◦ Small distances: points in same cluster

◦ Large distances: points in different clusters

◦ Choose critical distance based on this

 Effect: clusters correlate with feasible 
regions
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4. Simple Search (SS)

 Derivative-free neighborhood search for better points
◦ considers both feasibility and objective function

 Point quality metric (minimization):
◦ Penalty function: P(x) = f(x) + (maximum violation)2

10A Fast MINLP Heuristic

x

x 1. Interior random search

2. Exterior random search

Replace worst point

Continue until no 

improvement for several 

iterations



Complete

GO Algorithm
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Serial. Identify x having best P(x) value.  Note it’s 

round.  Take best point in each of 3 best clusters 
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Experimental Setup: Software

 OS: Fedora 17, 64 bit. Compiler: GCC 4.7.2

 Modelling language: AMPL, presolver on

 Local solver: IPOPT 3.11.1, linear solver MA86 serial 
mode, default settings

 Parameter settings:

◦ Time limit: 1800 seconds (half an hour)

◦ Feasibility tolerance: 1×10-6 throughout

◦ LHC parameters: 60 points, launch box edge length 2×104

◦ CC parameters: max 100 iterations per CC run,  time limit: 1
sec/run

◦ CB parameter: max 25 clusters

◦ SS parameters: at least 10 points per cluster, continue improving 
until three successive failures.

◦ 2 rounds
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Experimental Setup

 Hardware:

◦ 4-core, 3.4 GHz, 64-bit Intel i7-2600, 16 GB RAM

 Compare to:

◦ Knitro (multistart, parallel mode), SCIP, Couenne

◦ BARON not available for AMPL input

 Test models:

◦ Test set:  94 CUTEr [2] models having at least one 
nonlinear function (constraint or objective) and 300+ 
constraints (before AMPL presolve)
 48 have linear constraints with nonlinear objective

 46 have nonlinear constraints

◦ Tuning set:  a different set of 35 models
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CCGO vs. KNITRO:

First Incumbent

 Multistart: 5 runs of each method

 Comparing median values

 Time diff < 1 sec = same
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Linear Constraints (48)

CCGO KNITRO

same better better

Obj 15 15 18

0.313 0.313 0.375

Speed 0 3 45

0.000 0.063 0.938

Fails 0 0

Nonlinear Constraints (46)

Comparable Subset (34)

CCGO KNITRO

same better better

Obj 25 2 7

0.735 0.059 0.206

Speed 0 24 10

0.000 0.706 0.294

Fails 11 3



CCGO vs. Knitro: Final Solution

 Multistart: 5 runs of each method

 Comparing median values

 Time diff < 1 sec = same
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Linear Constraints (48)
CCGO KNITRO

same better better
Obj 20 7 21

0.417 0.146 0.438
Speed 0 10 38

0 0.208 0.792
Fails 0 0

Nonlinear Constraints (46)
Comparable Subset (34)

CCGO KNITRO
same better better

Obj 19 1 14
0.559 0.029 0.412

Speed 1 29 4
0.029 0.853 0.118

Fails 11 3



CCGO vs. Knitro: Conclusions

 Both are multistart methods

 Linear constraints:
◦ similar first incumbent solutions, 

Knitro better final solutions

◦ Knitro faster

 Nonlinear Constraints:
◦ frequently similar first incumbents and final solutions, 

Knitro overall better solutions

◦ CCGO faster

◦ Knitro more robust (fewer failures)

 Questions
◦ How much of the difference is due to the use of 

Ipopt in CCGO vs the Knitro local solver?
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CCGO vs. SCIP and Couenne: First 

Incumbent
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CCGO  Best SCIP Best Couenne Best

Obj 35 (76%) 2 (4%) 27 (59%)

Speed 4 (9%) 26 (57%) 30 (65%)

Fails 0 (0%) 9 (20%) 10 (22%)

Linear Constraints (48)

Nonlinear Constraints (46)

CCGO  Best SCIP Best Couenne Best

Obj 26 (57%) 5 (11%) 32 (70%)

Speed 3 (7%) 11 (24%) 32 (70%)

Fails 11 (24%) 31 (67%) 12 (26%)

CCGO median vs. others



CCGO vs. SCIP and Couenne: Final 

Solution
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CCGO  Best SCIP Best Couenne Best

Obj 37 (77%) 1 (2%) 28 (58%)

Speed 43 (90%) 5 (10%) 0 (0%)

Fails 0 (0%) 9 (19%) 10 (21%)

Linear Constraints (48)

Nonlinear Constraints (46)

CCGO  Best SCIP Best Couenne Best

Obj 26 (57%) 6 (13%) 36 (78%)

Speed 29 (63%) 7 (15%) 13 (28%)

Fails 11 (24%) 31 (67%) 12 (26%)

CCGO median vs. others



CCGO vs. SCIP and Couenne: 

Conclusions
 Linear Constraints:

◦ CCGO much more robust

◦ 1st inc.: CCGO best solns but slowest

◦ Final: CCGO best solns, speed, robustness

 Nonlinear Constraints:

◦ CCGO most robust

◦ 1st inc.: Couenne best. CCGO good soln quality 
but slowest.

◦ Final: CCGO good soln quality and fastest.

 SCIP and Couenne use initial heuristics that find 
an early incumbent.
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Comparing all 4 Solvers:

Nonlinear Constraints
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Fraction of models having solution

within 1% of best obj fcn value found

CCGO Knitro SCIP Couenne

63.0% 89.1% 4.3% 71.7%
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Towards MINLP

Goal: few local solver launches

1. Solve GO problem approximately

◦ LHC-CC-CB-SS, but no local solver launch

2. B&B using values for integer variables at 
approximate GO solution

3. When all integer variables fixed at 
integer values, launch local solver

4. Continue B&B as usual
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Branching Issues

 Approximate solution affects 
branching

 MILP: 

◦ Exact solver

◦ Branching tends to increase 
integrality  

 MINLP with approximate GO 
solution:

◦ Branching may not force early 
integrality

◦ May have to branch until upper 
bound = lower bound
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Branching Issues (contd)

 Round to integrality within a (larger) 
tolerance (e.g. 0.1)?

 Seed the initial random sample of the new 
subspace with a rounded solution. E.g.

◦ Parent solution (11.6, 12.2, 9.5)

◦ Down branch special point (11.6, 12.2, 9.0)

◦ Up branch special point (11.6, 12.2, 10.0)

 Take action if too many open nodes

◦ E.g. round integer variables and launch local 
solver to get a better incumbent
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Spatial Branching

 Likely not needed

 If needed: CC start-end pairs map basins of 

attraction for feasible regions

◦ Subdivide using CC

start-end pairs to

define basins of

attraction
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MINLP results to date

 Test set: 8 small general MINLP instances from 
minlplib2 [3]. 

 IPOPT runtime = maximum 50 seconds

 Kept track of first 100 nodes in B&B tree

 5.1 integer-feasible solutions found on avg
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Name #Vars #BinVars #IntVars #Cons

eg_all_s 8 0 7 28

eg_disc2_s 8 0 3 28

gear3 8 0 4 4

m7_ar4_1 112 0 42 269

m7_ar5_1 112 0 42 269

nvs01 3 0 2 3

o7_ar2_1 112 0 42 269

o7_ar3_1 112 0 42 269



Conclusions

 GO results are promising

◦ Soln quality good

◦ Soln speed very good for nonlinear 

constraints

 Future work: 

◦ GO parameter optimization

◦ Incorporation of new heuristics for 

robustness and quick first incumbent

◦ Improved integer branching

26A Fast MINLP Heuristic



Looking for a good post-doc

 Topic: concurrent optimization

 About Ottawa, Canada:

◦ Canada’s capital

◦ Many fine museums, outdoor festivals

◦ Canoeing, kayaking, hiking, camping, skiing

◦ Close(ish) to Montreal

◦ English/French bilingual

 Must like snow
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