A Fast Heuristic for GO and
MINLP

John W. Chinneck, M. Shafique,

Systems and Computer Engineering

Carleton University, Ottawa, Canada

Introduction

e Goal: Find a good quality GO/MINLP solution
quickly.
o Trade off accuracy for speed

> No guarantee of finding optimum

o Jarget: very large, highly nonlinear GO/MINLP
Instances

» Method: use a fast approximate Global
Optimizer within a B&B framework

The Fast Global Optimizer
* Why is nonconvex GO hard?

> Multiple disconnected feasible regions
> Multiple local optima
> Many places to look for optima

e Two main categories of solution methods:

o Space-covering global optimizers:
Accurate, but slow: inherent tree search
o Multi-start local optimizers:
Faster, but not as accurate: whole space not searched
* Goal: fast and reasonably accurate GO

° Trade a little accuracy for speed

GO Components

Main idea:
e Multi-start based (for speed)

» Better exploration of the variable space before launching the
local solver (for accuracy)

o Qur main contribution

Main steps:

Goal: find local solver launch points that lead to global optimum
I. Latin Hypercube sampling in a defined launch box
Constraint Consensus concentration

Clustering

Simple Search

Local solver launches

i AW

1. LHC Sampling in the Launch Box

I'|B' “1E4 +1E4 |
UB,

-1E4

+1E4

LB, —

Initial launch box based on empirical results:
* Most NLP solutions are in this range
* Shifted appropriately according to the bounds

2. Constraint Consensus (CC)L!]

* Projection method: iteratively adjusts point to reduce
constraint violation(s).

e Quickly moves initial point to near-feasible final
point.

e Very fast: no matrix inversion, no line search
* Reduces local solver time, improves success

Compute Compute
Start e
: Feasibility Consensus
Point
Vectors Vector

Constraint Consensus

After 1 iteration

CC start point

b

Feasible region

0.5 1 1.5 2 2.5

3.5

3. Clustering of CC end points (CB)

 Single linkage clustering: pts closer than
critical distance assigned to same cluster

e Critical distance: based on distribution of
inter-point distances
o Small distances: points in same cluster
o Large distances: points in different clusters
> Choose critical distance based on this

» Effect: clusters correlate with feasible
regions

Final clusters

0 5 [0o

| [Prominent Peaks|
d
1
— e >« >
()} 2 3
Inter- point
distances
1 1 | - i|]l|‘
2 B 6 8 10 |2 14 16

i
A Fast MINLP Heuristic

4, Simple Search (SS)

e Derivative-free neighborhood search for better points
o considers both feasibility and objective function

e Point quality metric (minimization):
o Penalty function: P(x) = f(x) + (maximum violation)?2

|. Interior random search
2. Exterior random search

Replace worst point
Continue until no

improvement for several
iterations

LHC Seril
Sérial, but CC Parallel
llelizable.
et $ Complete
eria .
| | GO Algorithm
SS Parallel

Select launch Serial. Identify x having best P(x) value. Note it’s

pts round. Take best point in each of 3 best clusters
l in that round.
Local solver Parallel

4

Result

Experimental Setup: Software

e OS: Fedora 17, 64 bit. Compiler: GCC 4.7.2
 Modelling language: AMPL, presolver on

e Local solver: IPOPT 3.11.1, linear solver MAS8BG serial
mode, default settings

 Parameter settings:
o Time limit: 1800 seconds (half an hour)
> Feasibility tolerance: 1x10° throughout
° LHC parameters: 60 points, launch box edge length 2x10%

o CC parameters: max 100 iterations per CC run, time limit: 1
sec/run

> CB parameter: max 25 clusters

oSS parameters: at least 10 points per cluster, continue improving
until three successive failures.

2 rounds

(¢]

Experimental Setup

e Hardware:
o 4-core, 3.4 GHz, 64-bit Intel 17-2600, 16 GB RAM

e Compare to:
o Knitro (multistart, parallel mode), SCIP, Couenne
- BARON not available for AMPL input

e Test models:

> Test set: 94 CUTEr [2] models having at least one
nonlinear function (constraint or objective) and 300+
constraints (before AMPL presolve)
48 have linear constraints with nonlinear objective
46 have nonlinear constraints

> Tuning set: a different set of 35 models

Obj

Speed

Fails

CCGO vs. KNITRO:

e Multistart: 5 runs of each method
e Comparing median values
e Time diff < 1 sec = same

Linear Constraints (48)

same

CCGO
better

KNITRO
better

15
0.313

15
0.313

18
0.375

0.000

3
0.063

45
0.938

0

0

Obj

Speed

Fails

First Incumbent

Nonlinear Constraints (46)

Comparable Subset (34)
CCGO| KNITRO
same better better
25 2 7
0.735 0.059 0.206|
0 24 10
0.000 0.706 0.294
11 3

CCGO vs. Knitro: Final Solution

o Multistart: 5 runs of each method
e Comparing median values
e Time diff < 1 sec = same

Nonlinear Constraints (46)

Linear Constraints (48) Comparable Subset (34)

CCGO KNITRO CCGO KNITRO

same better better same better better

Obj 20 7 21 Obj 19 1 14
0.417 0.146 0.438 0.559 0.029 0.412

Speed 0 10 38 Speed 1 29 4
g 0.208 0.792 0.029 0.853 0.118

Fails 0 0 Fails 11 3

CCGO vs. Knitro: Conclusions

e Both are multistart methods

e Linear constraints:

o similar first incumbent solutions,
Knitro better final solutions

o Knitro faster
e Nonlinear Constraints:

° frequently similar first incumbents and final solutions,
Knitro overall better solutions

o CCGO faster
> Knitro more robust (fewer failures)
* Questions

> How much of the difference is due to the use of
Ipopt in CCGO vs the Knitro local solver?

CCGO vs. SCIP and Couenne: First

I ncum be nt CCGO median vs. others

Linear Constraints (48)

35 (76%) 2 (4%) 27 (59%)
speed 4 (9%) 26 (57%) 30 (65%)
Fails 0 (0%) 9 (20%) 10 (22%)

Nonlinear Constraints (46)

26 (57%) 5 (11%) 32 (70%)
speed 3 (7%) 11 (24%) 32 (70%)
Fails 11 (24%) 31 (67%) 12 (26%)

CCGO vs. SCIP and Couenne: Final

SOI UtiOn CCGO median vs. others

Linear Constraints (48)

37 (77%) | (2%) 28 (58%)
speed 43 (90%) 5 (10%) 0 (0%)
Fails 0 (0%) 9 (19%) 10 (21%)

Nonlinear Constraints (46)

26 (57%) 6 (13%) 36 (78%)
speed 29 (63%) 7 (15%) 13 (28%)
Fails 11 (24%) 31 (67%) 12 (26%)

CCGO vs. SCIP and Couenne:

Conclusions

e Linear Constraints:
o CCGO much more robust
o |t jnc.: CCGO best solns but slowest
o Final: CCGO best solns, speed, robustness

e Nonlinear Constraints:
o CCGO most robust

° |stinc.: Couenne best. CCGO good soln quality
but slowest.

o Final: CCGO good soln quality and fastest.

e SCIP and Couenne use initial heuristics that find
an early incumbent.

Comparing all 4 Solvers:
Nonlinear Constraints

Fraction of models having solution
within 1% of best obj fcn value found

CCGO Knitro SCIP Couenne
63.0% 89.1% 4.3% 71.7%

o
)

Solution Time Solution returned for % of models

o
=)

CCGO Knitro SCIP Couenne
76.1% 93.5% 32.6% 73.9%

o
S

o o
o N
A 0
2 0
(8]
° 0O

fraction of models
o
[0,

©
w

o
()

o

o

2000 4000 6000 8000 10000

% worse than best

o

Towards MINLP

Goal: few local solver launches

I. Solve GO problem approximately
> LHC-CC-CB-SS, but no local solver launch

2. B&B using values for integer variables at
approximate GO solution

3. When all integer variables fixed at
integer values, launch local solver

4. Continue B&B as usual

Branching Issues

o Approximate solution affects
branching

e MILP:

o Exact solver

> Branching tends to increase
integrality

e MINLP with approximate GO
solution:

° Branching may not force early /\\
integrality \/

> May have to branch until upper
bound = lower bound

Branching Issues (contd)

* Round to integrality within a (larger)
tolerance (e.g. 0.1)?

* Seed the initial random sample of the new
subspace with a rounded solution. E.g.
° Parent solution (11.6, 12.2, 9.5)
> Down branch special point (11.6, 12.2, 9.0)
> Up branch special point (11.6, 12.2, 10.0)
 Take action if too many open nodes

> E.g. round integer variables and launch local
solver to get a better incumbent

Spatial Branching

e Likely not needed

e If needed: CC start-end pairs map basins of
attraction for feasible reglons
o Subdivide using CC)
start-end pairs to

define basins of
attraction

(b) 1500 points.

MINLP results to date

o Test set: 8 small general MINLP instances from
minlplib2 B3,

Name #Vars |#BinVars| #IntVars | #Cons

eg all_s 8 0 7 28
eg_disc2_s 8 0 3 28
gear3 8 0 4 4

m7_ar4_1 112 0 42 269
m7_ar5_1 112 0 42 269
nvs01 3 0 2 3

o7_ar2_1 112 0 42 269
o7_ar3_1 112 0 42 269

e [POPT runtime = maximum 50 seconds
* Kept track of first 100 nodes in B&B tree
e 5.| integer-feasible solutions found on avg

Conclusions

e GO results are promising
> Soln quality good

> Soln speed very good for nonlinear
constraints

* Future work:
> GO parameter optimization

° Incorporation of new heuristics for
robustness and quick first incumbent

° Improved integer branching

Looking for a good post-doc

 Topic: concurrent optimization

* About Ottawa, Canada:
> Canada’s capital
> Many fine museums, outdoor festivals
> Canoeing, kayaking, hiking, camping, skiing
> Close(ish) to Montreal
o English/French bilingual

o Must like snow

