
A Fast Heuristic for GO and

MINLP

John W. Chinneck, M. Shafique,
Systems and Computer Engineering

Carleton University, Ottawa, Canada

Introduction

 Goal: Find a good quality GO/MINLP solution
quickly.

◦ Trade off accuracy for speed

◦ No guarantee of finding optimum

 Target: very large, highly nonlinear GO/MINLP
instances

 Method: use a fast approximate Global
Optimizer within a B&B framework

A Fast MINLP Heuristic 2

The Fast Global Optimizer

 Why is nonconvex GO hard?
◦ Multiple disconnected feasible regions

◦ Multiple local optima

◦ Many places to look for optima

 Two main categories of solution methods:
◦ Space-covering global optimizers:
 Accurate, but slow: inherent tree search

◦ Multi-start local optimizers:
 Faster, but not as accurate: whole space not searched

 Goal: fast and reasonably accurate GO
◦ Trade a little accuracy for speed

3A Fast MINLP Heuristic

GO Components

Main idea:

 Multi-start based (for speed)

 Better exploration of the variable space before launching the
local solver (for accuracy)

◦ Our main contribution

Main steps:

Goal: find local solver launch points that lead to global optimum

1. Latin Hypercube sampling in a defined launch box

2. Constraint Consensus concentration

3. Clustering

4. Simple Search

5. Local solver launches

4A Fast MINLP Heuristic

1. LHC Sampling in the Launch Box

5

LB1

UB2

UB1

LB2

Initial launch box based on empirical results:
• Most NLP solutions are in this range

• Shifted appropriately according to the bounds

A Fast MINLP Heuristic

2. Constraint Consensus (CC)[1]

 Projection method: iteratively adjusts point to reduce
constraint violation(s).

 Quickly moves initial point to near-feasible final
point.

 Very fast: no matrix inversion, no line search

 Reduces local solver time, improves success

Start

Point

Compute

Feasibility

Vectors

Compute

Consensus

Vector

Update

Point

6A Fast MINLP Heuristic

Constraint Consensus

 ***add illustration of CC move

7

CC start point

After 1 iteration

A Fast MINLP Heuristic

3. Clustering of CC end points (CB)

 Single linkage clustering: pts closer than
critical distance assigned to same cluster

 Critical distance: based on distribution of
inter-point distances

◦ Small distances: points in same cluster

◦ Large distances: points in different clusters

◦ Choose critical distance based on this

 Effect: clusters correlate with feasible
regions

8A Fast MINLP Heuristic

9

LHC

CC end pts

Inter- point

distances

Final clusters

A Fast MINLP Heuristic

4. Simple Search (SS)

 Derivative-free neighborhood search for better points
◦ considers both feasibility and objective function

 Point quality metric (minimization):
◦ Penalty function: P(x) = f(x) + (maximum violation)2

10A Fast MINLP Heuristic

x

x 1. Interior random search

2. Exterior random search

Replace worst point

Continue until no

improvement for several

iterations

Complete

GO Algorithm

11

LHC

CC

CB

SS

Select launch

pts

Local solver

Result

Serial

Parallel

Parallel

Serial

Parallel

Serial. Identify x having best P(x) value. Note it’s

round. Take best point in each of 3 best clusters

in that round.

Serial, but

parallelizable.

2 - 4 rounds.

A Fast MINLP Heuristic

Experimental Setup: Software

 OS: Fedora 17, 64 bit. Compiler: GCC 4.7.2

 Modelling language: AMPL, presolver on

 Local solver: IPOPT 3.11.1, linear solver MA86 serial
mode, default settings

 Parameter settings:

◦ Time limit: 1800 seconds (half an hour)

◦ Feasibility tolerance: 1×10-6 throughout

◦ LHC parameters: 60 points, launch box edge length 2×104

◦ CC parameters: max 100 iterations per CC run, time limit: 1
sec/run

◦ CB parameter: max 25 clusters

◦ SS parameters: at least 10 points per cluster, continue improving
until three successive failures.

◦ 2 rounds

12A Fast MINLP Heuristic

Experimental Setup

 Hardware:

◦ 4-core, 3.4 GHz, 64-bit Intel i7-2600, 16 GB RAM

 Compare to:

◦ Knitro (multistart, parallel mode), SCIP, Couenne

◦ BARON not available for AMPL input

 Test models:

◦ Test set: 94 CUTEr [2] models having at least one
nonlinear function (constraint or objective) and 300+
constraints (before AMPL presolve)
 48 have linear constraints with nonlinear objective

 46 have nonlinear constraints

◦ Tuning set: a different set of 35 models

13A Fast MINLP Heuristic

CCGO vs. KNITRO:

First Incumbent

 Multistart: 5 runs of each method

 Comparing median values

 Time diff < 1 sec = same

A Fast MINLP Heuristic 14

Linear Constraints (48)

CCGO KNITRO

same better better

Obj 15 15 18

0.313 0.313 0.375

Speed 0 3 45

0.000 0.063 0.938

Fails 0 0

Nonlinear Constraints (46)

Comparable Subset (34)

CCGO KNITRO

same better better

Obj 25 2 7

0.735 0.059 0.206

Speed 0 24 10

0.000 0.706 0.294

Fails 11 3

CCGO vs. Knitro: Final Solution

 Multistart: 5 runs of each method

 Comparing median values

 Time diff < 1 sec = same

A Fast MINLP Heuristic 15

Linear Constraints (48)
CCGO KNITRO

same better better
Obj 20 7 21

0.417 0.146 0.438
Speed 0 10 38

0 0.208 0.792
Fails 0 0

Nonlinear Constraints (46)
Comparable Subset (34)

CCGO KNITRO
same better better

Obj 19 1 14
0.559 0.029 0.412

Speed 1 29 4
0.029 0.853 0.118

Fails 11 3

CCGO vs. Knitro: Conclusions

 Both are multistart methods

 Linear constraints:
◦ similar first incumbent solutions,

Knitro better final solutions

◦ Knitro faster

 Nonlinear Constraints:
◦ frequently similar first incumbents and final solutions,

Knitro overall better solutions

◦ CCGO faster

◦ Knitro more robust (fewer failures)

 Questions
◦ How much of the difference is due to the use of

Ipopt in CCGO vs the Knitro local solver?

A Fast MINLP Heuristic 16

CCGO vs. SCIP and Couenne: First

Incumbent

A Fast MINLP Heuristic 17

CCGO Best SCIP Best Couenne Best

Obj 35 (76%) 2 (4%) 27 (59%)

Speed 4 (9%) 26 (57%) 30 (65%)

Fails 0 (0%) 9 (20%) 10 (22%)

Linear Constraints (48)

Nonlinear Constraints (46)

CCGO Best SCIP Best Couenne Best

Obj 26 (57%) 5 (11%) 32 (70%)

Speed 3 (7%) 11 (24%) 32 (70%)

Fails 11 (24%) 31 (67%) 12 (26%)

CCGO median vs. others

CCGO vs. SCIP and Couenne: Final

Solution

A Fast MINLP Heuristic 18

CCGO Best SCIP Best Couenne Best

Obj 37 (77%) 1 (2%) 28 (58%)

Speed 43 (90%) 5 (10%) 0 (0%)

Fails 0 (0%) 9 (19%) 10 (21%)

Linear Constraints (48)

Nonlinear Constraints (46)

CCGO Best SCIP Best Couenne Best

Obj 26 (57%) 6 (13%) 36 (78%)

Speed 29 (63%) 7 (15%) 13 (28%)

Fails 11 (24%) 31 (67%) 12 (26%)

CCGO median vs. others

CCGO vs. SCIP and Couenne:

Conclusions
 Linear Constraints:

◦ CCGO much more robust

◦ 1st inc.: CCGO best solns but slowest

◦ Final: CCGO best solns, speed, robustness

 Nonlinear Constraints:

◦ CCGO most robust

◦ 1st inc.: Couenne best. CCGO good soln quality
but slowest.

◦ Final: CCGO good soln quality and fastest.

 SCIP and Couenne use initial heuristics that find
an early incumbent.

A Fast MINLP Heuristic 19

Comparing all 4 Solvers:

Nonlinear Constraints

A Fast MINLP Heuristic 20

Fraction of models having solution

within 1% of best obj fcn value found

CCGO Knitro SCIP Couenne

63.0% 89.1% 4.3% 71.7%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

fr
ac

ti
o
n
 o

f
m

o
d
e
ls

% worse than best

Solution Time

CCGO

Knitro

SCIP

Couenne

Solution returned for % of models

CCGO Knitro SCIP Couenne

76.1% 93.5% 32.6% 73.9%

Towards MINLP

Goal: few local solver launches

1. Solve GO problem approximately

◦ LHC-CC-CB-SS, but no local solver launch

2. B&B using values for integer variables at
approximate GO solution

3. When all integer variables fixed at
integer values, launch local solver

4. Continue B&B as usual

21A Fast MINLP Heuristic

Branching Issues

 Approximate solution affects
branching

 MILP:

◦ Exact solver

◦ Branching tends to increase
integrality

 MINLP with approximate GO
solution:

◦ Branching may not force early
integrality

◦ May have to branch until upper
bound = lower bound

A Fast MINLP Heuristic 22

Branching Issues (contd)

 Round to integrality within a (larger)
tolerance (e.g. 0.1)?

 Seed the initial random sample of the new
subspace with a rounded solution. E.g.

◦ Parent solution (11.6, 12.2, 9.5)

◦ Down branch special point (11.6, 12.2, 9.0)

◦ Up branch special point (11.6, 12.2, 10.0)

 Take action if too many open nodes

◦ E.g. round integer variables and launch local
solver to get a better incumbent

A Fast MINLP Heuristic 23

Spatial Branching

 Likely not needed

 If needed: CC start-end pairs map basins of

attraction for feasible regions

◦ Subdivide using CC

start-end pairs to

define basins of

attraction

24A Fast MINLP Heuristic

MINLP results to date

 Test set: 8 small general MINLP instances from
minlplib2 [3].

 IPOPT runtime = maximum 50 seconds

 Kept track of first 100 nodes in B&B tree

 5.1 integer-feasible solutions found on avg

A Fast MINLP Heuristic 25

Name #Vars #BinVars #IntVars #Cons

eg_all_s 8 0 7 28

eg_disc2_s 8 0 3 28

gear3 8 0 4 4

m7_ar4_1 112 0 42 269

m7_ar5_1 112 0 42 269

nvs01 3 0 2 3

o7_ar2_1 112 0 42 269

o7_ar3_1 112 0 42 269

Conclusions

 GO results are promising

◦ Soln quality good

◦ Soln speed very good for nonlinear

constraints

 Future work:

◦ GO parameter optimization

◦ Incorporation of new heuristics for

robustness and quick first incumbent

◦ Improved integer branching

26A Fast MINLP Heuristic

Looking for a good post-doc

 Topic: concurrent optimization

 About Ottawa, Canada:

◦ Canada’s capital

◦ Many fine museums, outdoor festivals

◦ Canoeing, kayaking, hiking, camping, skiing

◦ Close(ish) to Montreal

◦ English/French bilingual

 Must like snow

A Fast MINLP Heuristic 27

