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Find First Feasible Solution Quickly

MIP Feasibility: Classic Methods3

 Why?

 Integer-feasibility may be the only goal.

 Shortens time to optimality:

 First incumbent prunes subsequent tree. Early incumbent important.

 If backtracking algorithm is good, then closest integer-feasible 

descendent usually has best objective function value.

 Helps ensure solution in case of time-out.

 Helpful in infeasibility analysis.
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“Classic” feasibility-focused heuristics

For pure binary problems:

 Pivot-and-complement

 OCTANE

For general MIPs:

 Pivot-and-shift
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BIP: Pivot-and-Complement

 Inequality-constrained Binary Integer Program (BIP)

 Feasibility-seeking first phase

 Main insight:

 BIP has LP equivalent in which all binary varbs are nonbasic at 

upper or lower bound

 One basic variable per constraint

 Hence all slack variables must be basic

 BIP: max cx s.t. Ax≤b, xj binary

 LP: max cx s.t. Ax+y=b, 0≤x≤1, y≥0, yi basic

 Balas and Martin 1980
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Pivot-and-Complement

Operations to force slacks to be basic:

 Type 1 pivot: maintain LP feasibility, exchange  
nonbasic slack and basic binary varb

 Type 2 pivot: maintain LP feasibility, exchange slack 
for slack or binary for binary but reduce sum of 
integer infeasibility

 Type 3 pivot: sacrifice LP feasibility, exchange 
nonbasic slack for basic binary

 Complement: flip the values of 1 or 2 binary varbs
to reduce an infeasibility measure

 Rounding and truncating solutions.
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BIP: OCTANE

 OCTAhedral Neighbourhood Evaluation

 Main insight:

 N-dimension octagon around binary n-cube associates octagon 
facets with binary solutions

 Given current soln (e.g. LP-relaxation) and improvement 
direction:

 Improving rays cross extended facets of octagon

 Crossed facet has associated binary solution

 A kind of neighbourhood search

 Balas, Ceria, Dawande, Margot, Pataki 2001



MIP Feasibility: Classic Methods8

OCTANE

 Find first k octagon 

facet intersections

 Check associated 

binary solutions

1st intersection

2nd intersection

x
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OCTANE Details

 Unit cube actually centred at origin, so offset by ½ 

 OCTANE not run at every node of branch-and-cut tree

 Every node in first 5 levels of tree

 Every 8th node thereafter



MIP Feasibility: Classic Methods10

MIP: Pivot-and-Shift

 Extension of pivot-and-complement

 Initial feasibility-seeking stage: 

 Rounding

 Pivot-and-shift operations

 Small neighbourhood searches

 Balas and Martin 1986; Balas, Schmieta and Wallace 2004



MIP Feasibility: Classic Methods11

Types of Pivots

Operations:

 Type 1 pivot: maintain LP feasibility, exchange basic int varb
and nonbasic continuous varb

 Type 2 pivot: maintain LP feasibility and improve obj fcn, 
exchange continuous varb with cont, or int varb with int

 Type 3 pivot: maintain LP feasibility while reducing int
infeasibility, exchange cont varb with cont, or int varb with int

Feasibility maintained:

 Entering basic variable (col) chosen according to type of pivot

 Leaving basic variable (row) chosen by minimum ratio test



Other Operations

 Rounding (shifting).

 Small neighbourhood search: 

 MIP search in neighbourhood around a near-feasible soln
(tot int infeas < limit, e.g. 0.1).

12 MIP Feasibility: Classic Methods



Pivot-and-Shift Flowchart

Round Type 1: exchange basic 

int varb and nonbasic

cont varb (cycle)

Round Integer? Stop

Type 3: reduce integer 

infeasibility (cycle)

Type 3 

success?

Small 

neighbourhood 

search

Type 2: improve obj. 

function (cycle)

yes

yes

no

no
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Pivot-and-Shift Details

 Time limit

 Abandon in favour of Xpress-MP solver if:

 No integer-feasible soln within time limit

 Integer soln obtained by rounding has obj fcn value 40%+ 
worse than bounding fcn value of unrounded soln

 Empirical tests:

 Much faster to first feasibility than standard Xpress-MP.
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Conclusions

 Significant progress 1980-mid 2000s

 Recent renewed interest:

 Updated pivot-and-shift (2004)

 The feasibility pump (2005)

 Active constraints branching (2006)

 Etc…….
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Branch & Bound (simplified)

Active Constraint Branching Variable Selection3

After start-up…

1. If no unexplored nodes left then exit: optimal or 
infeasible.

2. Choose unexplored node for expansion and solve 
its LP relaxation.
 Infeasible: discard the node, go to Step 1.

 Feasible and integer-feasible: check for new incumbent, go 
to Step 1.

3. Choose branching variable in current node and 
create two new child nodes.



Main B&B Design Decisions

Active Constraint Branching Variable Selection4

 How choose next node from list?

 Depth-first?

 Usual choice for efficiency of basis re-use.

 Global best value of  bounding function?

 Original objective function?

 minimum sum of integrality violations?

 Breadth-first?

 Etc.

 How choose branching variable?

 How choose branching direction?



Is Branching Variable Selection Important?

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)

Active Constraint Branching Variable Selection5



Traditional Branching Variable Selection

Active Constraint Branching Variable Selection6

 Based on estimated impact on objective function

 Goal: maximize degradation in the objective function value 

at optimal solution of child node LP relaxations.

 e.g. pseudo-costs



Active Constraints Approach

Active Constraint Branching Variable Selection7

Goal: make child node LP-relaxation optima far from 
parent node LP-relaxation optimum.

 Active constraints fix the position of the LP optimum 
solution in parent, so…

 Choose branching variable that has most impact on the 
active constraints in parent LP relaxation optimum 
solution.
 Select variable that is most tightly constrained first

 Constraint-oriented approach.

 Note: “active constraints” include tight degenerate constraints



Impact of the Branching Variable

Active Constraint Branching Variable Selection8

y 

x 

LP relaxation 
before 
branching 

Branch on x Branch on y 

Feasible 
Region 



Estimating Candidate Variable Impact on 

Active Constraints

Active Constraint Branching Variable Selection9

1. Calculate the “weight” Wik of each candidate 

variable i in each active constraint k

 0 if the variable does not appear in constraint

2. For each variable, calculate total weight over all 

active constraints.

3. Choose variable that has the largest total weight.

Dynamic variable ordering: changes at each node.



Overview of Weighting Methods

Active Constraint Branching Variable Selection10

 Is candidate variable in active constraint or not?

 Relative importance of active constraint:
 Smaller weight if more candidate or integer variables: changes in other 

variables compensate for changes in selected variable.

 Normalize by absolute sum of coefficients.

 Relative importance of candidate variable within active 
constraint:
 Greater weight if coefficient size is larger: 

candidate variable has more impact.

 Sum weights over all active constraints? 
Look at biggest impact on single constraint?

 Etc.



Methods A, B, L

Active Constraint Branching Variable Selection11

Numerous variants. Subset of best:

 A: Wik=1.

 Is candidate variable present in the active constraint?

 B: Wik = 1/ [Σ(|coeff of all variables|].

 Like A, but relative impact of a constraint normalized by absolute 

sum of coefficients

 L: Wik = 1/(no. integer variables)

 Like A, but relative impact of a constraint normalized by number of 

integer variables it contains

 Related to MOMS rule?



Methods M, O, P

Active Constraint Branching Variable Selection12

 M: Wik = 1/(no. candidate variables)

 Like A, but relative impact of a constraint normalized by number of 

candidate variables it contains

 Not used directly: see H methods

 O: Wik = |coeffi|/(no. of integer variables)

 Like L, but size of coefficient affects weight of varb in constraint

 P: Wik = |coeffi|/(no. of candidate variables)

 Like M, but size of coefficient affects weight of varb in constraint



Methods HM, HO

Active Constraint Branching Variable Selection13

 H methods: for a given base method, choose the variable 

that has largest weight in any single active constraint

 Do not sum across active constraints

 HM: based on method M

 HO: based on method O



Experimental Setup: Solvers

Active Constraint Branching Variable Selection14

 Cplex 9.0 (baseline): all default settings, except:

 MIP emphasis: find feasible solution

 Experiment 1 (basic B&B): all heuristics off

 Experiment 2: all heuristics turned on

 Active Constraint solver:

 Built on top of Cplex

 Callbacks set branching variable

 No optimization of data structures for active constraint methods: 

inefficient searching

 Node selection:

 Experiment 1: Straight depth-first, branch up

 Experiment 2: Cplex default



Experimental Setup: 

Premature Termination

Active Constraint Branching Variable Selection15

 Time limit: 28,800 seconds (8 hours)

 Data structures not optimized for active constraint methods, 
hence penalizes them

 Node Limits:

 100,000 nodes

 Limit on active-constraint methods:
(Cplex nodes + 1000)

 Tree memory, node file size:

 Never exceeded.



Experimental Setup: Metrics

Active Constraint Branching Variable Selection16

 Number of B&B nodes

 Number of simplex iterations
 No. of B&B nodes does not penalize for jumping around tree, 

reducing ability to use advanced starts

 Tracks well with solution time (except as noted later)

 Feasibility Success Ratio
 Fraction of cases where better than Cplex

 Quality Success Ratio
 fraction of cases in which the first feasible solution has 

optimality gap equal to or smaller than optimality gap for first 
feasible solution returned by Cplex

 Performance Profiles



Experimental Setup: Test Models

Active Constraint Branching Variable Selection17

 MIPLIB 2003 set

 60 models

 Range of difficulties

 Rows: 6–159488

 Cols: 62–204880

 Integer variables: 1–3,303

 Binary variables: 18–204,880

 Continuous variables: 1–13,321

 Nonzeroes: 312–1,024,059



Experiment 1: Notes

Active Constraint Branching Variable Selection18

 All internal heuristics off

 58 models used

 2 models prematurely terminated by all methods, including 

Cplex



Experiment 1: Number of Nodes

Active Constraint Branching Variable Selection19

 All 58 Models 40 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

nodes 

than 

Cplex FSR 

times 

term. 

(fewer 

nodes at 

time-out) 

Avg. 

nodes: 

(avg. 

nodes)/ 

(Cplex avg. 

nodes) 

avg. 

ratio 

to 

best 

Cplex 9.0 7   4 1967.5  58.22 

A 30 47 0.810 7 (2) 149.5 0.076 1.19 

HM 28 45 0.776 8(2) 130.5 0.066 1.18 

HO 35 45 0.776 9 (3) 123.3 0.063 1.47 

O 36 43 0.741 11 (3) 116.1 0.059 1.11 

P 32 44 0.759 10 (2) 156.2 0.079 1.37 

 



Exp 1: Nodes Peformance Profiles

Active Constraint Branching Variable Selection20

Experiment 1 Nodes Performance Profile
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Experiment 1: Simplex Iterations

Active Constraint Branching Variable Selection21

 All 58 Models 40 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

itns 

than 

Cplex FSR 

times 

term. 

(fewer 

itns at 

time-out) 

Avg. 

itns: 

(avg. itns)/ 

(Cplex avg. 

itns)  

[w/o disctom] 

avg. 

ratio to 

best 

Cplex 9.0 12   4 55052  14.93 

A 30 43 0.741 7 (3) 36484 0.663 [0.214] 1.17 

HM 28 40 0.690 8(3) 35173 0.639 [0.245] 1.18 

HO 23 40 0.690 9 (3) 117320 2.131 [0.237] 1.48 

O 25 37 0.638 11 (4) 117401 2.133 [0.239] 1.38 

P 30 41 0.707 10 (3) 216100 3.925 [0.232] 1.67 

 



Exp 1: Simplex Iterations Perf. Profiles
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Experiment 1 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (simplex iterations)

fr
a
c
ti

o
n

 o
f 

m
o

d
e
ls

Cplex 9.0

A

O

P

HM

HO

 



Experiment 2: Notes

Active Constraint Branching Variable Selection23

 All internal heuristics on.

 25 models used:

 3 models prematurely terminated by all methods

 32 models solved at root node

 Heuristics impact is mixed:

 Many models solved at root node

 Others: half slower with heuristics on, half faster.

 1 model solvable with heuristics off, but not solvable with 

heuristics on



Experiment 2: Number of Nodes

Active Constraint Branching Variable Selection24

 All 25 Models 12 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

nodes 

than 

Cplex FSR 

times 

term. 

(fewer 

nodes at 

time-out) 

Avg. 

nodes: 

(avg. 

nodes)/ 

(Cplex avg. 

nodes) 

avg. 

ratio 

to 

best 

Cplex 9.0 4   1 1214.6  23.86 

B 9 17 0.680 5 (1) 235.0 0.193 2.02 

L 7 17 0.680 6 (1) 233.0 0.192 2.01 

HM 6 16 0.640 7 (2) 262.9 0.216 2.13 

HO 6 13 0.520 8 (2) 260.9 0.215 1.96 

P 9 15 0.600 9 (1) 293.8 0.242 1.27 

 



Exp 2: Nodes Performance Profiles
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Experiment 2 Nodes Performance Profiles
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Experiment 2: Simplex Iterations

Active Constraint Branching Variable Selection26

 All 25 Models 12 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

itns 

than 

Cplex FSR 

times 

term. 

(fewer 

itns at 

time-out) 

Avg. 

itns 

(avg. itns)/ 

(Cplex avg. 

itns)  

[w/o disctom] 

avg. ratio 

to best 

Cplex 9.0 7   1 32578  6.89 

B 5 14 0.56 5 (1) 400552 12.295 [0.452] 4.37 

L 7 14 0.56 6 (2) 400233 12.285 [0.437] 4.38 

HM 2 14 0.56 7 (3) 108898 3.343 [0.760] 2.15 

HO 6 15 0.60 8 (3) 418697 12.852 [0.785] 4.66 

P 9 14 0.56 9 (2) 609275 18.702 [0.367] 5.90 

 



Exp 2: Simplex Iterations Perf. Profiles
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Experiment 2 Iterations Performance Profiles
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Quality Success Ratios

Active Constraint Branching Variable Selection28

Experiment 1 

over 40 comparable models  

Experiment 2 

over 12 comparable models 

method QSR   method QSR  

A 0.53  B 0.75 

HM 0.55  HM 0.50 

HO 0.58  HO 0.50 

O 0.70  L 0.58 

P 0.78  P 0.33 

 



Experiment 1 Conclusions

Active Constraint Branching Variable Selection29

 Active constraints branching variable selection is much

better than commercial state of the art in achieving 

feasibility quickly:

 Much faster in almost all cases.

 Optimality gap at first feasible solution is usually better.

 Several methods very good

 Simple method A the best.



Experiment 2 Conclusions

Active Constraint Branching Variable Selection30

 Active constraints branching variable selection is 
better than commercial state of the art in achieving 
feasibility quickly:
 Faster more often than not.

 Optimality gap at first feasible solution is usually better for 
most methods.

 Cplex heuristics have uneven results
 How do heuristics, models, and active constraints methods 

interact?

 Active constraints methods can be used internally to 
heuristics.



Integration with Other Methods

Active Constraint Branching Variable Selection31

 Octane and Pivot-and-Shift:

 Comparing reported results: active constraint methods better

 Active constraint methods integrate easily with both methods: 

use when selecting among variables to branch on

 Feasibility Pump

 Use after feasibility pump finished
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Active Constraint Branching Variable Selection32
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Ongoing Research: New Methods

Active Constraint Branching Variable Selection33

 Choose candidate varb whose boundary has most 

oblique angle to an active constraint

 Tie-breaking:

 Many methods give numerous ties, e.g. A

 Pair with another method to break the ties

 Choose randomly?

 Branching direction

 How predict whether to branch up or down?

 E.g.: branch to “inside” of an inequality



Ongoing Research: New Approach

Active Constraint Branching Variable Selection34

Now: same method from start to end

 Should different methods be used depending on conditions at 

current node?

 Special case:

 Presence of active “hard” constraints 

(all binary variables, all coefficients are 1s)

 Choose only from among candidate varbs in hard constraints

 Other special cases?

 Classifier to determine method to use at node, based on conditions 

at the node

 Promising so far: first leaf found very often feasible



Ongoing Research: 

Properties of Solution Trees

Active Constraint Branching Variable Selection35

 1-2 candidate variables very common.

 Theory: more nodes are closer to leaves, where there are few 

candidate variables

 When most oblique angle is high (70+), there are few 

candidate variables.

 Theory: happens far down in the B&B tree, so most facets 

squared off by added bounds.



Ongoing Research: Best Choice at Node

Active Constraint Branching Variable Selection36

Basic data:

 Full expansion on all candidate varbs, both up and 

down directions, at every node in smaller MIPLIB 

2003 models

 Calculate total Integer Infeasibility (II) for all choices

 Use II reduction between parent and child to identify “best” 

choice at a node

 Comment: “ultra-strong” branching an effective method!

 Data used to train classifier:

 Which varb selection method to use at this node?



Future Research

Active Constraint Branching Variable Selection37

 Extension to finding optimum solution

 Use active constraint method to first feasibility, objective-based 

method thereafter?

 Incorporate aspiration level as another constraint?
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Faster Integer Feasibility 
in MIPs by Branching to 
Force Change

John W. Chinneck
Jennifer Pryor

Systems and Computer Engineering 
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A Question...

 You can either:

a) Branch to have largest probability of satisfying 
constraints in a MIP, or

b) Branch to have smallest probability of satisfying 
constraints in a MIP.

 Which policy leads to the first feasible 
solution more quickly?

Faster MIP Feasibility by Forcing Change 3
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1. B&B Algorithms for MIPs

Main ingredients:

 Node selection heuristic

 Branching variable selection heuristic 
 Choose from among candidate variables

 Branching direction selection heuristic
 k ≤ x ≤ k+1, where k and k+1 are closest integers
 Branch down: add x≤k and solve new LP relaxn
 Branch up: add x≥k+1 and solve new LP relaxn

5Faster MIP Feasibility by Forcing Change



Node selection

 Many possible heuristics

 Depth-first is typical

 LP advanced start based on parent LP solution

 Back-tracking

 When current dive ends at leaf node 
(feasible or infeasible)

 Many different heuristics

6Faster MIP Feasibility by Forcing Change



Branching

Assume node has been selected:

 If there are k candidate branching variables, and can branch up or 
down, then there are 2k branching possibilities.

Main categories of methods:

A. Choose branching variable, then  choose branching direction
 Most common method

 Branching variable selection well researched

 Branching direction selection little researched

B. Choose branching variable and direction simultaneously
 Very few methods

7Faster MIP Feasibility by Forcing Change



What is the Best Branching
Heuristic for Feasibility?

Metric: 
shortest time to first integer-feasible solution

 Sometimes feasibility is the only goal
 Early incumbent shortens time to optimality 

(better pruning)
 If node selection method is effective, 

reaching an integer-feasible descendent 
quickly helps shorten time to optimality

8Faster MIP Feasibility by Forcing Change



Branching Variable Selection

 Active Constraints Variable Selection 
(Patel and Chinneck 2007):

 Choose candidate variable having greatest impact 
on the active constraints in current LP relaxation

 All other methods look at impact on objective fcn

 Reaches integer-feasibility very quickly

 Method A: choose candidate variable appearing in 
largest number of active constraints

Faster MIP Feasibility by Forcing Change 9



Active Constraints Results

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)

Faster MIP Feasibility by Forcing Change 10
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Impact of the Branching Variable
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x 
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before 
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Branching Direction Selection

 Usually available in a solver:

 UP always

 DOWN always

 CLOSEST INTEGER

 Sometimes available in a solver:

 FARTHEST INTEGER

 Specialized heuristics (“let solver choose”)...

 No method dominates in the literature

Faster MIP Feasibility by Forcing Change 12



Branching Variable and Direction

 Driebeek and Tomlin

 Estimate objective function degradation for 
variable/direction combination using a dual pivot

 Largest degradation chooses variable

 Smaller of two degradations chooses direction

 Default branching method in GLPK

Faster MIP Feasibility by Forcing Change 13



“Multiple Choice” Constraints

x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

 Branch down: xi can take real values

 Branch up: all xi forced to integer values

E.g.:  x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)

Branching on x1 :

 Branch down: (0, 0.333, 0.333, 0.333) or others

 Branch up: (1, 0, 0, 0) is only solution

Faster MIP Feasibility by Forcing Change 14



2. A New Principle

 Observations

 Often: each branching forces roughly 1 candidate 
variable to integrality

 Desirable: force as many candidates as possible to 
integrality at each branch

 Note: integer-feasible when number of 
candidate variables is zero

Faster MIP Feasibility by Forcing Change 15



Frequent Pattern

Faster MIP Feasibility by Forcing Change 16



New Principle

 Branch to Force Change

 E.g. Branch up on multiple choice constraints

 E.g. Active constraint branching variable selection

 In general:

 Branch to cause change that will propagate to as 
many candidate variables as possible.

 Hope that many will take integer values.

Faster MIP Feasibility by Forcing Change 17



Reach Integrality Faster

Faster MIP Feasibility by Forcing Change 18



3. Experimental Setup

 Modifications to GLPK 4.28

 Stopping: first feasible solution, or two hours

 Node selection:
 Driebeek and Tomlin (GLPK default), or
 Depth first

 Test models
 142 total, 47 equality-containing, 95 equality-free 
 56 from MIPLIB2003
 11 from MIPLIB 3.0
 7 from MIPLIB 2.0
 68 from COR@L

 Speed metric: number of simplex iterations
 Due to variety of machines

Faster MIP Feasibility by Forcing Change 19



4. Evaluating Simple Branching 
Direction Heuristics

Faster MIP Feasibility by Forcing Change 20
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Branching UP Usually Best

 Folklore: 
branching up 
is best
 Empirically 

supported

 UP is best, 
DOWN is 
worst

 Affected by 
equality 
constraints
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5. Probability-based Branching

Counting solutions (Pesant and Quimper 2008)

 l ≤ cx ≤ u : l, c, u are integer values, x integer

 Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0
Value of x2 Range for x1 Soln count Soln density

x2=0 [0,10] 11 11/18 = 0.61

x2=1 [0,5] 6 6/18 = 0.33

x2=2 [0] 1 1/18 = 0.06

Total solutions 18

 Choose x2 =0 for max prob of satisfying constraint

 Is this the best thing to do?

Faster MIP Feasibility by Forcing Change 22



Generalization

Assume:
 All variables bounded, real-valued
 Uniform distribution within range
Result:
 linear combination of variables yields normal 

distribution for function value
 Mean: ∑ai(li+ui)/2, where xi has range [li, ui]
 Variance: ∑ai

2[(ui-li+1)2-1]/12
 Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5

has mean 25, variance 110.83
 Plot.... Look at g(x) ≤ 12

Faster MIP Feasibility by Forcing Change 23



g(x) = 3x1 + 2x2 + 5x3 ≤ 12, 0 ≤ x ≤ 5

Probability density plot
• Cumulative prob of satisfying function in blue

Faster MIP Feasibility by Forcing Change 24



Use for Branching

• Separate distributions for 
DOWN and UP branches due 
to changed variable ranges

• Calculate cumulative 
probability of satisfying 
constraint in each direction

Example:

• Branch on x1=1.5

• Down: x1 range [0,1], p=0.23

• Up: x1 range [2,5], p=0.05

Faster MIP Feasibility by Forcing Change 25



New: Handling Equality Constraints

 Look at centeredness of RHS value in the two 
prob. curves created by branching UP or DOWN

 For each of branch-UP and branch-DOWN:
 Calculate cum. prob. of being less than RHS
 Calculate cum. prob. of being more than RHS
 Calculate ratio: 

(smaller cum. prob.)/(larger cum. prob.)
 Least centered = zero; most centered = 1

 For “highest prob.” methods, choose most 
centred direction, i.e. ratio closest to 1

 For “lowest prob.” methods, choose least centred
direction, i.e. ratio closest to zero

Faster MIP Feasibility by Forcing Change 26



New Branching Direction Methods

Given the branching variable:

 Choose direction based on cum. prob. in any
active constraint branching variable is in:
 LCP: Lowest Cum. Prob. in any active constraint
 HCP: Highest Cum. Prob. in any active constraint

 Choose direction based on votes using cum. 
prob. in all active constraints branching variable 
is in:
 LCPV: direction most often selected based on lowest 

cum. prob.
 HCPV: direction most often selected based on highest 

cum. prob.

Faster MIP Feasibility by Forcing Change 27



New Simultaneous Variable 
and Direction Methods

 VDS-LCP: choose varb and direction having 
lowest cum. prob. among all candidate varbs
and all active constraints containing them

 VDS-HCP: choose varb and direction having 
highest cum. prob. among all candidate varbs
and all active constraints containing them

Faster MIP Feasibility by Forcing Change 28



6. New Violation-Based Methods

 If all variable values except branching variable 
are fixed, what happens when branching 
direction is UP vs. DOWN?
 Inequality: is act. constraint violated or still satisfied?

 Equality: construct cum. prob. curves for up/down
 “violated”: less centred direction

 “satisfied”: more centred direction

 MVV: Most Violated Votes method
 Choose direction that violates largest number of 

active constraints containing branching varb.

 MSV: Most Satisfied Votes method

Faster MIP Feasibility by Forcing Change 29



7. Experiments: 
Branching to Force Change

 Compare methods in pairs: 

 Branching to high vs. low prob. of satisfying  active 
constraints

 GLPK default included in all comparisons

 Branching variable selection: GLPK default 

 Except for variable-and-direction methods

Faster MIP Feasibility by Forcing Change 30
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VDS Methods With Equality Constraints

• VDS-LCP even 
more dominant

• The centering 
strategy is 
effective

Faster MIP Feasibility by Forcing Change 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: At Least One Equality

GLPK Default

VDS-LCP

VDS-HCP



Faster MIP Feasibility by Forcing Change 34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: All Models

GLPK Default

MSV

MVV



Faster MIP Feasibility by Forcing Change 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: Inequalities Only

GLPK Default

MSV

MVV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: At Least One Equality

GLPK Default

MSV

MVV



Effect of Branching Variable Heuristic

fraction fewest 

simplex iterations fraction solved

GLPK Default 0.1620 0.8239

GLPK-UP 0.2887 0.8592

A-UP 0.3662 0.8944

GLPK-LCP 0.1831 0.8310

A-LCP 0.3028 0.8592

GLPK-LCPV 0.1901 0.7958

A-LCPV 0.2394 0.8521

GLPK-MVV 0.2042 0.8310

A-MVV 0.3028 0.8521
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Conclusions Thus Far

 Branching to force change in the candidate 
variables is fastest to first feasible solution
 LCP better than HCP

 LCPV better than HCPV

 VDS-LCP better than VDS-HCP

 MVV better than MSV

 Constraint types have an impact:
 Equality constraints; multiple choice constraints

 One counter-example: set covering
 Feasible solution easy: set all variables to 1
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8. A-UP vs. VDS-LCP
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9. Branching Up Revisited

 Why is it so good?

 Presence of multiple choice constraints?
 104 of 142 (73%) models have at least one
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Prob. in Multiple Choice Constraints

# Variables Cum. Prob. Up Cum. Prob. Down

2 0.158655254 0.841344746

3 0.078649604 0.5

4 0.041632258 0.281851431

5 0.022750132 0.158655254

6 0.012673659 0.089856247

# Variables Equality Ratio Up Equality Ratio Down

2 0.188573417 0.188573417

3 0.085363401 1

4 0.043440797 0.392469529

5 0.023279749 0.188573417

6 0.012836343 0.098727533

Faster MIP Feasibility by Forcing Change 40
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10. Contributions

 Principle of branching to force change in the 
candidate variables leads to faster feasibility
 Surprise! Branch to low-probability direction

 Presence of equalities, multiple choice 
constraints affects performance of heuristics
 UP works well because it is more often the lower 

probability direction

 Extension of probability-based methods to 
equality constraints

 New branching methods (esp. VDS-LCP)
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Outline
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Part I: Achieving Integer-Feasibility Quickly
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Branch and Bound

Main B&B algorithm design choices:

 How to choose the integer infeasible 

(candidate) variable to branch on at a node.

 How to choose the unexplored (active) node to 

solve next.

 Triggering backtrack.

 Which node to choose when backtracking.

 Theme: using distributions and correlations to 

define heuristics
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Outline

1. Triggering Backtrack

 Feasibility Depth Extrapolation

 Modified Best Projection Aspiration

2. Choosing Node When Backtracking

 Modified Best Projection

 Distribution-based Backtracking

2.1 Active Node Search Threshold

3. Experiments

4. Conclusions
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1. Triggering Backtrack

Typical methods:

 Proceed depth-first until:

 A leaf node is reached 

 Current node no longer desirable:

 No optimum descendents (compare to incumbent)

 No feasible descendents.

 User-supplied aspiration value
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Improved Backtrack Triggers

Goal:

 Faster MIP solutions

Method:

 Heuristics to trigger backtrack when all descendents:

 Unlikely to be optimal or

 Unlikely to be feasible
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Predicting the Optimum Z

 Z*: optimum objective function value

 Zi: LP-relaxation objective function value at node i

 Minimization assumed

Concept:

 If Z* known in advance then trigger backtrack when 
node LP-relaxation value is worse

 For minimization, trigger backtrack if Zi > Z*

 Can we estimate in advance an aspiration value Za

that is close to Z*?

 Trigger backtrack if Zi > Za
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Proof of Concept

 Solve MIPs to find Z*

 Re-solve MIPs using Za = Z* to trigger backtrack

 Experimental setup:

 Solver: GLPK 4.9

 Default branching variable selection, backtracking node selection

 Root node cuts: Gomory cuts

 Test models: all MIPLIB/MIPLIB2003 that solve within 1 hour
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Proof of Concept

Geometric mean of ratio to 
best simplex iterations:

 no asp = 1.49

 perfect = 1.003
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Estimating Z*: State of the Art

Two methods normally used for node selection, 
not triggering backtrack:

Pseudo-cost estimates:

 Note ΔZ/Δx at each branching. Project Z* based on this.

Best-projection estimates:

 Compare (improvement in Z between root LP-relaxation 
and incumbent) to (reduction in integer infeasibility)

 Project Z* based on this.



11

Using Available Estimators

Geometric means:

perfect asp = 1.0005 

best-projection asp = 
1.50 

plain glpk = 1.60 

pseudo-cost asp = 1.62

Need something better!
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NEW: Using Depth Information

For nodes near depth of optimum: 

Zi ≈ Z*
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Can we predict depth of optimum?

Plotting a Dive:

First feasible solution when 
number candidates is 0
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Is There a Pattern?
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Is There a Pattern?
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Reconciling multiple active nodes

 There are multiple active nodes in the tree

 Each node provides a projected depth of first 
feasible solution

 Which estimated depth should we use?

 Is there a pattern?
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Observation: Optimum Depth

Optimum is 
shallowest 
integer-feasible 
node in about half 
of all cases
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Linear Extrapolation to Estimate Z*

 For every active node with depth ≥ 20

 Fit least-squares line to number of candidates vs. depth 
using all ancestor nodes

 Project depth of closest feasible solution (zero 
candidates)

 k = smallest extrapolated depth over all nodes

 Za = max of Zi over all nodes at depth (conservative)

Notes

 20 chosen empirically: enough data to extrapolate
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Linear Extrapolation
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Linear Extrapolation
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Linear Extrapolation
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NEW: Modified Best Projection 
Aspiration

Usual best projection for node selection:

 Za = Zi + (Zinc – Z0)si/s0

 si: sum of integer infeasibilities at node i

 s0: sum of integer infeasibilities at root node

 Can we eliminate the need for an incumbent solution 
so this method can be applied at any node?

 Is there a pattern?
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Zmin(c): min Z at given C
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Patterns in Zmin(C)
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Modified Best Projection Aspiration

 Za = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)

 Ci: number of candidate variables at node i

 Cmin: minimum number of candidate variables at any node

Notes:

 Eliminates need for an incumbent

 Closeness to feasibility measure:

 number of candidate variables instead of sum of integer 
infeasibilities

 Also used for node selection
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2. Choosing Node when 
Backtracking

State of the Art: 

 Choose node that is likely to have best objective 
function value:

 Best-projection

 Best-estimate (based on Pseudo-costs)‏

 Best-bound

 Depth-first backtrack to first active node

 ...

 No method dominates
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NEW: Distribution-based node selection

Balance pursuit of both feasibility and optimality

 Ci: number of candidate variables at node i

 Smaller Zi and Ci both desirable

 Zi tends to be large where Ci is small, and vice versa

Ranges quite different: how to balance?

 Normalize ranges of Zi and Ci assuming independent 
normal probability distributions

 Choose node n where n = arg min
i
P(Z ≤ Zi, C ≤ Ci)
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Notes on Distributions

 Joint probability function of Z and C unknown.

 Single variable functions:

 Assume Z and C are independent (iffy!)

 P(Z ≤ Zi, C ≤ Ci) = F
Z
(Zi)  F

C
(Ci)‏

 Functions tried in experiments:

 Uniform

 Rayleigh

 Gaussian (best result)

 Central Limit Theorem: sum of random varbs usually normal

 Easy to update as nodes created
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Example Distributions



30

Distribution Node Selection 
Algorithm

Distribution not helpful if:

 Standard deviation of Z is 0

 (Standard deviation of C) /depth is small, i.e. < 0.1 [empirical]

Algorithm:

 If standard deviation of Z or C too small then use default 
node selection method (best projection) and exit.

 For every active node i:

 F
ZC

(Zi,Ci) = F
Z
(Zi) * F

C
(Ci)

 Choose node n where n = arg min
i
F

ZC
(Zi,Ci)
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2.1 Active Node Search Threshold

Observations:

 Advanced node selection can take too much time

 Fewer iterations, fewer nodes, but more time

 Node search time proportional to num. active nodes

 Too many active nodes? 

 Default to simple depth-first backtracking

 E.g.:  mas76

 Best-projection: 17,598 sec, 3,186,117 itns, 1,177,063 nodes

 Depth-first: 785 sec, 5,691,683 itns, 2,165,073 nodes
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Threshold

 Rt = (time for node selection)/(time for all else)

 Cumulative time

 If Rt > 0.1, then switch to simple depth-first node 
selection

 Notes:

 0.1 is empirical

 Fix-up if aspiration cut-off is being used
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3. Experiments

Software:

 Solver: GLPK 4.9

 Branching variable selection: default

 Root node cuts: Gomory cuts

Hardware:

 CPU: Intel Core 2 6600 @ 2.4 GHz

 RAM: 4 GB

 OS: Linux 2.6.18

272 Test models: 
 all instances from MIPLIB/MIPLIB2003

 all instances from CORAL

 exclude instances not solved within time limit by default GLPK
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79 (legal) combinations of methods!

Backtracking node selection methods:

• Methods available in GLPK:
– DEPF: Depth-first

– BREF: Breadth-first

– DEBP: Default best-projection

– BESF: Best-First

• Methods added to GLPK:
– BEES: Best-estimate

– BFBE: BEES interleaved with BESF

• New methods
– DIST: Distribution

– MOBP: Modified Best-Projection

New Active node search threshold
– NOAN: No ANST (Default).

– ANST: Use ANST.

Backtrack triggering methods:

• Methods available in GLPK.
– NONA: Non-aspiration backtracking: 

backtrack only from leaves (default).

• Methods added to GLPK:
– ALLT: Perform backtracking node 

selection after every node solution.

– DBPA: Default best-projection 
aspiration

– PCAS: Pseudo-cost (best-estimate) 
aspiration

• New methods
– LEXA: Linear feasibility depth 

extrapolation aspiration

– MPAS: Modified best-projection 
aspiration
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Prefiltering Experiment

 Try all 79 combinations of methods on a subset of 
faster-solving models

 Select better methods for more extensive testing

 79 Models: 

 those solved by default GLPK within 30 min

 Ranking is sum of:

 Ranking by total time over all models (TR)

 Ranking by ratio of geom. mean of avg ratio to best (RR)

 Number of failed solutions (FAIL)
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Best Methods
Rank Configuration FAIL TR RR

1 MOBP-MPAS-ANST 1 3 2

2 MOBP-MPAS-NOAN 1 4 3

3 MOBP-PCAS-ANST 1 1 7

4 DIST-ALLT-NOAN 2 7 1

5 DIST-MPAS-ANST 1 6 4

5 MOBP-PCAS-NOAN 1 2 8

7 MOBP-LEXA-ANST 2 8 6

39 DEBP-NONA-NOAN 0 36 44

64 BESF-NONA-NOAN 6 62 65

71 BREF-NONA-NOAN 6 71 71

76 DEPF-NONA-NOAN 7 76 76

Backtracking

MOBP: Modified Best Projection

DIST: Distribution

Triggering

MPAS: Modified Best Proj Asp

PCAS: Pseudocost Aspiration

ALLT: After Every Node

LEXA: Linear Extrapolation

ANST

ANST: Active Node Search Thresh.

NOAN: No ANST
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Longer Experiments

 7 top-ranked methods from prefiltering experiment

 Highest-ranked existing combination method

 GLPK default

 All 272 models

 One hour time limit

 9 weeks of computation
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Overview of Results

272 MIP instances total:

 109 optimum found by at least 1 config

 130 no optimum but at least one feasible soln found

 33 no optimum and no feasible solutions found 
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Results

AT LEAST 1 OPT NO OPTIMUM

Config Fail TotTim Mratio Avgrank Nfirsts NINC

MOBP-MPAS-ANST 6 86,654 1.33 4.54 8 75

DIST-MPAS-ANST 6 86,654 1.37 2.89 34 21

MOBP-PCAS-ANST 6 88,560 1.34 4.34 11 72

MOBP-LEXA-ANST 6 91,509 1.40 4.18 17 57

DIST-ALLT-NOAN 15 97,340 1.34 2.48 67 17

MOBP-MPAS-NOAN 13 99,799 1.43 4.62 7 81

MOBP-PCAS-NOAN 12 100,752 1.50 4.6 9 82

DEBP-DBPA-NOAN 14 109,240 1.75 3.74 21 15

DEBP-NONA-NOAN 15 109,579 1.78 3.47 25 15
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Performance Profiles
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Conclusions

 New methods very effective in speeding MIP 
solutions

 Best configurations:

 MOBP-MPAS-ANST

 DIST-MPAS-ANST

 Best configurations composed entirely of new 
methods
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1. Analyzing Infeasible Math 

Programs

General methods that also apply to MIPs

Analyzing Infeasible MIPs4
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What is a “Constraint”?

Anything that restricts the solution space:

 A functional constraint:  3x1 + 8x2 ≤ 12

 A variable bound: x1 ≥ 0

 An integrality condition: x1 is integer
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Three Main Approaches

 Isolate an Irreducible Infeasible System (IIS)
 An infeasible set of constraints that becomes feasible if any 

constraint removed

 Main approach for MIPs

 Find a Maximum Feasible Subset (Max FS)
 Maximum cardinality subset of constraints that is feasible

 Find “best fix” for infeasible constraints
 Different matrix norms for measuring “best fix”
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General Methods for Finding IISs

 Assume solver perfectly accurate in deciding feasibility 
status of a set of constraints

 Reasonable assumption only for LP

 General methods for IIS isolation:

 Deletion Filter

 Additive Method

 Elastic Filter

 Additive/Deletion method
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The Deletion Filter

INPUT: an infeasible set of constraints.

FOR each constraint in the set:

Temporarily drop the constraint from the set.

Test the feasibility of the reduced set:

IF feasible THEN return dropped constraint to the set.

ELSE (infeasible) drop the constraint permanently.

OUTPUT: constraints constituting a single IIS.
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Deletion Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}

 {B,C,D,E,F,G} infeasible. A deleted.

 {C,D,E,F,G} feasible. B reinstated.

 {B,D,E,F,G} infeasible. C deleted.

 {B,E,F,G} feasible. D reinstated.

 {B,D,F,G} infeasible. E deleted.

 {B,D,G} feasible. F reinstated.

 {B,D,F} infeasible. G deleted.

Output: the IIS {B,D,F} 
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Deletion Filter: Characteristics

 Returns exactly one IIS, even if there are multiple IISs 
in the model

 Which IIS?
 IIS whose first member is last in the test list.

 Consider {A,B,C,D,E,F,G,H,I,J,K}.  IIS {G,I,K} found.

 Speed: isn’t this slow?
 For LP: time to isolate IIS usually a small fraction of time to find 

infeasibility initially

 Due to advanced starts: 
each LP is very similar to the previous one

 For MIP and NLP: slow
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The Additive Method

Main insight:

 Add constraints one by one and test feasibility after each 

constraint is added.

 As soon as the tested set becomes infeasible, the last-

added constraint must be part of an IIS
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The Additive Method

C: ordered set of constraints in the infeasible model.

T: the current test set of constraints.

I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.

Step 0: Set T = I = .

Step 1: Set T = I.

FOR each constraint ci in C:

Set T = T  ci.

IF T infeasible THEN

Set I = I  ci.

Go to Step 2.

Step 2: IF I feasible THEN go to Step 1.

OUTPUT: I is an IIS.
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Additive Method: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}

 {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all feasible.

 {A,B,C,D,E,F} infeasible: I = {F} is feasible.

 {F,A}, {F,A,B}, {F,A,B,C} all feasible.

 {F,A,B,C,D} infeasible: I = {F,D} is feasible.

 {F,D,A} feasible.

 {F,D,A,B} infeasible: I = {F,D,B} infeasible. Stop.

Output: the IIS {F,B,D}
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Additive Method: Characteristics

 Returns exactly one IIS, even if there are multiple IISs 
in the model

 Which IIS?
 IIS whose last member is first in the test list.
 Consider {A,B,C,D,E,F,G,H,I,J,K}.  IIS {B,E,J} found.

 Speed:
 If IIS is small and early in the list of constraints, can use far 

fewer feasibility tests than deletion filter

 For LP:
speed similar to deletion filter due to basis re-use

 For MIP and NLP: slow
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Additive/Deletion Method

1. Apply additive method until first infeasible subset of 
constraints is found. 

2. Apply deletion filter to subset.

 Consider {A,B,C,D,E,F,G,H,I,J,K}
 Additive alone: 29 solutions

 Additive/deletion: 19 solutions

 Deletion alone: 11 solutions

 More efficient.
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Dynamic reordering additive method

 If an intermediate test is feasible, scan all of the 

constraints past the current one and immediately add to 

T all those that are satisfied at the current test solution

 Can avoid many model solutions
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Speed-up: Grouping Constraints

 Add/drop constraints in groups
 In order, or by category

 Deletion Filter: back up and add singly if deleting a 
group causes feasibility

 Additive Method: back up and do singly if adding a 
group causes infeasibility

 Fixed group size? Adaptive group sizing?

 More recently: binary versions that split groups into 
halves in a combination of additive method and 
deletion filter



2. Extension to MIP
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MIP Infeasibility

 Three classes of 

constraints:

 Linear row constraints 

(LC)

 Variable bounds (BD)

 Integer Restrictions (IR)

feasible
region

all integer point

LP

A

B

C

x

y



Proving (In)feasibility in MIPs
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 Proving feasibility:

 Find any feasible node in 

the search tree

 Proving infeasibility:

 Expand entire tree until 

all leaves infeasible

Infeasible Node

Infeasible Node

Feasible Node



Analysis is Slow
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 Methods rely on many MIP solutions, each having slightly 

different subsets of constraints

 Fast for LP due to hot starts

 Slow for MIPS

 Adjust methods to reduce the number of MIP solutions 

needed:

 Also to deal with other nontermination
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Difficulty: Nontermination in MIPs

all-integer point

LP-relaxation

x
1

2

3

4

5

6

solution point

y

minimize x+y
x,y are integers
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Dealing with Non-termination

 If computation limit exceeded on subproblem:

 Retain constraint and label it dubious

 Another approach:

 Add safety bounds on variables

 May return infeasible subsystem (IS) instead of IIS if there 
are dubious constraints or safety bounds are active

 Non-termination can be frequent as constraints are 
removed by the IIS-finding algorithms



State of the Art in Infeasibility Analysis
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 LP: 

 Very well developed theory

 Fast in practice, implemented in most LP solvers

 MIP

 Methods for general math programs adapted for MIPs

 Relatively slow

 Infeasible MIPS:

 Easy to analyze if caused by LP infeasibility

 Interesting case is interaction with integer restrictions



Direct Application of Deletion Filter

 Nontermination may be frequent:

 Preset computation limit for subproblems
(max nodes in subproblem tree)

 Constraint labelled dubious.

 Reducing incidence of nontermination:

 Leave variable bounds in place as long as possible

 Delete in this order: IR, LC, BD

 Slow but effective

 Test in groups
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Direct Application of Additive Method

 Assuming initial LP relaxation is feasible: 

 Start with LC, BD in test set T

 Feed in the integer restrictions one by one

 Cannot directly identify dubious constraints

 Test set always feasible or indeterminate, until infeasible

 No indication of which constraint caused nontermination

 In deletion filter, last constraint removed before 

nontermination can be labeled dubious

 Dynamic reordering can speed analysis
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Additive/Deletion Method
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 Can also be used

 Identifies dubious constraints during deletion filter



3. Special Methods for MIP
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Useful Info in Original B&B Tree

 Recall:  
 intermediate nodes are LP-feasible, leaf nodes are LP-infeasible

 Theorem 1:
 The IR set satisfied at any intermediate node cannot be the whole 

IR part of any IIS

 Theorem 2:
 Mark LCs and BDs having nonzero shadow prices at any leaf 

node. 

 IR  {marked LCs}  {marked BDs} is infeasible

 Can eliminate some LCs and BDs from consideration

 Theorem 3:
 Active IRs are those actually used in the B&B tree branching

 {active IRs}LC BD is infeasible

 Can eliminate some IRs from consideration
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Using Info in Original Tree

 Eliminate LCs and BDs that are not sensitive in any 

leaf (Thm 2)

 Eliminate IRs not in active set (Thm 3)

 Path set: set of IRs used in branching on a root-to-leaf 

path.

 Path sets good candidates for the IR set in an IIS

 Use Thm 1 to eliminate candidate paths
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Speed-ups

 Use alternative objective function (especially one 

which determines infeasibility faster) 

 e.g.  Elastic varbs on constraints introduced during branching

 Minimize sum of slacks

 Other MIP solver settings

 Branch on most infeasible variable?

 Depth-first vs. other node selection schemes?
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4. Empirical Tests
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Empirical Tests

 20 infeasible test problems (hard to find!)

 Avg. 238 LCs, 518 BDs, 80 IRs

 Software: Cplex 3.0 (!) and MINTO

 Max 10,000 nodes in any subproblem

 Avg. initial solution:

 437 B&B tree nodes

 1719 LP iterations

 Soln time: 6 secs
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Results
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method IISs 

(term)

dubious

IR-LC-BD

IRs LCs BDs nodes LP itns time

LC-IR-BD deletion 5 (0) 0-17-182 16 132 290 499,154 3,401,931 9:12:46

IR-LC-BD deletion 5 (0) 0-16-185 12 154 321 344,797 1,913,248 2:27:44

IR-LC-BD del, grp 4 5 (0) 0-16-186 12 153 311 189,561 1,246,078 1:51:31

Dyn. reorder add/del 3 (0) 0-0-8 8 135 309 124,512 1,487,991 2:25:21

Additive 4 (3) NA 9 50 142 172,688 982,255 1:12:12

Dyn. reorder 

additive

4 (3) NA 8 40 145 130,068 396,176 19:41

Initial tree w del 

filter (10 models)

1 (0) 0-168-475 6 209 520 61,330 Not 

recorded

0:58:43

Averages over 20 models. 

Sun 10/30c computer, 36 MHz SPARC Sun 4 CPU, 33 Mbytes of memory



Conclusions (1)

 Slow 

 Best method avg 1:51:31 vs. 6 sec for initial detection of 

infeasibility

 Effective. Best method eliminates: 

 90% of IRs, 

 43% of LCs 

 40% of BDs)

 BUT: machine time is cheap, people time is expensive!
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Conclusions (2)

 Best method (IIS fairly often, smallest IISs, fewest dubious 

constraints):

 dynamic reordering additive/deletion method

 Fastest method:

 info from original B&B tree

 IR-LC-BD deletion filter

 constraint grouping (fixed size)
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5. In Practice
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Cplex “Conflict Refiner” for MIPs

Analyzing Infeasible MIPs39

 May add/delete constraints in groups

 Can specify preferences for inclusion/exclusion of 

constraints or groups in the IIS

 Heuristics to try to find an infeasible subset more quickly, 

then apply detailed analysis



LINDO
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 Similar capabilities in LINDO/LINGO
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Conclusions

 Branch-and-bound/cut framework permits a very wide 

variety of heuristics

 New developments mainly in heuristics

 Heuristics can interact in unpredictable ways

 MIP heuristics are an active area of research

 Significant progress in recent years

 Feasibility-seeking especially

 New commercial players

 Microsoft: solver foundation

 Gurobi
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Future Research Directions

 Taking advantage of multiple cores

 Choosing the best heuristics dynamically

 General disjunctions
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