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Find First Feasible Solution Quickly

MIP Feasibility: Classic Methods3

 Why?

 Integer-feasibility may be the only goal.

 Shortens time to optimality:

 First incumbent prunes subsequent tree. Early incumbent important.

 If backtracking algorithm is good, then closest integer-feasible 

descendent usually has best objective function value.

 Helps ensure solution in case of time-out.

 Helpful in infeasibility analysis.
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“Classic” feasibility-focused heuristics

For pure binary problems:

 Pivot-and-complement

 OCTANE

For general MIPs:

 Pivot-and-shift
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BIP: Pivot-and-Complement

 Inequality-constrained Binary Integer Program (BIP)

 Feasibility-seeking first phase

 Main insight:

 BIP has LP equivalent in which all binary varbs are nonbasic at 

upper or lower bound

 One basic variable per constraint

 Hence all slack variables must be basic

 BIP: max cx s.t. Ax≤b, xj binary

 LP: max cx s.t. Ax+y=b, 0≤x≤1, y≥0, yi basic

 Balas and Martin 1980



MIP Feasibility: Classic Methods6

Pivot-and-Complement

Operations to force slacks to be basic:

 Type 1 pivot: maintain LP feasibility, exchange  
nonbasic slack and basic binary varb

 Type 2 pivot: maintain LP feasibility, exchange slack 
for slack or binary for binary but reduce sum of 
integer infeasibility

 Type 3 pivot: sacrifice LP feasibility, exchange 
nonbasic slack for basic binary

 Complement: flip the values of 1 or 2 binary varbs
to reduce an infeasibility measure

 Rounding and truncating solutions.



MIP Feasibility: Classic Methods7

BIP: OCTANE

 OCTAhedral Neighbourhood Evaluation

 Main insight:

 N-dimension octagon around binary n-cube associates octagon 
facets with binary solutions

 Given current soln (e.g. LP-relaxation) and improvement 
direction:

 Improving rays cross extended facets of octagon

 Crossed facet has associated binary solution

 A kind of neighbourhood search

 Balas, Ceria, Dawande, Margot, Pataki 2001
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OCTANE

 Find first k octagon 

facet intersections

 Check associated 

binary solutions

1st intersection

2nd intersection

x
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OCTANE Details

 Unit cube actually centred at origin, so offset by ½ 

 OCTANE not run at every node of branch-and-cut tree

 Every node in first 5 levels of tree

 Every 8th node thereafter
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MIP: Pivot-and-Shift

 Extension of pivot-and-complement

 Initial feasibility-seeking stage: 

 Rounding

 Pivot-and-shift operations

 Small neighbourhood searches

 Balas and Martin 1986; Balas, Schmieta and Wallace 2004
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Types of Pivots

Operations:

 Type 1 pivot: maintain LP feasibility, exchange basic int varb
and nonbasic continuous varb

 Type 2 pivot: maintain LP feasibility and improve obj fcn, 
exchange continuous varb with cont, or int varb with int

 Type 3 pivot: maintain LP feasibility while reducing int
infeasibility, exchange cont varb with cont, or int varb with int

Feasibility maintained:

 Entering basic variable (col) chosen according to type of pivot

 Leaving basic variable (row) chosen by minimum ratio test



Other Operations

 Rounding (shifting).

 Small neighbourhood search: 

 MIP search in neighbourhood around a near-feasible soln
(tot int infeas < limit, e.g. 0.1).

12 MIP Feasibility: Classic Methods



Pivot-and-Shift Flowchart

Round Type 1: exchange basic 

int varb and nonbasic

cont varb (cycle)

Round Integer? Stop

Type 3: reduce integer 

infeasibility (cycle)

Type 3 

success?

Small 

neighbourhood 

search

Type 2: improve obj. 

function (cycle)

yes

yes

no

no
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Pivot-and-Shift Details

 Time limit

 Abandon in favour of Xpress-MP solver if:

 No integer-feasible soln within time limit

 Integer soln obtained by rounding has obj fcn value 40%+ 
worse than bounding fcn value of unrounded soln

 Empirical tests:

 Much faster to first feasibility than standard Xpress-MP.
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Conclusions

 Significant progress 1980-mid 2000s

 Recent renewed interest:

 Updated pivot-and-shift (2004)

 The feasibility pump (2005)

 Active constraints branching (2006)

 Etc…….
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Branch & Bound (simplified)

Active Constraint Branching Variable Selection3

After start-up…

1. If no unexplored nodes left then exit: optimal or 
infeasible.

2. Choose unexplored node for expansion and solve 
its LP relaxation.
 Infeasible: discard the node, go to Step 1.

 Feasible and integer-feasible: check for new incumbent, go 
to Step 1.

3. Choose branching variable in current node and 
create two new child nodes.



Main B&B Design Decisions

Active Constraint Branching Variable Selection4

 How choose next node from list?

 Depth-first?

 Usual choice for efficiency of basis re-use.

 Global best value of  bounding function?

 Original objective function?

 minimum sum of integrality violations?

 Breadth-first?

 Etc.

 How choose branching variable?

 How choose branching direction?



Is Branching Variable Selection Important?

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)

Active Constraint Branching Variable Selection5



Traditional Branching Variable Selection

Active Constraint Branching Variable Selection6

 Based on estimated impact on objective function

 Goal: maximize degradation in the objective function value 

at optimal solution of child node LP relaxations.

 e.g. pseudo-costs



Active Constraints Approach

Active Constraint Branching Variable Selection7

Goal: make child node LP-relaxation optima far from 
parent node LP-relaxation optimum.

 Active constraints fix the position of the LP optimum 
solution in parent, so…

 Choose branching variable that has most impact on the 
active constraints in parent LP relaxation optimum 
solution.
 Select variable that is most tightly constrained first

 Constraint-oriented approach.

 Note: “active constraints” include tight degenerate constraints



Impact of the Branching Variable

Active Constraint Branching Variable Selection8

y 

x 

LP relaxation 
before 
branching 

Branch on x Branch on y 
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Region 



Estimating Candidate Variable Impact on 

Active Constraints

Active Constraint Branching Variable Selection9

1. Calculate the “weight” Wik of each candidate 

variable i in each active constraint k

 0 if the variable does not appear in constraint

2. For each variable, calculate total weight over all 

active constraints.

3. Choose variable that has the largest total weight.

Dynamic variable ordering: changes at each node.



Overview of Weighting Methods

Active Constraint Branching Variable Selection10

 Is candidate variable in active constraint or not?

 Relative importance of active constraint:
 Smaller weight if more candidate or integer variables: changes in other 

variables compensate for changes in selected variable.

 Normalize by absolute sum of coefficients.

 Relative importance of candidate variable within active 
constraint:
 Greater weight if coefficient size is larger: 

candidate variable has more impact.

 Sum weights over all active constraints? 
Look at biggest impact on single constraint?

 Etc.



Methods A, B, L

Active Constraint Branching Variable Selection11

Numerous variants. Subset of best:

 A: Wik=1.

 Is candidate variable present in the active constraint?

 B: Wik = 1/ [Σ(|coeff of all variables|].

 Like A, but relative impact of a constraint normalized by absolute 

sum of coefficients

 L: Wik = 1/(no. integer variables)

 Like A, but relative impact of a constraint normalized by number of 

integer variables it contains

 Related to MOMS rule?



Methods M, O, P

Active Constraint Branching Variable Selection12

 M: Wik = 1/(no. candidate variables)

 Like A, but relative impact of a constraint normalized by number of 

candidate variables it contains

 Not used directly: see H methods

 O: Wik = |coeffi|/(no. of integer variables)

 Like L, but size of coefficient affects weight of varb in constraint

 P: Wik = |coeffi|/(no. of candidate variables)

 Like M, but size of coefficient affects weight of varb in constraint



Methods HM, HO

Active Constraint Branching Variable Selection13

 H methods: for a given base method, choose the variable 

that has largest weight in any single active constraint

 Do not sum across active constraints

 HM: based on method M

 HO: based on method O



Experimental Setup: Solvers

Active Constraint Branching Variable Selection14

 Cplex 9.0 (baseline): all default settings, except:

 MIP emphasis: find feasible solution

 Experiment 1 (basic B&B): all heuristics off

 Experiment 2: all heuristics turned on

 Active Constraint solver:

 Built on top of Cplex

 Callbacks set branching variable

 No optimization of data structures for active constraint methods: 

inefficient searching

 Node selection:

 Experiment 1: Straight depth-first, branch up

 Experiment 2: Cplex default



Experimental Setup: 

Premature Termination

Active Constraint Branching Variable Selection15

 Time limit: 28,800 seconds (8 hours)

 Data structures not optimized for active constraint methods, 
hence penalizes them

 Node Limits:

 100,000 nodes

 Limit on active-constraint methods:
(Cplex nodes + 1000)

 Tree memory, node file size:

 Never exceeded.



Experimental Setup: Metrics

Active Constraint Branching Variable Selection16

 Number of B&B nodes

 Number of simplex iterations
 No. of B&B nodes does not penalize for jumping around tree, 

reducing ability to use advanced starts

 Tracks well with solution time (except as noted later)

 Feasibility Success Ratio
 Fraction of cases where better than Cplex

 Quality Success Ratio
 fraction of cases in which the first feasible solution has 

optimality gap equal to or smaller than optimality gap for first 
feasible solution returned by Cplex

 Performance Profiles



Experimental Setup: Test Models

Active Constraint Branching Variable Selection17

 MIPLIB 2003 set

 60 models

 Range of difficulties

 Rows: 6–159488

 Cols: 62–204880

 Integer variables: 1–3,303

 Binary variables: 18–204,880

 Continuous variables: 1–13,321

 Nonzeroes: 312–1,024,059



Experiment 1: Notes

Active Constraint Branching Variable Selection18

 All internal heuristics off

 58 models used

 2 models prematurely terminated by all methods, including 

Cplex



Experiment 1: Number of Nodes

Active Constraint Branching Variable Selection19

 All 58 Models 40 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

nodes 

than 

Cplex FSR 

times 

term. 

(fewer 

nodes at 

time-out) 

Avg. 

nodes: 

(avg. 

nodes)/ 

(Cplex avg. 

nodes) 

avg. 

ratio 

to 

best 

Cplex 9.0 7   4 1967.5  58.22 

A 30 47 0.810 7 (2) 149.5 0.076 1.19 

HM 28 45 0.776 8(2) 130.5 0.066 1.18 

HO 35 45 0.776 9 (3) 123.3 0.063 1.47 

O 36 43 0.741 11 (3) 116.1 0.059 1.11 

P 32 44 0.759 10 (2) 156.2 0.079 1.37 

 



Exp 1: Nodes Peformance Profiles

Active Constraint Branching Variable Selection20

Experiment 1 Nodes Performance Profile
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Experiment 1: Simplex Iterations

Active Constraint Branching Variable Selection21

 All 58 Models 40 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

itns 

than 

Cplex FSR 

times 

term. 

(fewer 

itns at 

time-out) 

Avg. 

itns: 

(avg. itns)/ 

(Cplex avg. 

itns)  

[w/o disctom] 

avg. 

ratio to 

best 

Cplex 9.0 12   4 55052  14.93 

A 30 43 0.741 7 (3) 36484 0.663 [0.214] 1.17 

HM 28 40 0.690 8(3) 35173 0.639 [0.245] 1.18 

HO 23 40 0.690 9 (3) 117320 2.131 [0.237] 1.48 

O 25 37 0.638 11 (4) 117401 2.133 [0.239] 1.38 

P 30 41 0.707 10 (3) 216100 3.925 [0.232] 1.67 

 



Exp 1: Simplex Iterations Perf. Profiles

Active Constraint Branching Variable Selection22

Experiment 1 Iterations Performance Profiles
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Experiment 2: Notes

Active Constraint Branching Variable Selection23

 All internal heuristics on.

 25 models used:

 3 models prematurely terminated by all methods

 32 models solved at root node

 Heuristics impact is mixed:

 Many models solved at root node

 Others: half slower with heuristics on, half faster.

 1 model solvable with heuristics off, but not solvable with 

heuristics on



Experiment 2: Number of Nodes

Active Constraint Branching Variable Selection24

 All 25 Models 12 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

nodes 

than 

Cplex FSR 

times 

term. 

(fewer 

nodes at 

time-out) 

Avg. 

nodes: 

(avg. 

nodes)/ 

(Cplex avg. 

nodes) 

avg. 

ratio 

to 

best 

Cplex 9.0 4   1 1214.6  23.86 

B 9 17 0.680 5 (1) 235.0 0.193 2.02 

L 7 17 0.680 6 (1) 233.0 0.192 2.01 

HM 6 16 0.640 7 (2) 262.9 0.216 2.13 

HO 6 13 0.520 8 (2) 260.9 0.215 1.96 

P 9 15 0.600 9 (1) 293.8 0.242 1.27 

 



Exp 2: Nodes Performance Profiles
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Experiment 2 Nodes Performance Profiles
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Experiment 2: Simplex Iterations

Active Constraint Branching Variable Selection26

 All 25 Models 12 Comparable Models 

method 

times 

within 

10% of 

best 

fewer 

itns 

than 

Cplex FSR 

times 

term. 

(fewer 

itns at 

time-out) 

Avg. 

itns 

(avg. itns)/ 

(Cplex avg. 

itns)  

[w/o disctom] 

avg. ratio 

to best 

Cplex 9.0 7   1 32578  6.89 

B 5 14 0.56 5 (1) 400552 12.295 [0.452] 4.37 

L 7 14 0.56 6 (2) 400233 12.285 [0.437] 4.38 

HM 2 14 0.56 7 (3) 108898 3.343 [0.760] 2.15 

HO 6 15 0.60 8 (3) 418697 12.852 [0.785] 4.66 

P 9 14 0.56 9 (2) 609275 18.702 [0.367] 5.90 

 



Exp 2: Simplex Iterations Perf. Profiles
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Experiment 2 Iterations Performance Profiles
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Quality Success Ratios

Active Constraint Branching Variable Selection28

Experiment 1 

over 40 comparable models  

Experiment 2 

over 12 comparable models 

method QSR   method QSR  

A 0.53  B 0.75 

HM 0.55  HM 0.50 

HO 0.58  HO 0.50 

O 0.70  L 0.58 

P 0.78  P 0.33 

 



Experiment 1 Conclusions

Active Constraint Branching Variable Selection29

 Active constraints branching variable selection is much

better than commercial state of the art in achieving 

feasibility quickly:

 Much faster in almost all cases.

 Optimality gap at first feasible solution is usually better.

 Several methods very good

 Simple method A the best.



Experiment 2 Conclusions

Active Constraint Branching Variable Selection30

 Active constraints branching variable selection is 
better than commercial state of the art in achieving 
feasibility quickly:
 Faster more often than not.

 Optimality gap at first feasible solution is usually better for 
most methods.

 Cplex heuristics have uneven results
 How do heuristics, models, and active constraints methods 

interact?

 Active constraints methods can be used internally to 
heuristics.



Integration with Other Methods

Active Constraint Branching Variable Selection31

 Octane and Pivot-and-Shift:

 Comparing reported results: active constraint methods better

 Active constraint methods integrate easily with both methods: 

use when selecting among variables to branch on

 Feasibility Pump

 Use after feasibility pump finished



Reference

Active Constraint Branching Variable Selection32
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Ongoing Research: New Methods

Active Constraint Branching Variable Selection33

 Choose candidate varb whose boundary has most 

oblique angle to an active constraint

 Tie-breaking:

 Many methods give numerous ties, e.g. A

 Pair with another method to break the ties

 Choose randomly?

 Branching direction

 How predict whether to branch up or down?

 E.g.: branch to “inside” of an inequality



Ongoing Research: New Approach

Active Constraint Branching Variable Selection34

Now: same method from start to end

 Should different methods be used depending on conditions at 

current node?

 Special case:

 Presence of active “hard” constraints 

(all binary variables, all coefficients are 1s)

 Choose only from among candidate varbs in hard constraints

 Other special cases?

 Classifier to determine method to use at node, based on conditions 

at the node

 Promising so far: first leaf found very often feasible



Ongoing Research: 

Properties of Solution Trees

Active Constraint Branching Variable Selection35

 1-2 candidate variables very common.

 Theory: more nodes are closer to leaves, where there are few 

candidate variables

 When most oblique angle is high (70+), there are few 

candidate variables.

 Theory: happens far down in the B&B tree, so most facets 

squared off by added bounds.



Ongoing Research: Best Choice at Node

Active Constraint Branching Variable Selection36

Basic data:

 Full expansion on all candidate varbs, both up and 

down directions, at every node in smaller MIPLIB 

2003 models

 Calculate total Integer Infeasibility (II) for all choices

 Use II reduction between parent and child to identify “best” 

choice at a node

 Comment: “ultra-strong” branching an effective method!

 Data used to train classifier:

 Which varb selection method to use at this node?



Future Research

Active Constraint Branching Variable Selection37

 Extension to finding optimum solution

 Use active constraint method to first feasibility, objective-based 

method thereafter?

 Incorporate aspiration level as another constraint?
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Faster Integer Feasibility 
in MIPs by Branching to 
Force Change

John W. Chinneck
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Systems and Computer Engineering 
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A Question...

 You can either:

a) Branch to have largest probability of satisfying 
constraints in a MIP, or

b) Branch to have smallest probability of satisfying 
constraints in a MIP.

 Which policy leads to the first feasible 
solution more quickly?

Faster MIP Feasibility by Forcing Change 3
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1. B&B Algorithms for MIPs

Main ingredients:

 Node selection heuristic

 Branching variable selection heuristic 
 Choose from among candidate variables

 Branching direction selection heuristic
 k ≤ x ≤ k+1, where k and k+1 are closest integers
 Branch down: add x≤k and solve new LP relaxn
 Branch up: add x≥k+1 and solve new LP relaxn

5Faster MIP Feasibility by Forcing Change



Node selection

 Many possible heuristics

 Depth-first is typical

 LP advanced start based on parent LP solution

 Back-tracking

 When current dive ends at leaf node 
(feasible or infeasible)

 Many different heuristics

6Faster MIP Feasibility by Forcing Change



Branching

Assume node has been selected:

 If there are k candidate branching variables, and can branch up or 
down, then there are 2k branching possibilities.

Main categories of methods:

A. Choose branching variable, then  choose branching direction
 Most common method

 Branching variable selection well researched

 Branching direction selection little researched

B. Choose branching variable and direction simultaneously
 Very few methods

7Faster MIP Feasibility by Forcing Change



What is the Best Branching
Heuristic for Feasibility?

Metric: 
shortest time to first integer-feasible solution

 Sometimes feasibility is the only goal
 Early incumbent shortens time to optimality 

(better pruning)
 If node selection method is effective, 

reaching an integer-feasible descendent 
quickly helps shorten time to optimality

8Faster MIP Feasibility by Forcing Change



Branching Variable Selection

 Active Constraints Variable Selection 
(Patel and Chinneck 2007):

 Choose candidate variable having greatest impact 
on the active constraints in current LP relaxation

 All other methods look at impact on objective fcn

 Reaches integer-feasibility very quickly

 Method A: choose candidate variable appearing in 
largest number of active constraints

Faster MIP Feasibility by Forcing Change 9



Active Constraints Results

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23,481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14,753 26 (A)

glass4 7,940 62 (A, HM, HO, O, P)

nsrand-ipx 3,301 18 (HM)

timtab2 14,059 100,000+ (limit)

Faster MIP Feasibility by Forcing Change 10
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Branching Direction Selection

 Usually available in a solver:

 UP always

 DOWN always

 CLOSEST INTEGER

 Sometimes available in a solver:

 FARTHEST INTEGER

 Specialized heuristics (“let solver choose”)...

 No method dominates in the literature

Faster MIP Feasibility by Forcing Change 12



Branching Variable and Direction

 Driebeek and Tomlin

 Estimate objective function degradation for 
variable/direction combination using a dual pivot

 Largest degradation chooses variable

 Smaller of two degradations chooses direction

 Default branching method in GLPK

Faster MIP Feasibility by Forcing Change 13



“Multiple Choice” Constraints

x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

 Branch down: xi can take real values

 Branch up: all xi forced to integer values

E.g.:  x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)

Branching on x1 :

 Branch down: (0, 0.333, 0.333, 0.333) or others

 Branch up: (1, 0, 0, 0) is only solution

Faster MIP Feasibility by Forcing Change 14



2. A New Principle

 Observations

 Often: each branching forces roughly 1 candidate 
variable to integrality

 Desirable: force as many candidates as possible to 
integrality at each branch

 Note: integer-feasible when number of 
candidate variables is zero

Faster MIP Feasibility by Forcing Change 15



Frequent Pattern

Faster MIP Feasibility by Forcing Change 16



New Principle

 Branch to Force Change

 E.g. Branch up on multiple choice constraints

 E.g. Active constraint branching variable selection

 In general:

 Branch to cause change that will propagate to as 
many candidate variables as possible.

 Hope that many will take integer values.

Faster MIP Feasibility by Forcing Change 17



Reach Integrality Faster

Faster MIP Feasibility by Forcing Change 18



3. Experimental Setup

 Modifications to GLPK 4.28

 Stopping: first feasible solution, or two hours

 Node selection:
 Driebeek and Tomlin (GLPK default), or
 Depth first

 Test models
 142 total, 47 equality-containing, 95 equality-free 
 56 from MIPLIB2003
 11 from MIPLIB 3.0
 7 from MIPLIB 2.0
 68 from COR@L

 Speed metric: number of simplex iterations
 Due to variety of machines

Faster MIP Feasibility by Forcing Change 19



4. Evaluating Simple Branching 
Direction Heuristics

Faster MIP Feasibility by Forcing Change 20
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Branching UP Usually Best

 Folklore: 
branching up 
is best
 Empirically 

supported

 UP is best, 
DOWN is 
worst

 Affected by 
equality 
constraints

Faster MIP Feasibility by Forcing Change 21
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5. Probability-based Branching

Counting solutions (Pesant and Quimper 2008)

 l ≤ cx ≤ u : l, c, u are integer values, x integer

 Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0
Value of x2 Range for x1 Soln count Soln density

x2=0 [0,10] 11 11/18 = 0.61

x2=1 [0,5] 6 6/18 = 0.33

x2=2 [0] 1 1/18 = 0.06

Total solutions 18

 Choose x2 =0 for max prob of satisfying constraint

 Is this the best thing to do?

Faster MIP Feasibility by Forcing Change 22



Generalization

Assume:
 All variables bounded, real-valued
 Uniform distribution within range
Result:
 linear combination of variables yields normal 

distribution for function value
 Mean: ∑ai(li+ui)/2, where xi has range [li, ui]
 Variance: ∑ai

2[(ui-li+1)2-1]/12
 Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5

has mean 25, variance 110.83
 Plot.... Look at g(x) ≤ 12
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g(x) = 3x1 + 2x2 + 5x3 ≤ 12, 0 ≤ x ≤ 5

Probability density plot
• Cumulative prob of satisfying function in blue
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Use for Branching

• Separate distributions for 
DOWN and UP branches due 
to changed variable ranges

• Calculate cumulative 
probability of satisfying 
constraint in each direction

Example:

• Branch on x1=1.5

• Down: x1 range [0,1], p=0.23

• Up: x1 range [2,5], p=0.05
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New: Handling Equality Constraints

 Look at centeredness of RHS value in the two 
prob. curves created by branching UP or DOWN

 For each of branch-UP and branch-DOWN:
 Calculate cum. prob. of being less than RHS
 Calculate cum. prob. of being more than RHS
 Calculate ratio: 

(smaller cum. prob.)/(larger cum. prob.)
 Least centered = zero; most centered = 1

 For “highest prob.” methods, choose most 
centred direction, i.e. ratio closest to 1

 For “lowest prob.” methods, choose least centred
direction, i.e. ratio closest to zero
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New Branching Direction Methods

Given the branching variable:

 Choose direction based on cum. prob. in any
active constraint branching variable is in:
 LCP: Lowest Cum. Prob. in any active constraint
 HCP: Highest Cum. Prob. in any active constraint

 Choose direction based on votes using cum. 
prob. in all active constraints branching variable 
is in:
 LCPV: direction most often selected based on lowest 

cum. prob.
 HCPV: direction most often selected based on highest 

cum. prob.
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New Simultaneous Variable 
and Direction Methods

 VDS-LCP: choose varb and direction having 
lowest cum. prob. among all candidate varbs
and all active constraints containing them

 VDS-HCP: choose varb and direction having 
highest cum. prob. among all candidate varbs
and all active constraints containing them
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6. New Violation-Based Methods

 If all variable values except branching variable 
are fixed, what happens when branching 
direction is UP vs. DOWN?
 Inequality: is act. constraint violated or still satisfied?

 Equality: construct cum. prob. curves for up/down
 “violated”: less centred direction

 “satisfied”: more centred direction

 MVV: Most Violated Votes method
 Choose direction that violates largest number of 

active constraints containing branching varb.

 MSV: Most Satisfied Votes method
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7. Experiments: 
Branching to Force Change

 Compare methods in pairs: 

 Branching to high vs. low prob. of satisfying  active 
constraints

 GLPK default included in all comparisons

 Branching variable selection: GLPK default 

 Except for variable-and-direction methods

Faster MIP Feasibility by Forcing Change 30



Faster MIP Feasibility by Forcing Change 31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

LCP/LCPV vs. HCP/HCPV: All Models

GLPK Default

LCP

HCP

LCPV

HCPV



Faster MIP Feasibility by Forcing Change 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: All Models

GLPK default

VDS-LCP

VDS-HCP



VDS Methods With Equality Constraints

• VDS-LCP even 
more dominant

• The centering 
strategy is 
effective
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Effect of Branching Variable Heuristic

fraction fewest 

simplex iterations fraction solved

GLPK Default 0.1620 0.8239

GLPK-UP 0.2887 0.8592

A-UP 0.3662 0.8944

GLPK-LCP 0.1831 0.8310

A-LCP 0.3028 0.8592

GLPK-LCPV 0.1901 0.7958

A-LCPV 0.2394 0.8521

GLPK-MVV 0.2042 0.8310

A-MVV 0.3028 0.8521
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Conclusions Thus Far

 Branching to force change in the candidate 
variables is fastest to first feasible solution
 LCP better than HCP

 LCPV better than HCPV

 VDS-LCP better than VDS-HCP

 MVV better than MSV

 Constraint types have an impact:
 Equality constraints; multiple choice constraints

 One counter-example: set covering
 Feasible solution easy: set all variables to 1
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8. A-UP vs. VDS-LCP

Faster MIP Feasibility by Forcing Change 38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
 o

f 
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

A-UP vs. VDS-LCP: All Models

GLPK Default

A-UP

VDS-LCP



9. Branching Up Revisited

 Why is it so good?

 Presence of multiple choice constraints?
 104 of 142 (73%) models have at least one
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Prob. in Multiple Choice Constraints

# Variables Cum. Prob. Up Cum. Prob. Down

2 0.158655254 0.841344746

3 0.078649604 0.5

4 0.041632258 0.281851431

5 0.022750132 0.158655254

6 0.012673659 0.089856247

# Variables Equality Ratio Up Equality Ratio Down

2 0.188573417 0.188573417

3 0.085363401 1

4 0.043440797 0.392469529

5 0.023279749 0.188573417

6 0.012836343 0.098727533
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10. Contributions

 Principle of branching to force change in the 
candidate variables leads to faster feasibility
 Surprise! Branch to low-probability direction

 Presence of equalities, multiple choice 
constraints affects performance of heuristics
 UP works well because it is more often the lower 

probability direction

 Extension of probability-based methods to 
equality constraints

 New branching methods (esp. VDS-LCP)
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Branch and Bound

Main B&B algorithm design choices:

 How to choose the integer infeasible 

(candidate) variable to branch on at a node.

 How to choose the unexplored (active) node to 

solve next.

 Triggering backtrack.

 Which node to choose when backtracking.

 Theme: using distributions and correlations to 

define heuristics
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Outline
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1. Triggering Backtrack

Typical methods:

 Proceed depth-first until:

 A leaf node is reached 

 Current node no longer desirable:

 No optimum descendents (compare to incumbent)

 No feasible descendents.

 User-supplied aspiration value
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Improved Backtrack Triggers

Goal:

 Faster MIP solutions

Method:

 Heuristics to trigger backtrack when all descendents:

 Unlikely to be optimal or

 Unlikely to be feasible
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Predicting the Optimum Z

 Z*: optimum objective function value

 Zi: LP-relaxation objective function value at node i

 Minimization assumed

Concept:

 If Z* known in advance then trigger backtrack when 
node LP-relaxation value is worse

 For minimization, trigger backtrack if Zi > Z*

 Can we estimate in advance an aspiration value Za

that is close to Z*?

 Trigger backtrack if Zi > Za



8

Proof of Concept

 Solve MIPs to find Z*

 Re-solve MIPs using Za = Z* to trigger backtrack

 Experimental setup:

 Solver: GLPK 4.9

 Default branching variable selection, backtracking node selection

 Root node cuts: Gomory cuts

 Test models: all MIPLIB/MIPLIB2003 that solve within 1 hour
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Proof of Concept

Geometric mean of ratio to 
best simplex iterations:

 no asp = 1.49

 perfect = 1.003
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Estimating Z*: State of the Art

Two methods normally used for node selection, 
not triggering backtrack:

Pseudo-cost estimates:

 Note ΔZ/Δx at each branching. Project Z* based on this.

Best-projection estimates:

 Compare (improvement in Z between root LP-relaxation 
and incumbent) to (reduction in integer infeasibility)

 Project Z* based on this.



11

Using Available Estimators

Geometric means:

perfect asp = 1.0005 

best-projection asp = 
1.50 

plain glpk = 1.60 

pseudo-cost asp = 1.62

Need something better!
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NEW: Using Depth Information

For nodes near depth of optimum: 

Zi ≈ Z*



13

Can we predict depth of optimum?

Plotting a Dive:

First feasible solution when 
number candidates is 0
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Is There a Pattern?
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Is There a Pattern?
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Reconciling multiple active nodes

 There are multiple active nodes in the tree

 Each node provides a projected depth of first 
feasible solution

 Which estimated depth should we use?

 Is there a pattern?
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Observation: Optimum Depth

Optimum is 
shallowest 
integer-feasible 
node in about half 
of all cases
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Linear Extrapolation to Estimate Z*

 For every active node with depth ≥ 20

 Fit least-squares line to number of candidates vs. depth 
using all ancestor nodes

 Project depth of closest feasible solution (zero 
candidates)

 k = smallest extrapolated depth over all nodes

 Za = max of Zi over all nodes at depth (conservative)

Notes

 20 chosen empirically: enough data to extrapolate
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Linear Extrapolation
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Linear Extrapolation
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Linear Extrapolation
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NEW: Modified Best Projection 
Aspiration

Usual best projection for node selection:

 Za = Zi + (Zinc – Z0)si/s0

 si: sum of integer infeasibilities at node i

 s0: sum of integer infeasibilities at root node

 Can we eliminate the need for an incumbent solution 
so this method can be applied at any node?

 Is there a pattern?
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Zmin(c): min Z at given C
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Patterns in Zmin(C)
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Modified Best Projection Aspiration

 Za = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)

 Ci: number of candidate variables at node i

 Cmin: minimum number of candidate variables at any node

Notes:

 Eliminates need for an incumbent

 Closeness to feasibility measure:

 number of candidate variables instead of sum of integer 
infeasibilities

 Also used for node selection
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2. Choosing Node when 
Backtracking

State of the Art: 

 Choose node that is likely to have best objective 
function value:

 Best-projection

 Best-estimate (based on Pseudo-costs)

 Best-bound

 Depth-first backtrack to first active node

 ...

 No method dominates
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NEW: Distribution-based node selection

Balance pursuit of both feasibility and optimality

 Ci: number of candidate variables at node i

 Smaller Zi and Ci both desirable

 Zi tends to be large where Ci is small, and vice versa

Ranges quite different: how to balance?

 Normalize ranges of Zi and Ci assuming independent 
normal probability distributions

 Choose node n where n = arg min
i
P(Z ≤ Zi, C ≤ Ci)
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Notes on Distributions

 Joint probability function of Z and C unknown.

 Single variable functions:

 Assume Z and C are independent (iffy!)

 P(Z ≤ Zi, C ≤ Ci) = F
Z
(Zi)  F

C
(Ci)

 Functions tried in experiments:

 Uniform

 Rayleigh

 Gaussian (best result)

 Central Limit Theorem: sum of random varbs usually normal

 Easy to update as nodes created
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Example Distributions
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Distribution Node Selection 
Algorithm

Distribution not helpful if:

 Standard deviation of Z is 0

 (Standard deviation of C) /depth is small, i.e. < 0.1 [empirical]

Algorithm:

 If standard deviation of Z or C too small then use default 
node selection method (best projection) and exit.

 For every active node i:

 F
ZC

(Zi,Ci) = F
Z
(Zi) * F

C
(Ci)

 Choose node n where n = arg min
i
F

ZC
(Zi,Ci)
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2.1 Active Node Search Threshold

Observations:

 Advanced node selection can take too much time

 Fewer iterations, fewer nodes, but more time

 Node search time proportional to num. active nodes

 Too many active nodes? 

 Default to simple depth-first backtracking

 E.g.:  mas76

 Best-projection: 17,598 sec, 3,186,117 itns, 1,177,063 nodes

 Depth-first: 785 sec, 5,691,683 itns, 2,165,073 nodes



32

Threshold

 Rt = (time for node selection)/(time for all else)

 Cumulative time

 If Rt > 0.1, then switch to simple depth-first node 
selection

 Notes:

 0.1 is empirical

 Fix-up if aspiration cut-off is being used
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3. Experiments

Software:

 Solver: GLPK 4.9

 Branching variable selection: default

 Root node cuts: Gomory cuts

Hardware:

 CPU: Intel Core 2 6600 @ 2.4 GHz

 RAM: 4 GB

 OS: Linux 2.6.18

272 Test models: 
 all instances from MIPLIB/MIPLIB2003

 all instances from CORAL

 exclude instances not solved within time limit by default GLPK
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79 (legal) combinations of methods!

Backtracking node selection methods:

• Methods available in GLPK:
– DEPF: Depth-first

– BREF: Breadth-first

– DEBP: Default best-projection

– BESF: Best-First

• Methods added to GLPK:
– BEES: Best-estimate

– BFBE: BEES interleaved with BESF

• New methods
– DIST: Distribution

– MOBP: Modified Best-Projection

New Active node search threshold
– NOAN: No ANST (Default).

– ANST: Use ANST.

Backtrack triggering methods:

• Methods available in GLPK.
– NONA: Non-aspiration backtracking: 

backtrack only from leaves (default).

• Methods added to GLPK:
– ALLT: Perform backtracking node 

selection after every node solution.

– DBPA: Default best-projection 
aspiration

– PCAS: Pseudo-cost (best-estimate) 
aspiration

• New methods
– LEXA: Linear feasibility depth 

extrapolation aspiration

– MPAS: Modified best-projection 
aspiration
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Prefiltering Experiment

 Try all 79 combinations of methods on a subset of 
faster-solving models

 Select better methods for more extensive testing

 79 Models: 

 those solved by default GLPK within 30 min

 Ranking is sum of:

 Ranking by total time over all models (TR)

 Ranking by ratio of geom. mean of avg ratio to best (RR)

 Number of failed solutions (FAIL)
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Best Methods
Rank Configuration FAIL TR RR

1 MOBP-MPAS-ANST 1 3 2

2 MOBP-MPAS-NOAN 1 4 3

3 MOBP-PCAS-ANST 1 1 7

4 DIST-ALLT-NOAN 2 7 1

5 DIST-MPAS-ANST 1 6 4

5 MOBP-PCAS-NOAN 1 2 8

7 MOBP-LEXA-ANST 2 8 6

39 DEBP-NONA-NOAN 0 36 44

64 BESF-NONA-NOAN 6 62 65

71 BREF-NONA-NOAN 6 71 71

76 DEPF-NONA-NOAN 7 76 76

Backtracking

MOBP: Modified Best Projection

DIST: Distribution

Triggering

MPAS: Modified Best Proj Asp

PCAS: Pseudocost Aspiration

ALLT: After Every Node

LEXA: Linear Extrapolation

ANST

ANST: Active Node Search Thresh.

NOAN: No ANST
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Longer Experiments

 7 top-ranked methods from prefiltering experiment

 Highest-ranked existing combination method

 GLPK default

 All 272 models

 One hour time limit

 9 weeks of computation
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Overview of Results

272 MIP instances total:

 109 optimum found by at least 1 config

 130 no optimum but at least one feasible soln found

 33 no optimum and no feasible solutions found 
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Results

AT LEAST 1 OPT NO OPTIMUM

Config Fail TotTim Mratio Avgrank Nfirsts NINC

MOBP-MPAS-ANST 6 86,654 1.33 4.54 8 75

DIST-MPAS-ANST 6 86,654 1.37 2.89 34 21

MOBP-PCAS-ANST 6 88,560 1.34 4.34 11 72

MOBP-LEXA-ANST 6 91,509 1.40 4.18 17 57

DIST-ALLT-NOAN 15 97,340 1.34 2.48 67 17

MOBP-MPAS-NOAN 13 99,799 1.43 4.62 7 81

MOBP-PCAS-NOAN 12 100,752 1.50 4.6 9 82

DEBP-DBPA-NOAN 14 109,240 1.75 3.74 21 15

DEBP-NONA-NOAN 15 109,579 1.78 3.47 25 15
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Performance Profiles
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Conclusions

 New methods very effective in speeding MIP 
solutions

 Best configurations:

 MOBP-MPAS-ANST

 DIST-MPAS-ANST

 Best configurations composed entirely of new 
methods
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1. Analyzing Infeasible Math 

Programs

General methods that also apply to MIPs

Analyzing Infeasible MIPs4
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What is a “Constraint”?

Anything that restricts the solution space:

 A functional constraint:  3x1 + 8x2 ≤ 12

 A variable bound: x1 ≥ 0

 An integrality condition: x1 is integer
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Three Main Approaches

 Isolate an Irreducible Infeasible System (IIS)
 An infeasible set of constraints that becomes feasible if any 

constraint removed

 Main approach for MIPs

 Find a Maximum Feasible Subset (Max FS)
 Maximum cardinality subset of constraints that is feasible

 Find “best fix” for infeasible constraints
 Different matrix norms for measuring “best fix”
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General Methods for Finding IISs

 Assume solver perfectly accurate in deciding feasibility 
status of a set of constraints

 Reasonable assumption only for LP

 General methods for IIS isolation:

 Deletion Filter

 Additive Method

 Elastic Filter

 Additive/Deletion method
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The Deletion Filter

INPUT: an infeasible set of constraints.

FOR each constraint in the set:

Temporarily drop the constraint from the set.

Test the feasibility of the reduced set:

IF feasible THEN return dropped constraint to the set.

ELSE (infeasible) drop the constraint permanently.

OUTPUT: constraints constituting a single IIS.
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Deletion Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}

 {B,C,D,E,F,G} infeasible. A deleted.

 {C,D,E,F,G} feasible. B reinstated.

 {B,D,E,F,G} infeasible. C deleted.

 {B,E,F,G} feasible. D reinstated.

 {B,D,F,G} infeasible. E deleted.

 {B,D,G} feasible. F reinstated.

 {B,D,F} infeasible. G deleted.

Output: the IIS {B,D,F} 
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Deletion Filter: Characteristics

 Returns exactly one IIS, even if there are multiple IISs 
in the model

 Which IIS?
 IIS whose first member is last in the test list.

 Consider {A,B,C,D,E,F,G,H,I,J,K}.  IIS {G,I,K} found.

 Speed: isn’t this slow?
 For LP: time to isolate IIS usually a small fraction of time to find 

infeasibility initially

 Due to advanced starts: 
each LP is very similar to the previous one

 For MIP and NLP: slow



Analyzing Infeasible MIPs11

The Additive Method

Main insight:

 Add constraints one by one and test feasibility after each 

constraint is added.

 As soon as the tested set becomes infeasible, the last-

added constraint must be part of an IIS
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The Additive Method

C: ordered set of constraints in the infeasible model.

T: the current test set of constraints.

I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.

Step 0: Set T = I = .

Step 1: Set T = I.

FOR each constraint ci in C:

Set T = T  ci.

IF T infeasible THEN

Set I = I  ci.

Go to Step 2.

Step 2: IF I feasible THEN go to Step 1.

OUTPUT: I is an IIS.
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Additive Method: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}

 {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all feasible.

 {A,B,C,D,E,F} infeasible: I = {F} is feasible.

 {F,A}, {F,A,B}, {F,A,B,C} all feasible.

 {F,A,B,C,D} infeasible: I = {F,D} is feasible.

 {F,D,A} feasible.

 {F,D,A,B} infeasible: I = {F,D,B} infeasible. Stop.

Output: the IIS {F,B,D}
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Additive Method: Characteristics

 Returns exactly one IIS, even if there are multiple IISs 
in the model

 Which IIS?
 IIS whose last member is first in the test list.
 Consider {A,B,C,D,E,F,G,H,I,J,K}.  IIS {B,E,J} found.

 Speed:
 If IIS is small and early in the list of constraints, can use far 

fewer feasibility tests than deletion filter

 For LP:
speed similar to deletion filter due to basis re-use

 For MIP and NLP: slow
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Additive/Deletion Method

1. Apply additive method until first infeasible subset of 
constraints is found. 

2. Apply deletion filter to subset.

 Consider {A,B,C,D,E,F,G,H,I,J,K}
 Additive alone: 29 solutions

 Additive/deletion: 19 solutions

 Deletion alone: 11 solutions

 More efficient.
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Dynamic reordering additive method

 If an intermediate test is feasible, scan all of the 

constraints past the current one and immediately add to 

T all those that are satisfied at the current test solution

 Can avoid many model solutions
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Speed-up: Grouping Constraints

 Add/drop constraints in groups
 In order, or by category

 Deletion Filter: back up and add singly if deleting a 
group causes feasibility

 Additive Method: back up and do singly if adding a 
group causes infeasibility

 Fixed group size? Adaptive group sizing?

 More recently: binary versions that split groups into 
halves in a combination of additive method and 
deletion filter



2. Extension to MIP
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MIP Infeasibility

 Three classes of 

constraints:

 Linear row constraints 

(LC)

 Variable bounds (BD)

 Integer Restrictions (IR)

feasible
region

all integer point

LP

A

B

C

x

y



Proving (In)feasibility in MIPs
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 Proving feasibility:

 Find any feasible node in 

the search tree

 Proving infeasibility:

 Expand entire tree until 

all leaves infeasible

Infeasible Node

Infeasible Node

Feasible Node



Analysis is Slow
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 Methods rely on many MIP solutions, each having slightly 

different subsets of constraints

 Fast for LP due to hot starts

 Slow for MIPS

 Adjust methods to reduce the number of MIP solutions 

needed:

 Also to deal with other nontermination



Analyzing Infeasible MIPs22

Difficulty: Nontermination in MIPs

all-integer point

LP-relaxation

x
1

2

3

4

5

6

solution point

y

minimize x+y
x,y are integers
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Dealing with Non-termination

 If computation limit exceeded on subproblem:

 Retain constraint and label it dubious

 Another approach:

 Add safety bounds on variables

 May return infeasible subsystem (IS) instead of IIS if there 
are dubious constraints or safety bounds are active

 Non-termination can be frequent as constraints are 
removed by the IIS-finding algorithms



State of the Art in Infeasibility Analysis
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 LP: 

 Very well developed theory

 Fast in practice, implemented in most LP solvers

 MIP

 Methods for general math programs adapted for MIPs

 Relatively slow

 Infeasible MIPS:

 Easy to analyze if caused by LP infeasibility

 Interesting case is interaction with integer restrictions



Direct Application of Deletion Filter

 Nontermination may be frequent:

 Preset computation limit for subproblems
(max nodes in subproblem tree)

 Constraint labelled dubious.

 Reducing incidence of nontermination:

 Leave variable bounds in place as long as possible

 Delete in this order: IR, LC, BD

 Slow but effective

 Test in groups
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Direct Application of Additive Method

 Assuming initial LP relaxation is feasible: 

 Start with LC, BD in test set T

 Feed in the integer restrictions one by one

 Cannot directly identify dubious constraints

 Test set always feasible or indeterminate, until infeasible

 No indication of which constraint caused nontermination

 In deletion filter, last constraint removed before 

nontermination can be labeled dubious

 Dynamic reordering can speed analysis
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Additive/Deletion Method
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 Can also be used

 Identifies dubious constraints during deletion filter



3. Special Methods for MIP
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Useful Info in Original B&B Tree

 Recall:  
 intermediate nodes are LP-feasible, leaf nodes are LP-infeasible

 Theorem 1:
 The IR set satisfied at any intermediate node cannot be the whole 

IR part of any IIS

 Theorem 2:
 Mark LCs and BDs having nonzero shadow prices at any leaf 

node. 

 IR  {marked LCs}  {marked BDs} is infeasible

 Can eliminate some LCs and BDs from consideration

 Theorem 3:
 Active IRs are those actually used in the B&B tree branching

 {active IRs}LC BD is infeasible

 Can eliminate some IRs from consideration
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Using Info in Original Tree

 Eliminate LCs and BDs that are not sensitive in any 

leaf (Thm 2)

 Eliminate IRs not in active set (Thm 3)

 Path set: set of IRs used in branching on a root-to-leaf 

path.

 Path sets good candidates for the IR set in an IIS

 Use Thm 1 to eliminate candidate paths
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Speed-ups

 Use alternative objective function (especially one 

which determines infeasibility faster) 

 e.g.  Elastic varbs on constraints introduced during branching

 Minimize sum of slacks

 Other MIP solver settings

 Branch on most infeasible variable?

 Depth-first vs. other node selection schemes?
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4. Empirical Tests
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Empirical Tests

 20 infeasible test problems (hard to find!)

 Avg. 238 LCs, 518 BDs, 80 IRs

 Software: Cplex 3.0 (!) and MINTO

 Max 10,000 nodes in any subproblem

 Avg. initial solution:

 437 B&B tree nodes

 1719 LP iterations

 Soln time: 6 secs
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Results
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method IISs 

(term)

dubious

IR-LC-BD

IRs LCs BDs nodes LP itns time

LC-IR-BD deletion 5 (0) 0-17-182 16 132 290 499,154 3,401,931 9:12:46

IR-LC-BD deletion 5 (0) 0-16-185 12 154 321 344,797 1,913,248 2:27:44

IR-LC-BD del, grp 4 5 (0) 0-16-186 12 153 311 189,561 1,246,078 1:51:31

Dyn. reorder add/del 3 (0) 0-0-8 8 135 309 124,512 1,487,991 2:25:21

Additive 4 (3) NA 9 50 142 172,688 982,255 1:12:12

Dyn. reorder 

additive

4 (3) NA 8 40 145 130,068 396,176 19:41

Initial tree w del 

filter (10 models)

1 (0) 0-168-475 6 209 520 61,330 Not 

recorded

0:58:43

Averages over 20 models. 

Sun 10/30c computer, 36 MHz SPARC Sun 4 CPU, 33 Mbytes of memory



Conclusions (1)

 Slow 

 Best method avg 1:51:31 vs. 6 sec for initial detection of 

infeasibility

 Effective. Best method eliminates: 

 90% of IRs, 

 43% of LCs 

 40% of BDs)

 BUT: machine time is cheap, people time is expensive!
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Conclusions (2)

 Best method (IIS fairly often, smallest IISs, fewest dubious 

constraints):

 dynamic reordering additive/deletion method

 Fastest method:

 info from original B&B tree

 IR-LC-BD deletion filter

 constraint grouping (fixed size)
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5. In Practice
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Cplex “Conflict Refiner” for MIPs
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 May add/delete constraints in groups

 Can specify preferences for inclusion/exclusion of 

constraints or groups in the IIS

 Heuristics to try to find an infeasible subset more quickly, 

then apply detailed analysis



LINDO
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 Similar capabilities in LINDO/LINGO
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Conclusions

 Branch-and-bound/cut framework permits a very wide 

variety of heuristics

 New developments mainly in heuristics

 Heuristics can interact in unpredictable ways

 MIP heuristics are an active area of research

 Significant progress in recent years

 Feasibility-seeking especially

 New commercial players

 Microsoft: solver foundation

 Gurobi
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Future Research Directions

 Taking advantage of multiple cores

 Choosing the best heuristics dynamically

 General disjunctions
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