Outline

I. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

MIP Feasibility-Seeking: Classic Algorithms

John W. Chinneck

Systems and Computer Engineering, Carleton University, Ottawa, Canada

Find First Feasible Solution Quickly

Why?

- Integer-feasibility may be the only goal.
- Shortens time to optimality:
 - First incumbent prunes subsequent tree. Early incumbent important.
 - If backtracking algorithm is good, then closest integer-feasible descendent usually has best objective function value.
- Helps ensure solution in case of time-out.
- Helpful in infeasibility analysis.

"Classic" feasibility-focused heuristics

For pure binary problems:

- Pivot-and-complement
- OCTANE

For general MIPs:

Pivot-and-shift

BIP: Pivot-and-Complement

- Inequality-constrained Binary Integer Program (BIP)
- Feasibility-seeking first phase
- Main insight:
 - BIP has LP equivalent in which all binary varbs are nonbasic at upper or lower bound
 - One basic variable per constraint
 - Hence all slack variables must be basic
- ▶ BIP: max **cx** s.t. **Ax**≤**b**, x_i binary
- ► LP: max cx s.t. Ax+y=b, $0 \le x \le 1$, $y \ge 0$, y_i basic
- Balas and Martin 1980

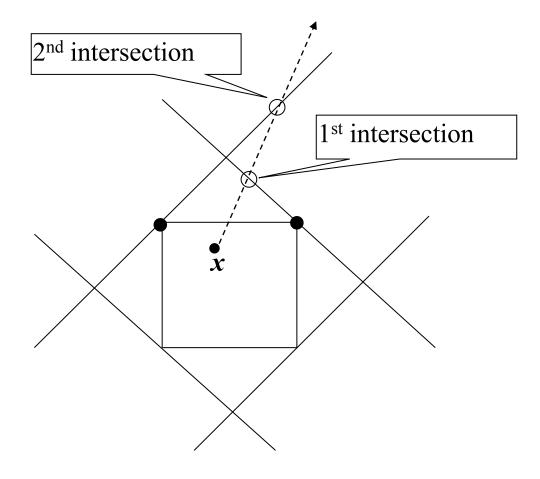
Operations to force slacks to be basic:

- Type I pivot: maintain LP feasibility, exchange nonbasic slack and basic binary varb
- **Type 2 pivot:** maintain LP feasibility, exchange slack for slack or binary for binary but reduce sum of integer infeasibility
- Type 3 pivot: sacrifice LP feasibility, exchange nonbasic slack for basic binary
- Complement: flip the values of 1 or 2 binary varbs to reduce an infeasibility measure
- Rounding and truncating solutions.

BIP: OCTANE

- OCTAhedral Neighbourhood Evaluation
- Main insight:
 - N-dimension octagon around binary n-cube associates octagon facets with binary solutions
 - Given current soln (e.g. LP-relaxation) and improvement direction:
 - Improving rays cross extended facets of octagon
 - Crossed facet has associated binary solution
 - A kind of neighbourhood search
- Balas, Ceria, Dawande, Margot, Pataki 2001

OCTANE



- Find first k octagon facet intersections
- Check associated binary solutions

OCTANE Details

- Unit cube actually centred at origin, so offset by $\frac{1}{2}$
- OCTANE not run at every node of branch-and-cut tree
 - Every node in first 5 levels of tree
 - Every 8th node thereafter

MIP: Pivot-and-Shift

- Extension of pivot-and-complement
- Initial feasibility-seeking stage:
 - Rounding
 - Pivot-and-shift operations
 - Small neighbourhood searches
- Balas and Martin 1986; Balas, Schmieta and Wallace 2004

Types of Pivots

Operations:

- Type I pivot: maintain LP feasibility, exchange basic int varb and nonbasic continuous varb
- **Type 2 pivot:** maintain LP feasibility and improve obj fcn, exchange continuous varb with cont, or int varb with int
- **Type 3 pivot:** maintain LP feasibility while reducing int infeasibility, exchange cont varb with cont, or int varb with int

Feasibility maintained:

- Entering basic variable (col) chosen according to type of pivot
- Leaving basic variable (row) chosen by minimum ratio test

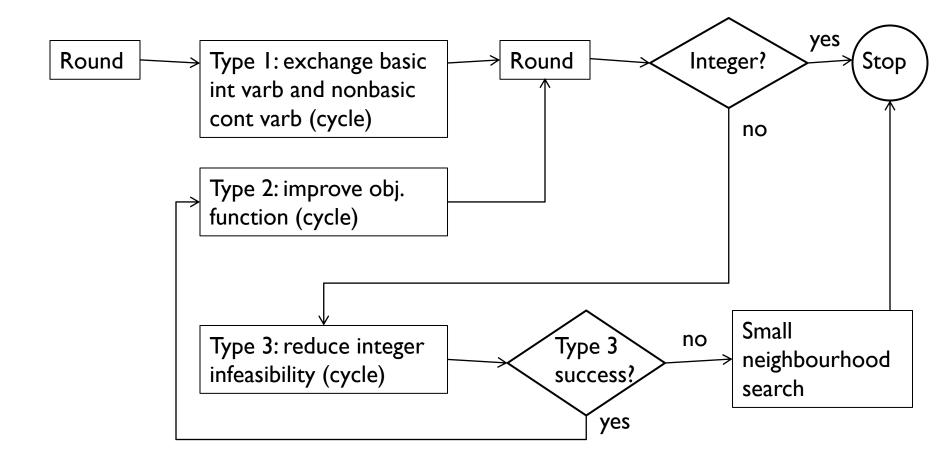
Other Operations

Rounding (shifting).

Small neighbourhood search:

 MIP search in neighbourhood around a near-feasible soln (tot int infeas < limit, e.g. 0.1).

Pivot-and-Shift Flowchart



Pivot-and-Shift Details

- Time limit
- Abandon in favour of Xpress-MP solver if:
 - No integer-feasible soln within time limit
 - Integer soln obtained by rounding has obj fcn value 40%+ worse than bounding fcn value of unrounded soln

• Empirical tests:

• Much faster to first feasibility than standard Xpress-MP.

Conclusions

- Significant progress 1980-mid 2000s
- Recent renewed interest:
 - Updated pivot-and-shift (2004)
 - The feasibility pump (2005)
 - Active constraints branching (2006)
 - Etc.....

Outline

I. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

Active-Constraint Variable Selection

John W. Chinneck, Jagat Patel Systems and Computer Engineering, Carleton University, Ottawa, Canada Branch & Bound (simplified)

After start-up...

- I. If no unexplored nodes left then exit: optimal or infeasible.
- 2. Choose unexplored node for expansion and solve its LP relaxation.
 - Infeasible: discard the node, go to Step 1.
 - Feasible and integer-feasible: check for new incumbent, go to Step 1.
- 3. Choose branching variable in current node and create two new child nodes.

Main B&B Design Decisions

- How choose next node from list?
 - Depth-first?
 - Usual choice for efficiency of basis re-use.
 - Global best value of bounding function?
 - Original objective function?
 - minimum sum of integrality violations?
 - Breadth-first?
 - Etc.
- How choose branching variable?
- How choose branching direction?

Is Branching Variable Selection Important?

	B&B nodes to First Feasible Soln					
model	Cplex 9.0	Active-Constraints Method				
aflow30a	23,481	22 (A, H_M, H_O, O, P)				
aflow40b	100,000+ (limit)	33 (H _O , O, P)				
fast0507	14,753	26 (A)				
glass4	7,940	$62 (A, H_M, H_O, O, P)$				
nsrand-ipx	3,301	18 (H _M)				
timtab2	14,059	100,000+ (limit)				

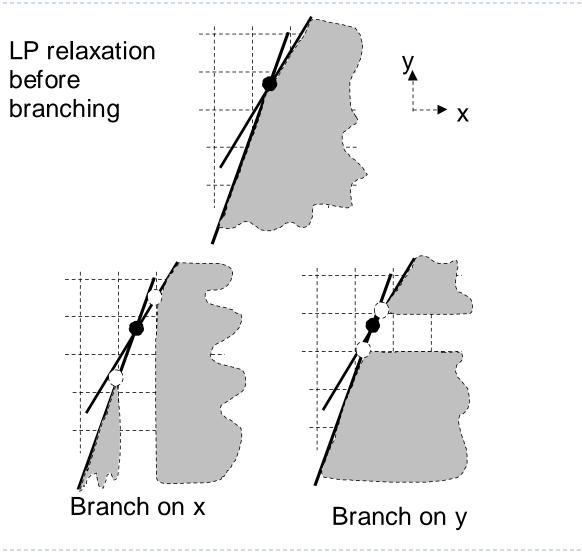
Traditional Branching Variable Selection

- Based on estimated impact on objective function
- Goal: maximize degradation in the objective function value at optimal solution of child node LP relaxations.
- e.g. pseudo-costs

Active Constraints Approach

- **Goal:** make child node LP-relaxation optima *far* from parent node LP-relaxation optimum.
- Active constraints fix the position of the LP optimum solution in parent, so...
- Choose branching variable that has most impact on the active constraints in parent LP relaxation optimum solution.
 - Select variable that is <u>most tightly constrained</u> first
- **Constraint-oriented** approach.
- Note: "active constraints" include tight degenerate constraints

Impact of the Branching Variable



Active Constraint Branching Variable Selection

Estimating Candidate Variable Impact on Active Constraints

- 1. Calculate the "weight" W_{ik} of each candidate variable *i* in each active constraint *k*
 - 0 if the variable does not appear in constraint
- 2. For each variable, calculate total weight over all active constraints.
- 3. Choose variable that has the largest total weight.

Dynamic variable ordering: changes at each node.

Overview of Weighting Methods

- Is candidate variable in active constraint or not?
- Relative importance of active constraint:
 - Smaller weight if more candidate or integer variables: changes in other variables compensate for changes in selected variable.
 - Normalize by absolute sum of coefficients.
- Relative importance of candidate variable within active constraint:
 - Greater weight if coefficient size is larger: candidate variable has more impact.
- Sum weights over all active constraints? Look at biggest impact on single constraint?
- Etc.

Methods A, B, L

Numerous variants. Subset of best:

- ▶ **A:** W_{ik}=1.
 - Is candidate variable present in the active constraint?

• **B**: $W_{ik} = 1/ [\Sigma(|\text{coeff of } \underline{all} \text{ variables}|].$

Like A, but relative impact of a constraint normalized by absolute sum of coefficients

L: W_{ik} = 1/(no. <u>integer variables</u>)

- Like A, but relative impact of a constraint normalized by number of integer variables it contains
- Related to MOMS rule?

Methods M, O, P

M: W_{ik} = 1/(no. <u>candidate variables</u>)

- Like A, but relative impact of a constraint normalized by number of candidate variables it contains
- Not used directly: see H methods

O: W_{ik} = |coeff_i|/(no. of <u>integer variables</u>)

Like L, but size of coefficient affects weight of varb in constraint

P: W_{ik} = |coeff_i|/(no. of <u>candidate variables</u>)

• Like M, but size of coefficient affects weight of varb in constraint

Methods H_M, H_O

- H methods: for a given base method, choose the variable that has largest weight in any *single* active constraint
 - Do not sum across active constraints
- H_M: based on method M
- H_o: based on method O

Experimental Setup: Solvers

Cplex 9.0 (baseline): all default settings, except:

- MIP emphasis: find feasible solution
- Experiment I (basic B&B): all heuristics off
- Experiment 2: all heuristics turned on
- Active Constraint solver:
 - Built on top of Cplex
 - Callbacks set branching variable
 - No optimization of data structures for active constraint methods: inefficient searching
 - Node selection:
 - Experiment 1: Straight depth-first, branch up
 - Experiment 2: Cplex default

Experimental Setup: Premature Termination

Time limit: 28,800 seconds (8 hours)

 Data structures not optimized for active constraint methods, hence penalizes them

Node Limits:

- I 00,000 nodes
- Limit on active-constraint methods: (Cplex nodes + 1000)

Tree memory, node file size:

Never exceeded.

Experimental Setup: Metrics

Number of B&B nodes

Number of simplex iterations

- No. of B&B nodes does not penalize for jumping around tree, reducing ability to use advanced starts
- Tracks well with solution time (except as noted later)

Feasibility Success Ratio

Fraction of cases where better than Cplex

Quality Success Ratio

- fraction of cases in which the first feasible solution has optimality gap equal to or smaller than optimality gap for first feasible solution returned by Cplex
- Performance Profiles

Experimental Setup: Test Models

MIPLIB 2003 set

- 60 models
- Range of difficulties
- Rows: 6–159488
- Cols: 62–204880
 - Integer variables: I-3,303
 - Binary variables: 18–204,880
 - Continuous variables: I–I3,321
- Nonzeroes: 312–1,024,059

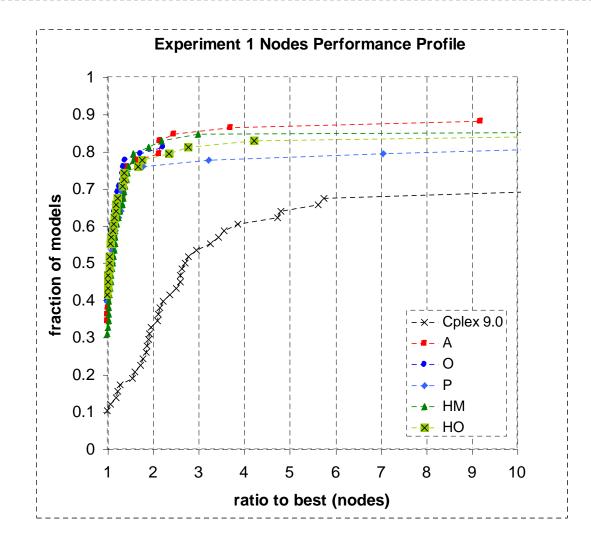
Experiment 1: Notes

- All internal heuristics off
- 58 models used
 - 2 models prematurely terminated by all methods, including Cplex

Experiment 1: Number of Nodes

	All 58 Models				40 Comparable Models			
				times				
	times	fewer		term.		(avg.	avg.	
	within	nodes		(fewer		nodes)/	ratio	
	10% of	than		nodes at	Avg.	(Cplex avg.	to	
method	best	Cplex	FSR	time-out)	nodes:	nodes)	best	
Cplex 9.0	7			4	1967.5		58.22	
A	30	47	0.810	7 (2)	149.5	0.076	1.19	
H _M	28	45	0.776	8(2)	130.5	0.066	1.18	
Ho	35	45	0.776	9 (3)	123.3	0.063	1.47	
Ο	36	43	0.741	11 (3)	116.1	0.059	1.11	
Р	32	44	0.759	10 (2)	156.2	0.079	1.37	

Exp 1: Nodes Peformance Profiles



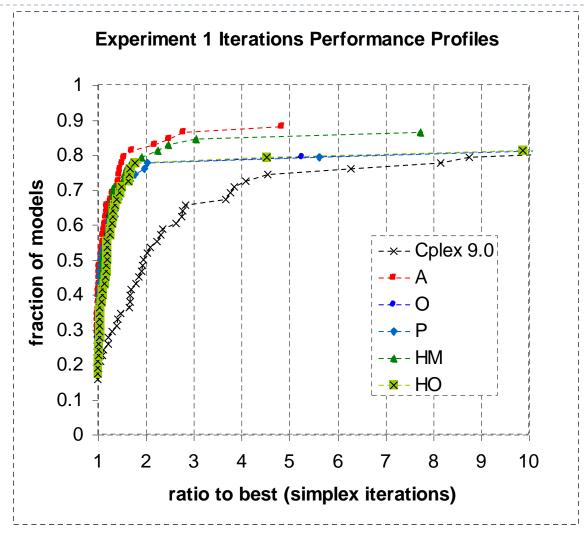
Active Constraint Branching Variable Selection

Experiment 1: Simplex Iterations

	All 58 Models				40 Comparable Models			
				times				
	times	fewer		term.		(avg. itns)/		
	within	itns		(fewer		(Cplex avg.	avg.	
	10% of	than		itns at	Avg.	itns)	ratio to	
method	best	Cplex	FSR	time-out)	itns:	[w/o disctom]	best	
Cplex 9.0	12			4	55052		14.93	
А	30	43	0.741	7 (3)	36484	0.663 [0.214]	1.17	
H _M	28	40	0.690	8(3)	35173	0.639 [0.245]	1.18	
Ho	23	40	0.690	9 (3)	117320	2.131 [0.237]	1.48	
0	25	37	0.638	11 (4)	117401	2.133 [0.239]	1.38	
Р	30	41	0.707	10 (3)	216100	3.925 [0.232]	1.67	

Active Constraint Branching Variable Selection

Exp 1: Simplex Iterations Perf. Profiles



Active Constraint Branching Variable Selection

Experiment 2: Notes

- > All internal heuristics on.
- > 25 models used:
 - 3 models prematurely terminated by all methods
 - 32 models solved at root node
- Heuristics impact is mixed:
 - Many models solved at root node
 - Others: half slower with heuristics on, half faster.
 - I model solvable with heuristics off, but not solvable with heuristics on

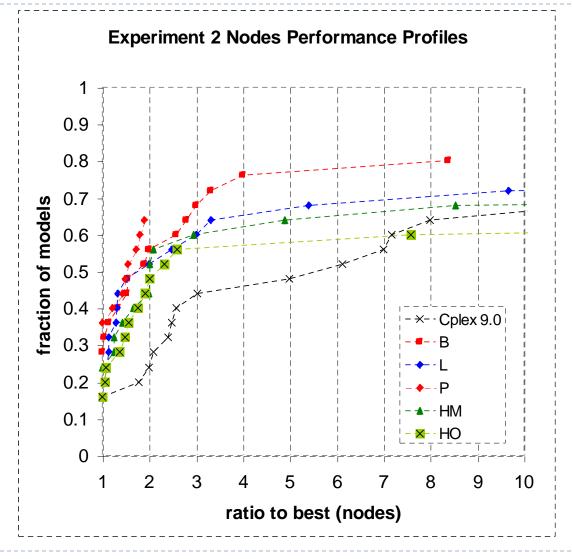
Experiment 2: Number of Nodes

	All 25 Models				12 Comparable Models		
				times			
	times	fewer		term.		(avg.	avg.
	within	nodes		(fewer		nodes)/	ratio
	10% of	than		nodes at	Avg.	(Cplex avg.	to
method	best	Cplex	FSR	time-out)	nodes:	nodes)	best
Cplex 9.0	4			1	1214.6		23.86
В	9	17	0.680	5 (1)	235.0	0.193	2.02
L	7	17	0.680	6(1)	233.0	0.192	2.01
H _M	6	16	0.640	7 (2)	262.9	0.216	2.13
Ho	6	13	0.520	8 (2)	260.9	0.215	1.96
Р	9	15	0.600	9 (1)	293.8	0.242	1.27

Active Constraint Branching Variable Selection

D

Exp 2: Nodes Performance Profiles



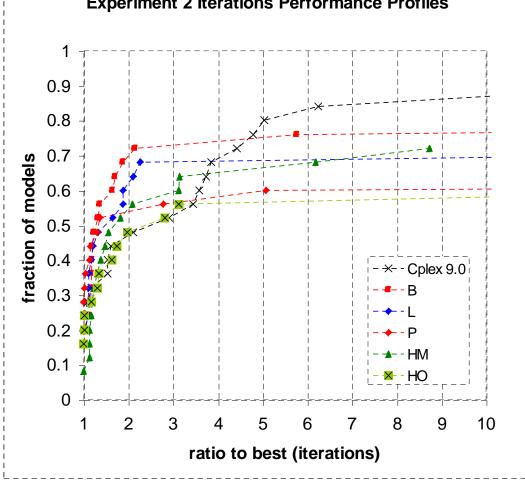
Active Constraint Branching Variable Selection

Experiment 2: Simplex Iterations

	All 25 Models			12 Comparable Models			
				times			
	times	fewer		term.		(avg. itns)/	
	within	itns		(fewer		(Cplex avg.	
	10% of	than		itns at	Avg.	itns)	avg. ratio
method	best	Cplex	FSR	time-out)	itns	[w/o disctom]	to best
Cplex 9.0	7			1	32578		6.89
В	5	14	0.56	5 (1)	400552	12.295 [0.452]	4.37
L	7	14	0.56	6 (2)	400233	12.285 [0.437]	4.38
H _M	2	14	0.56	7 (3)	108898	3.343 [0.760]	2.15
H _O	6	15	0.60	8 (3)	418697	12.852 [0.785]	4.66
Р	9	14	0.56	9 (2)	609275	18.702 [0.367]	5.90

Active Constraint Branching Variable Selection

Experiment 2 Iterations Perf. Profiles



Experime	ent 1		Experiment 2		
over 40 comparable models			over 12 comparable models		
method	QSR		method	QSR	
A	0.53		В	0.75	
H _M	0.55		H _M	0.50	
H _O	0.58		H _O	0.50	
Ο	0.70		L	0.58	
Р	0.78		Р	0.33	

Experiment 1 Conclusions

- Active constraints branching variable selection is much better than commercial state of the art in achieving feasibility quickly:
 - Much faster in almost all cases.
 - Optimality gap at first feasible solution is usually better.
- Several methods very good
 - Simple method A the best.

Experiment 2 Conclusions

- Active constraints branching variable selection is better than commercial state of the art in achieving feasibility quickly:
 - Faster more often than not.
 - Optimality gap at first feasible solution is usually better for most methods.
- Cplex heuristics have uneven results
 - How do heuristics, models, and active constraints methods interact?
 - Active constraints methods can be used internally to heuristics.

Integration with Other Methods

Octane and Pivot-and-Shift:

- Comparing reported results: active constraint methods better
- Active constraint methods integrate easily with both methods: use when selecting among variables to branch on

Feasibility Pump

Use after feasibility pump finished

Reference

Jagat Patel, J.W. Chinneck (2007), "Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs", *Mathematical Programming* Series A, vol. 110, pp. 445-474.

Ongoing Research: New Methods

Choose candidate varb whose boundary has most oblique angle to an active constraint

Tie-breaking:

- Many methods give numerous ties, e.g.A
- Pair with another method to break the ties
- Choose randomly?
- Branching direction
 - How predict whether to branch up or down?
 - E.g.: branch to "inside" of an inequality

Ongoing Research: New Approach

Now: same method from start to end

- Should different methods be used depending on conditions at current node?
 - Special case:
 - Presence of active "hard" constraints (all binary variables, all coefficients are 1s)
 - Choose only from among candidate varbs in hard constraints
 - Other special cases?
 - Classifier to determine method to use at node, based on conditions at the node
- Promising so far: first leaf found very often feasible

Ongoing Research: Properties of Solution Trees

▶ 1-2 candidate variables very common.

- Theory: more nodes are closer to leaves, where there are few candidate variables
- When most oblique angle is high (70°+), there are few candidate variables.
 - Theory: happens far down in the B&B tree, so most facets squared off by added bounds.

Ongoing Research: Best Choice at Node

Basic data:

- Full expansion on <u>all</u> candidate varbs, both up and down directions, at every node in smaller MIPLIB 2003 models
 - Calculate total Integer Infeasibility (II) for <u>all</u> choices
 - Use II reduction between parent and child to identify "best" choice at a node
 - Comment: "ultra-strong" branching an effective method!
- Data used to train classifier:
 - Which varb selection method to use at this node?

Future Research

Extension to finding optimum solution

- Use active constraint method to first feasibility, objective-based method thereafter?
- Incorporate aspiration level as another constraint?

Outline

1. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

John W. Chinneck Jennifer Pryor

Systems and Computer Engineering Carleton University, Ottawa, Canada

Faster Integer Feasibility in MIPs by Branching to Force Change

A Question...

You can either:

- a) Branch to have *largest* probability of satisfying constraints in a MIP, or
- b) Branch to have *smallest* probability of satisfying constraints in a MIP.

Which policy leads to the first feasible solution more quickly?

Outline

- 1. B&B algorithms for MIPs
- 2. A new principle
- 3. Experimental setup
- 4. Evaluating simple branching direction heuristics
- 5. New probability-based branching methods
- 6. New violation-based methods
- 7. Experiments: branching to force change
- 8. A-UP vs. VDS-LCP
- 9. Branching up revisited
- 10. Contributions

1. B&B Algorithms for MIPs

Main ingredients:

- Node selection heuristic
- Branching variable selection heuristic
 Choose from among candidate variables
- Branching direction selection heuristic
 - $k \le x \le k+1$, where k and k+1 are closest integers
 - Branch down: add x≤k and solve new LP relaxn
 - Branch up: add x≥k+1 and solve new LP relaxn

Node selection

- Many possible heuristics
- Depth-first is typical
 LP advanced start based on parent LP solution

Back-tracking

- When current dive ends at leaf node (feasible or infeasible)
- Many different heuristics

Branching

Assume node has been selected:

 If there are k candidate branching variables, and can branch up or down, then there are 2k branching possibilities.

Main categories of methods:

- A. Choose branching variable, then choose branching direction
 - Most common method
 - Branching variable selection well researched
 - Branching direction selection little researched
- B. Choose branching variable and direction simultaneously
 - Very few methods

What is the Best <u>Branching</u> Heuristic for Feasibility?

Metric: shortest time to first integer-feasible solution

- Sometimes feasibility is the only goal
- Early incumbent shortens time to optimality (better pruning)
- If node selection method is effective, reaching an integer-feasible descendent quickly helps shorten time to optimality

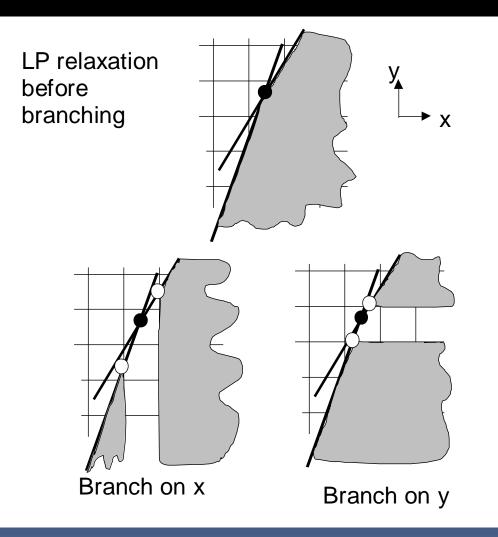
Branching Variable Selection

- Active Constraints Variable Selection (Patel and Chinneck 2007):
 - Choose candidate variable having greatest impact on the *active constraints* in current LP relaxation
 - All other methods look at impact on objective fcn
 - Reaches integer-feasibility very quickly
 - Method A: choose candidate variable appearing in largest number of active constraints

Active Constraints Results

	B&B nodes to First Feasible Soln			
model	Cplex 9.0	Active-Constraints Method		
aflow30a	23,481	22 (A, H_M, H_O, O, P)		
aflow40b	100,000+ (limit)	33 (H _O , O, P)		
fast0507	14,753	26 (A)		
glass4	7,940	$62 (A, H_M, H_O, O, P)$		
nsrand-ipx	3,301	18 (H _M)		
timtab2	14,059	100,000+ (limit)		

Impact of the Branching Variable



Branching Direction Selection

Usually available in a solver:

UP always

- DOWN always
- CLOSEST INTEGER
- Sometimes available in a solver:
 - FARTHEST INTEGER
 - Specialized heuristics ("let solver choose")...
- No method dominates in the literature

Branching Variable <u>and</u> Direction

Driebeek and Tomlin

- Estimate <u>objective function</u> degradation for variable/direction combination using a dual pivot
- Largest degradation chooses variable
- Smaller of two degradations chooses direction
- Default branching method in GLPK

"Multiple Choice" Constraints

- $x_1 + x_2 + x_3 + \dots + x_n$ {≤,=} 1, where x_i are binary ■ Branch down: x_i can take real values
- Branch up: all x_i forced to integer values

E.g.: $x_1 + x_2 + x_3 + x_4 = 1$ at (0.25, 0.25, 0.25, 0.25) Branching on x_1 :

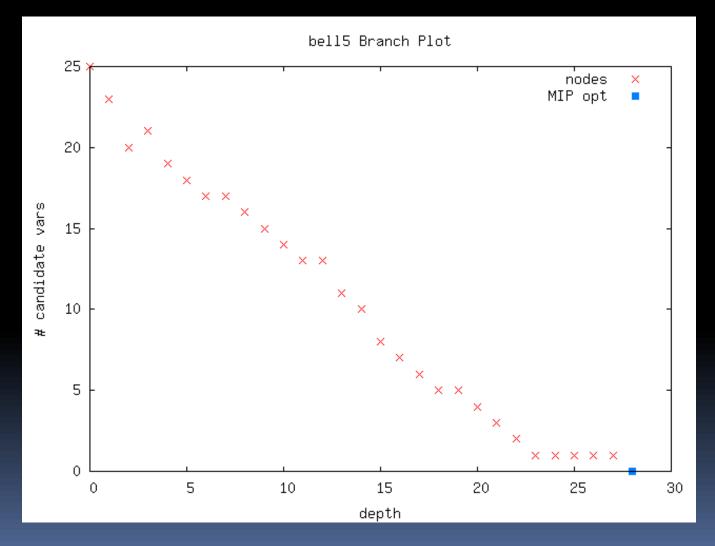
Branch down: (0, 0.333, 0.333, 0.333) or others
Branch up: (1, 0, 0, 0) is <u>only</u> solution

2. A New Principle

Observations

- <u>Often</u>: each branching forces roughly 1 candidate variable to integrality
- <u>Desirable</u>: force as many candidates as possible to integrality at each branch
- Note: integer-feasible when number of candidate variables is zero

Frequent Pattern



New Principle

Branch to Force Change

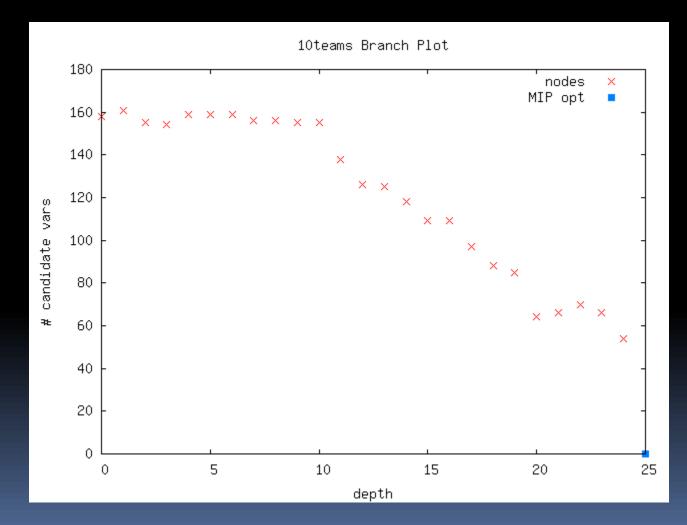
- E.g. Branch up on multiple choice constraints
- E.g. Active constraint branching variable selection

In general:

 Branch to cause change that will propagate to as many candidate variables as possible.

Hope that many will take integer values.

Reach Integrality Faster

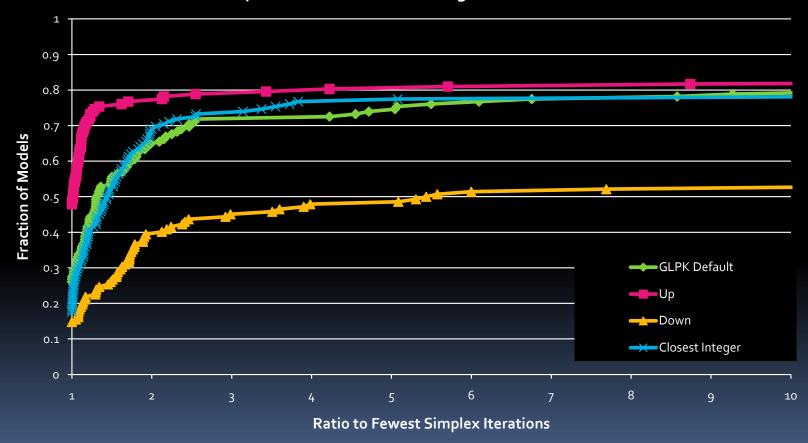


3. Experimental Setup

- Modifications to GLPK 4.28
- Stopping: first feasible solution, or two hours
- Node selection:
 - Driebeek and Tomlin (GLPK default), or
 - Depth first
- Test models
 - 142 total, 47 equality-containing, 95 equality-free
 - 56 from MIPLIB2003
 - I1 from MIPLIB 3.0
 - 7 from MIPLIB 2.0
 - 68 from COR@L
- Speed metric: number of simplex iterations
 - Due to variety of machines

<u>4. Evaluating Simple Branching</u> Direction Heuristics

Up vs. Down vs. Closest Integer: All Models

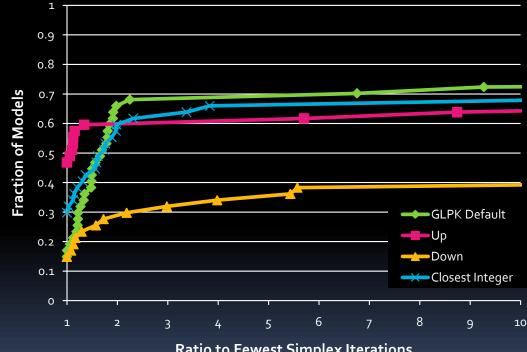


Branching UP Usually Best

Folklore: branching up is best

- Empirically supported
- UP is best, **DOWN** is worst
- Affected by equality constraints

Up vs. Down vs. Closest Integer: At Least One Equality



Ratio to Fewest Simplex Iterations

5. Probability-based Branching

Counting solutions (Pesant and Quimper 2008) • $l \le cx \le u : l, c, u$ are integer values, x integer • Example: $x_1 + 5x_2 \le 10$ where $x_1, x_2 \ge 0$ Value of x_2 Range for x_1 Soln count Soln density 11/18 = 0.61 $x_2 = 0$ [0,10] 11 *x*₂=1 [0,5] 6 6/18 = 0.331/18 = 0.06 $x_{2}=2$ 1 [0] Total solutions 18

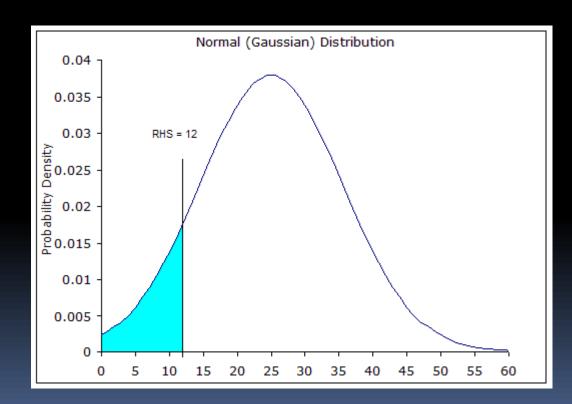
Choose x₂ =0 for max prob of satisfying constraint
 Is this the best thing to do?

Generalization

Assume:

- All variables bounded, real-valued
- Uniform distribution within range
 Result:
- linear combination of variables yields normal distribution for function value
- Mean: $\sum a_i(l_i+u_i)/2$, where x_i has range $[l_i, u_i]$
- Variance: $\sum a_i^2 [(U_i l_i + 1)^2 1]/12$
- Example: $g(x) = 3x_1 + 2x_2 + 5x_3$, $0 \le x \le 5$ has mean 25, variance 110.83
- *Plot....* Look at $g(x) \le 12$

$g(x) = 3x_1 + 2x_2 + 5x_3 \le 12, 0 \le x \le 5$ Probability density plot • Cumulative prob of satisfying function in blue

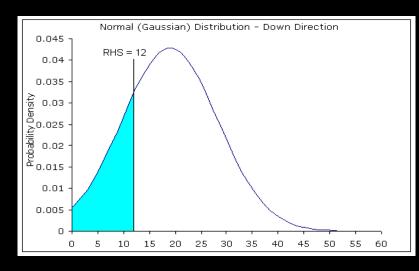


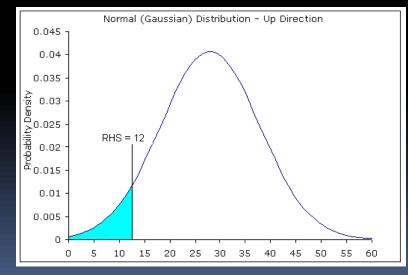
Use for Branching

- Separate distributions for DOWN and UP branches due to changed variable ranges
- Calculate cumulative probability of satisfying constraint in each direction

Example:

- Branch on $x_1 = 1.5$
- *Down*: *x*₁ range [0,1], p=0.23
- *Up*: *x*₁ range [2,5], p=0.05





New: Handling Equality Constraints

- Look at *centeredness* of RHS value in the two prob. curves created by branching UP or DOWN
- For each of branch-UP and branch-DOWN:
 - Calculate cum. prob. of being less than RHS
 - Calculate cum. prob. of being more than RHS
 - Calculate ratio: (smaller cum. prob.)/(larger cum. prob.)
 - Least centered = zero; most centered = 1
- For "highest prob." methods, choose most centred direction, i.e. ratio closest to 1
- For "lowest prob." methods, choose *least centred* direction, i.e. ratio closest to zero

New Branching Direction Methods

Given the branching variable:

- Choose direction based on cum. prob. in <u>any</u> active constraint branching variable is in:
 - LCP: Lowest Cum. Prob. in any active constraint
 - HCP: Highest Cum. Prob. in any active constraint
- Choose direction based on votes using cum. prob. in <u>all</u> active constraints branching variable is in:
 - LCPV: direction most often selected based on lowest cum. prob.
 - HCPV: direction most often selected based on highest cum. prob.

New Simultaneous Variable and Direction Methods

 VDS-LCP: choose varb and direction having lowest cum. prob. among all candidate varbs and all active constraints containing them

 VDS-HCP: choose varb and direction having highest cum. prob. among all candidate varbs and all active constraints containing them

6. New Violation-Based Methods

- If all variable values except branching variable are fixed, what happens when branching direction is UP vs. DOWN?
 - Inequality: is act. constraint violated or still satisfied?
 - Equality: construct cum. prob. curves for up/down
 - "violated": less centred direction
 - "satisfied": more centred direction
- MVV: Most Violated Votes method
 - Choose direction that violates largest number of active constraints containing branching varb.
- MSV: Most Satisfied Votes method

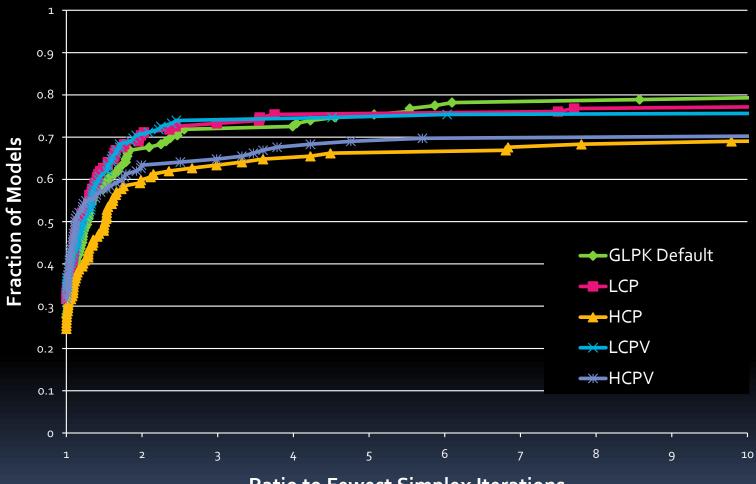
7. Experiments: Branching to Force Change

- Compare methods in pairs:
 - Branching to high vs. low prob. of satisfying active constraints

GLPK default included in all comparisons

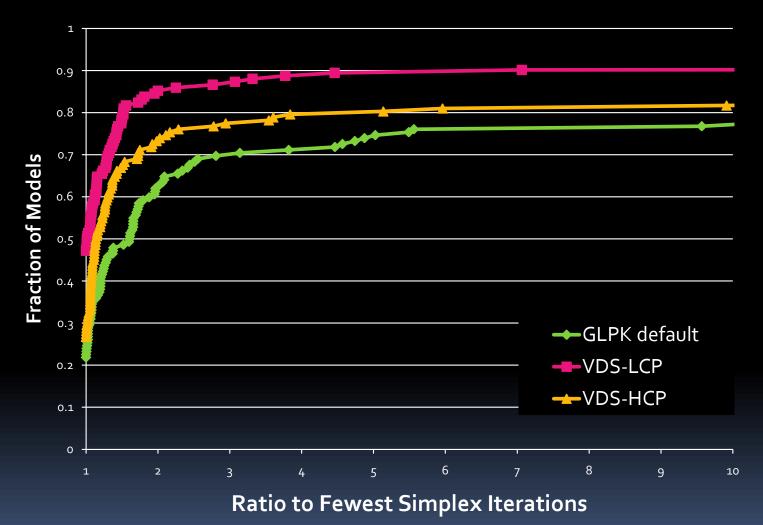
Branching variable selection: GLPK default
 Except for variable-and-direction methods

LCP/LCPV vs. HCP/HCPV: All Models



Ratio to Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: All Models



VDS Methods With Equality Constraints

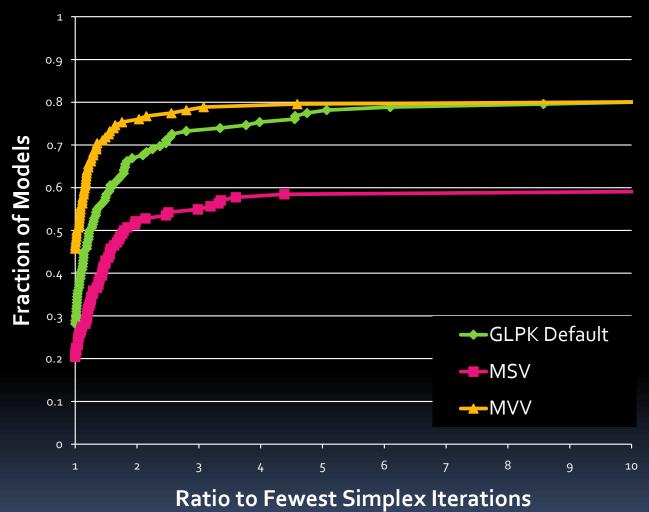
 VDS-LCP even more dominant

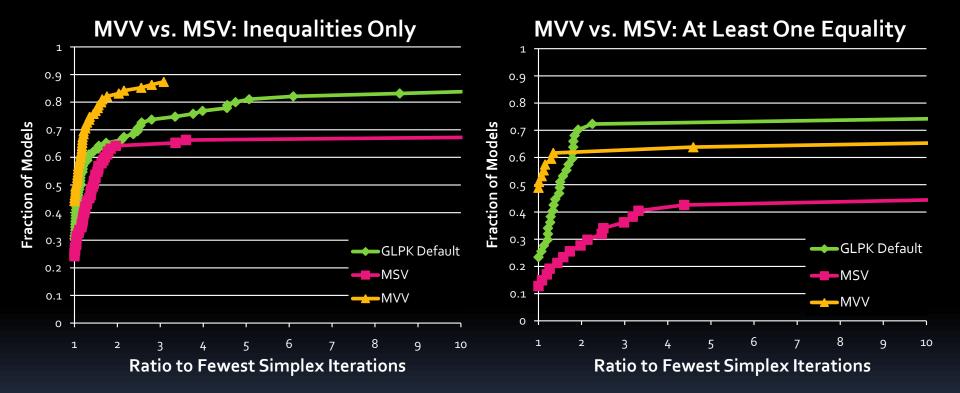
• The centering strategy is effective

1 0.9 0.8 **Fraction of Models** 0.7 0.6 0.5 0.4 0.3 ---GLPK Default 0.2 VDS-LCP 0.1 ----VDS-HCP 0 6 8 2 9 10 **Ratio Fewest Simplex Iterations**

VDS-LCP vs. VDS-HCP: At Least One Equality

MVV vs. MSV: All Models





Faster MIP Feasibility by Forcing Change

Effect of Branching Variable Heuristic

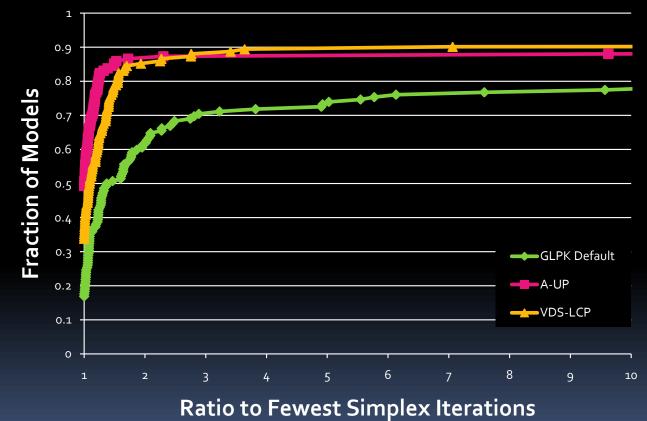
	fraction fewest	
	simplex iterations	fraction solved
GLPK Default	0.1620	0.8239
GLPK-UP	0.2887	0.8592
A-UP	0.3662	0.8944
GLPK-LCP	0.1831	0.8310
A-LCP	0.3028	0.8592
GLPK-LCPV	0.1901	0.7958
A-LCPV	0.2394	0.8521
GLPK-MVV	0.2042	0.8310
A-MVV	0.3028	0.8521

Conclusions Thus Far

- Branching to force change in the candidate variables is fastest to first feasible solution
 - LCP better than HCP
 - LCPV better than HCPV
 - VDS-LCP better than VDS-HCP
 - MVV better than MSV
- Constraint types have an impact:
 - Equality constraints; multiple choice constraints
- One counter-example: set covering
 - Feasible solution easy: set all variables to 1

8. A-UP vs. VDS-LCP

A-UP vs. VDS-LCP: All Models

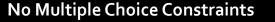


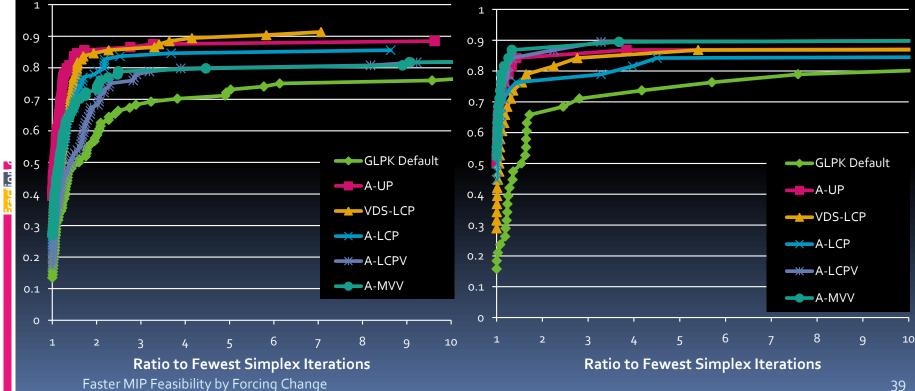
Branching Up Revisited 9.

Why is it so good?

- Presence of multiple choice constraints?
 - 104 of 142 (73%) models have at least one

At Least One Multiple Choice Constraint





Prob. in Multiple Choice Constraints

# Variables	Cum. Prob. Up	Cum. Prob. Down
2	0.158655254	0.841344746
3	0.078649604	0.5
4	0.041632258	0.281851431
5	0.022750132	0.158655254
6	0.012673659	0.089856247

X,	╋	X_{2}	<	1
- 1				

# Variables	Equality Ratio Up	Equality Ratio Down
2	0.188573417	0.188573417
3	0.085363401	1
4	0.043440797	0.392469529
5	0.023279749	0.188573417
6	0.012836343	0.098727533

 $X_{1} + X_{2} = 1$

10. Contributions

- Principle of branching to force change in the candidate variables leads to faster feasibility
 Surprise! Branch to low-probability direction
- Presence of equalities, multiple choice constraints affects performance of heuristics
 - UP works well because it is more often the lower probability direction
- Extension of probability-based methods to equality constraints
- New branching methods (esp. VDS-LCP)

Outline

1. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

Faster MIP Solutions via New Node Selection Rules

Daniel T. Wojtaszek John W. Chinneck

Systems and Computer Engineering Carleton University Ottawa, Canada

Branch and Bound

Main B&B algorithm design choices:

- How to choose the integer infeasible (*candidate*) variable to branch on at a node.
- How to choose the unexplored (active) node to solve next.
 - Triggering backtrack.
 - Which node to choose when backtracking.
 - Theme: using distributions and correlations to define heuristics

Outline

1. Triggering Backtrack

- Feasibility Depth Extrapolation
- Modified Best Projection Aspiration

2. Choosing Node When Backtracking

- Modified Best Projection
- Distribution-based Backtracking
- 2.1 Active Node Search Threshold
- 3. Experiments
- 4. Conclusions

1. Triggering Backtrack

- Typical methods:
- Proceed depth-first until:
 - A leaf node is reached
 - Current node no longer desirable:
 - No optimum descendents (compare to incumbent)
 - No feasible descendents.

User-supplied aspiration value

Improved Backtrack Triggers

Goal:

Faster MIP solutions

Method:

Heuristics to trigger backtrack when all descendents:

- Unlikely to be optimal or
- Unlikely to be feasible

Predicting the Optimum Z

- Z*: optimum objective function value
- Z^i : LP-relaxation objective function value at node i
- Minimization assumed
- Concept:
- If Z* known in advance then trigger backtrack when node LP-relaxation value is worse
 - For minimization, trigger backtrack if $Z^i > Z^*$
- Can we estimate in advance an *aspiration value* Z^a that is close to Z*?
 - Trigger backtrack if $Z^i > Z^a$

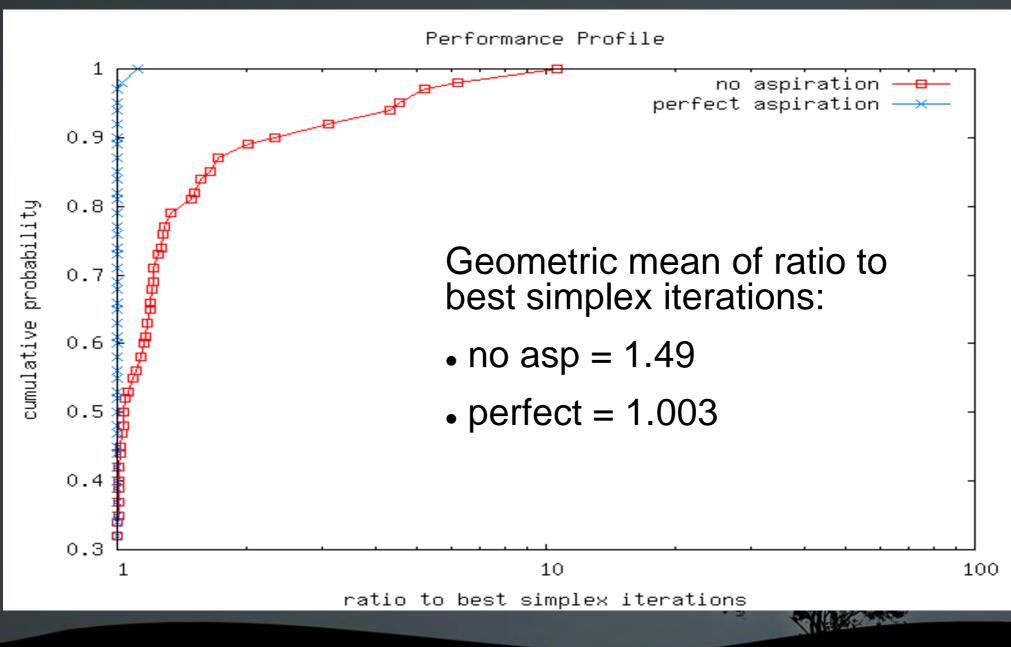
Proof of Concept

- Solve MIPs to find Z*
- Re-solve MIPs using $Z^a = Z^*$ to trigger backtrack

Experimental setup:

- Solver: GLPK 4.9
- Default branching variable selection, backtracking node selection
- Root node cuts: Gomory cuts
- Test models: all MIPLIB/MIPLIB2003 that solve within 1 hour

Proof of Concept



Estimating Z*: State of the Art

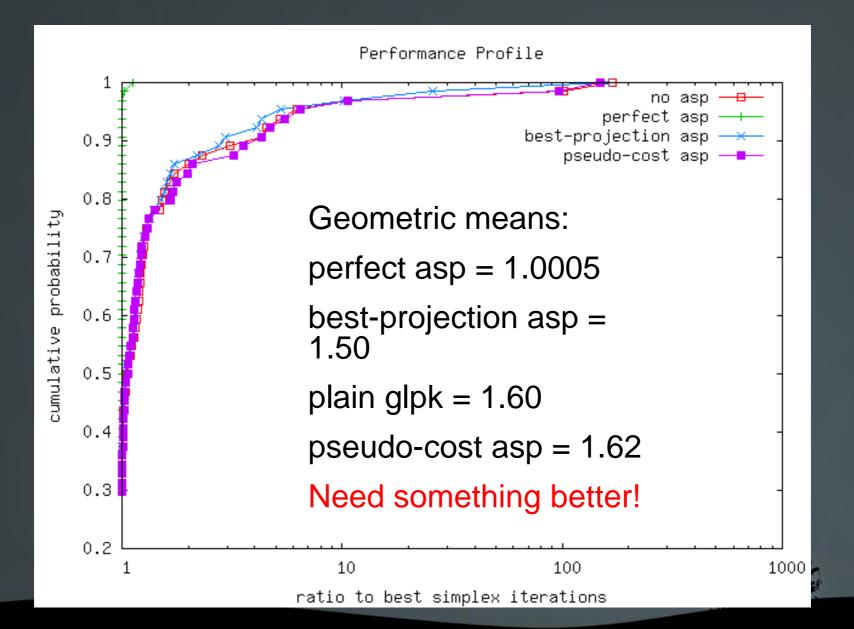
Two methods normally used for node selection, *not* triggering backtrack:

Pseudo-cost estimates:

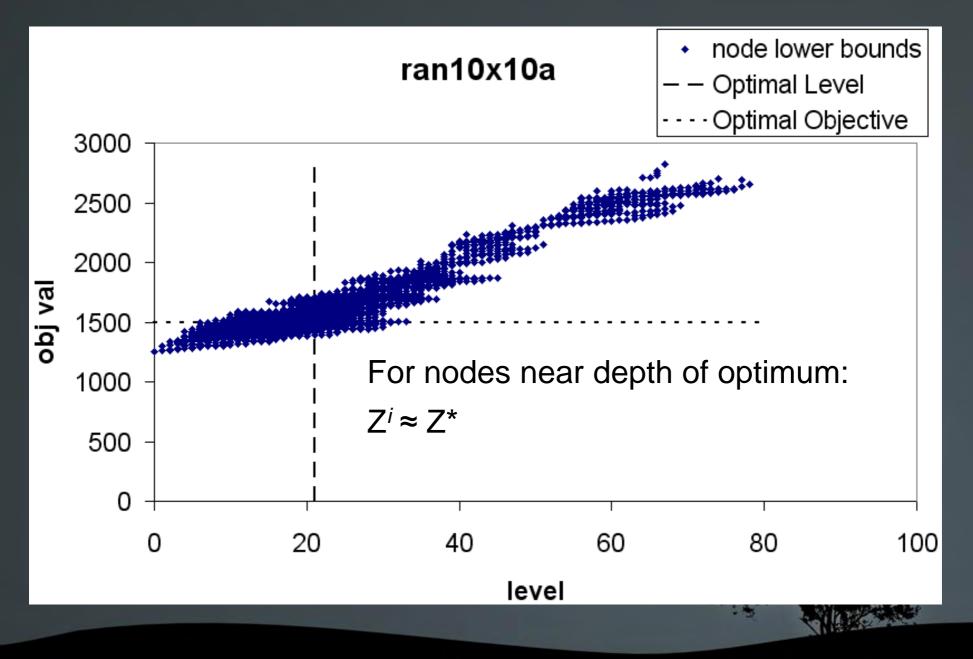
• Note $\Delta Z/\Delta x$ at each branching. Project Z* based on this. **Best-projection estimates:**

- Compare (improvement in Z between root LP-relaxation and incumbent) to (reduction in integer infeasibility)
- Project Z* based on this.

Using Available Estimators

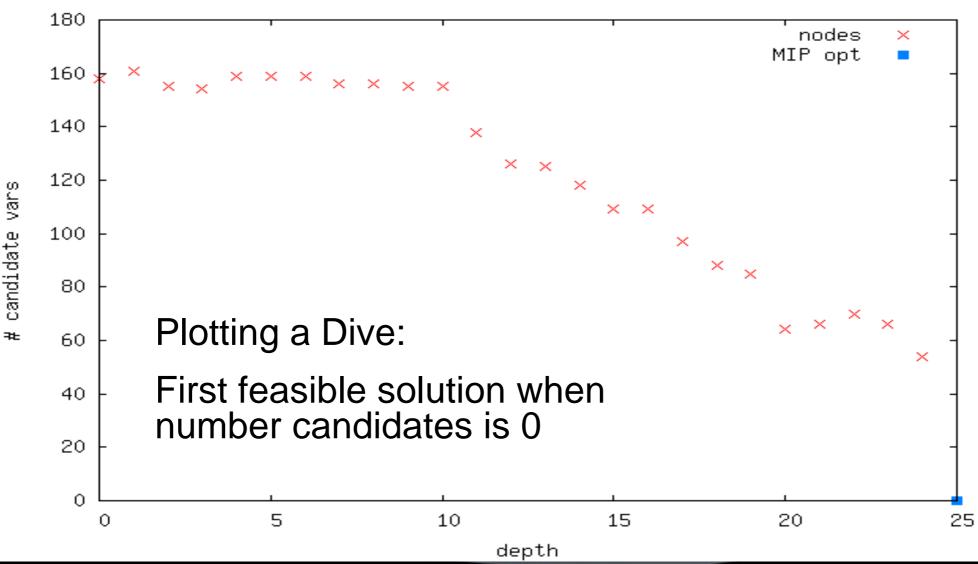


NEW: Using Depth Information



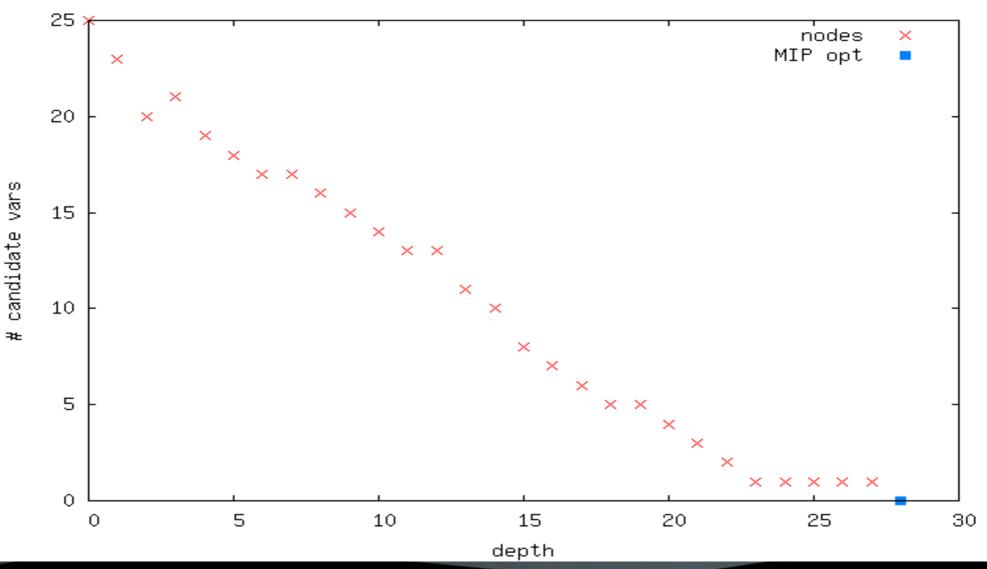
Can we predict depth of optimum?

10teams Branch Plot



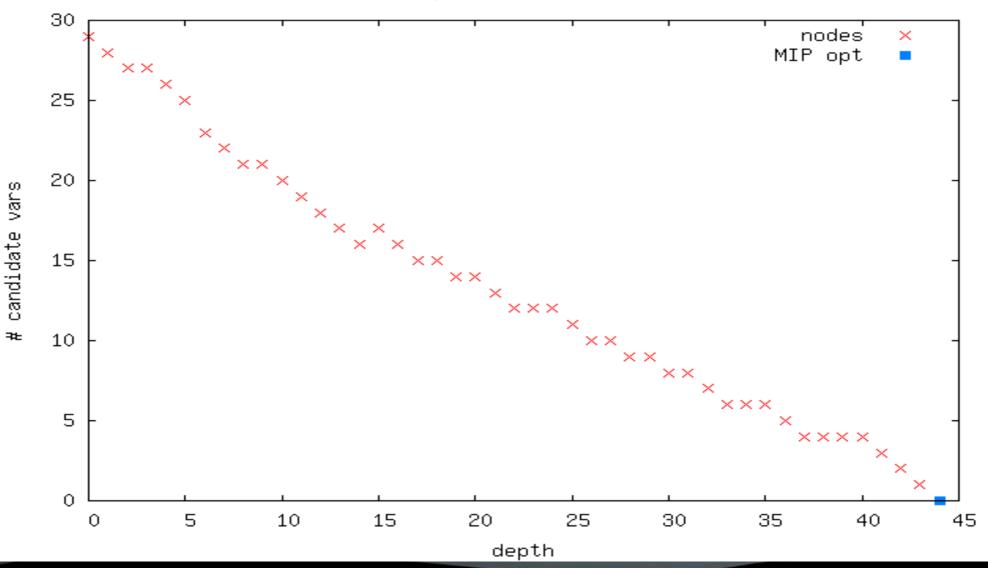
Is There a Pattern?

bell5 Branch Plot



Is There a Pattern?

vpm2 Branch Plot



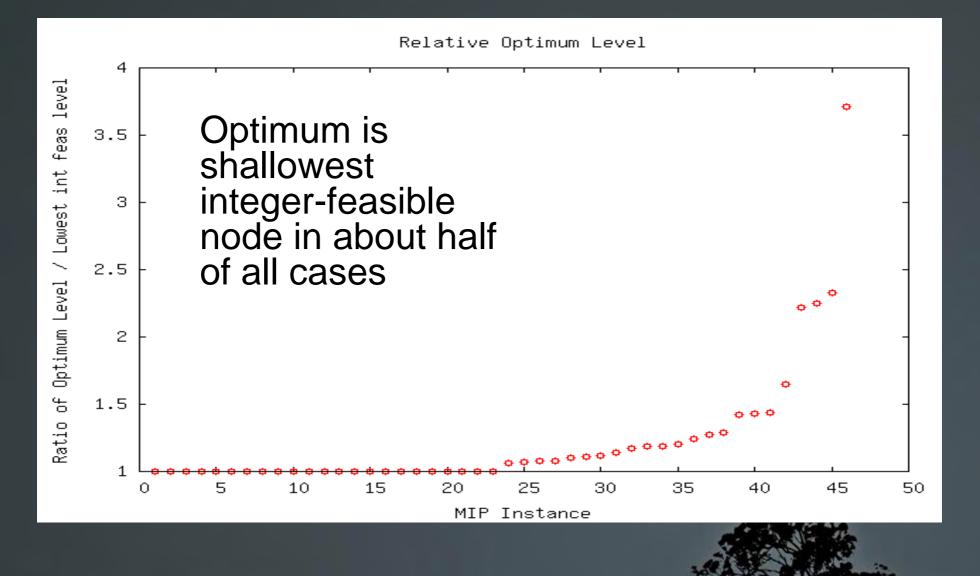
Reconciling multiple active nodes

There are multiple active nodes in the tree

- Each node provides a projected depth of first feasible solution
- Which estimated depth should we use?

• Is there a pattern?

Observation: Optimum Depth



Linear Extrapolation to Estimate Z*

• For every active node with depth ≥ 20

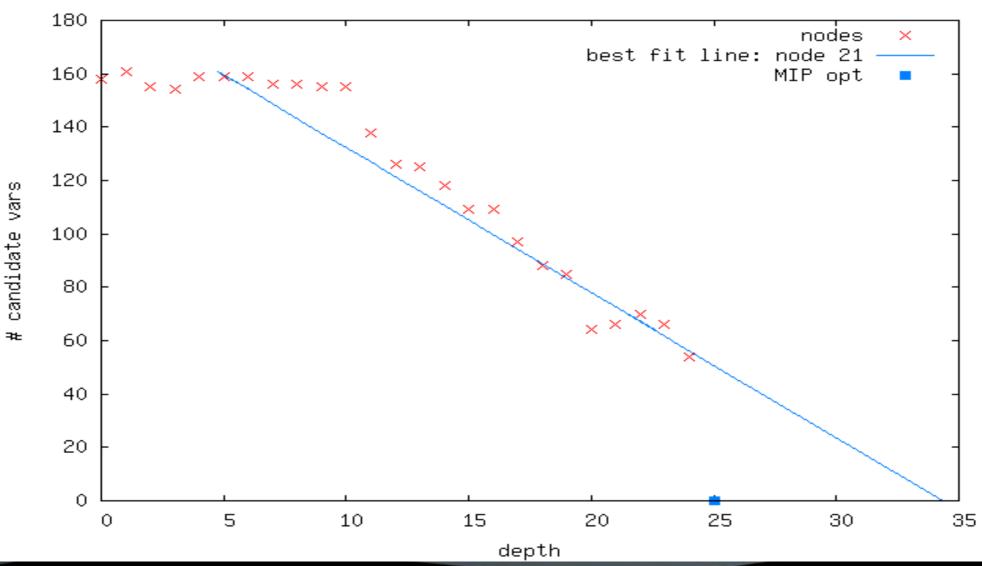
- Fit least-squares line to number of candidates vs. depth using all ancestor nodes
- Project depth of closest feasible solution (zero candidates)
- k = smallest extrapolated depth over all nodes
- $Z^a = \max \text{ of } Z^i \text{ over all nodes at depth (conservative)}$

Notes

20 chosen empirically: enough data to extrapolate

Linear Extrapolation

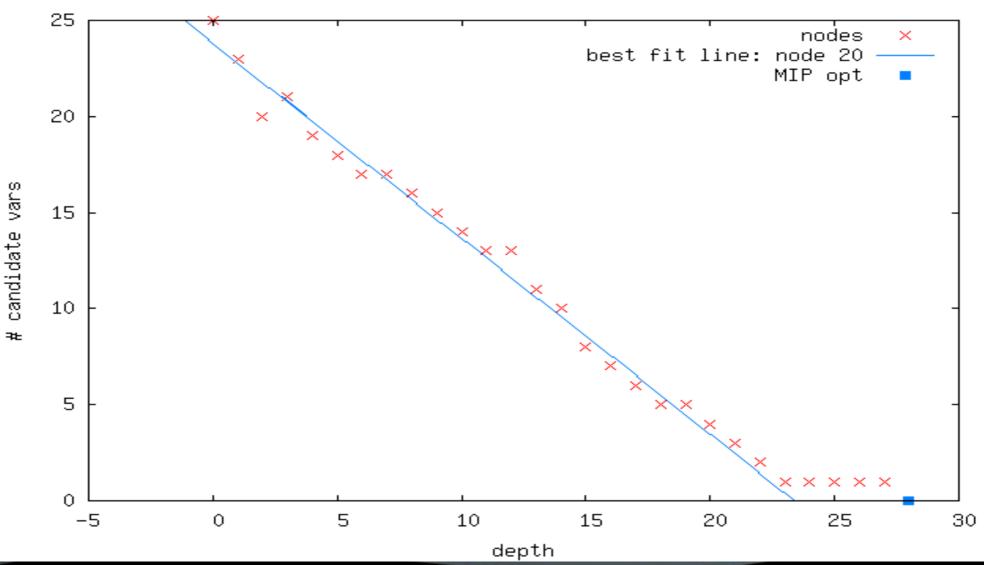
10teams Branch Plot



19

Linear Extrapolation

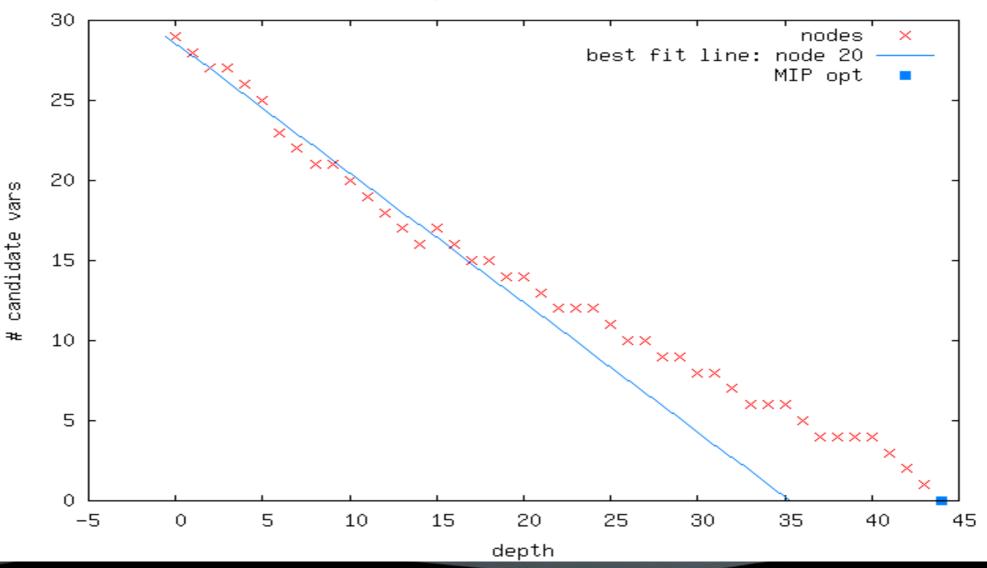
bell5 Branch Plot



20

Linear Extrapolation

vpm2 Branch Plot



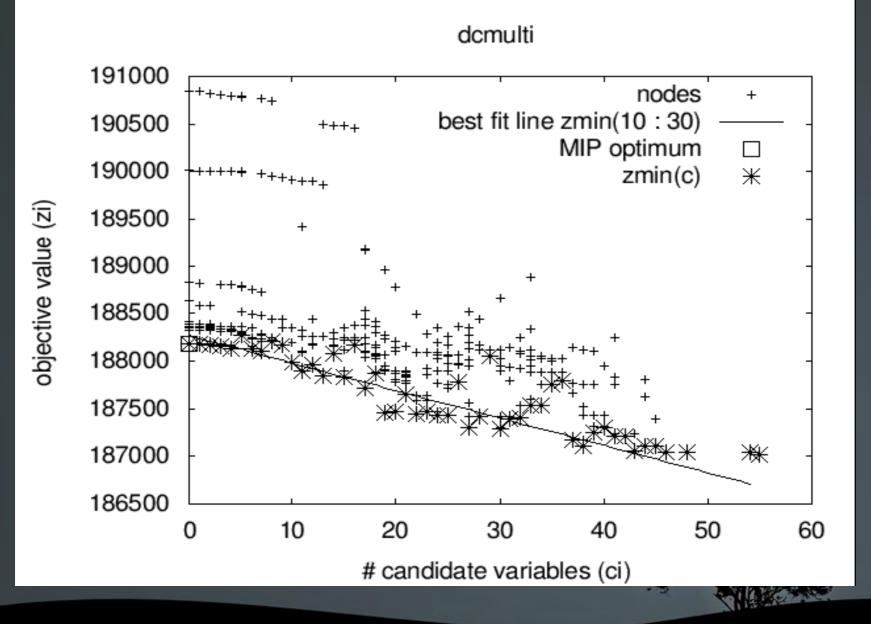
NEW: Modified Best Projection Aspiration

Usual best projection for node selection:

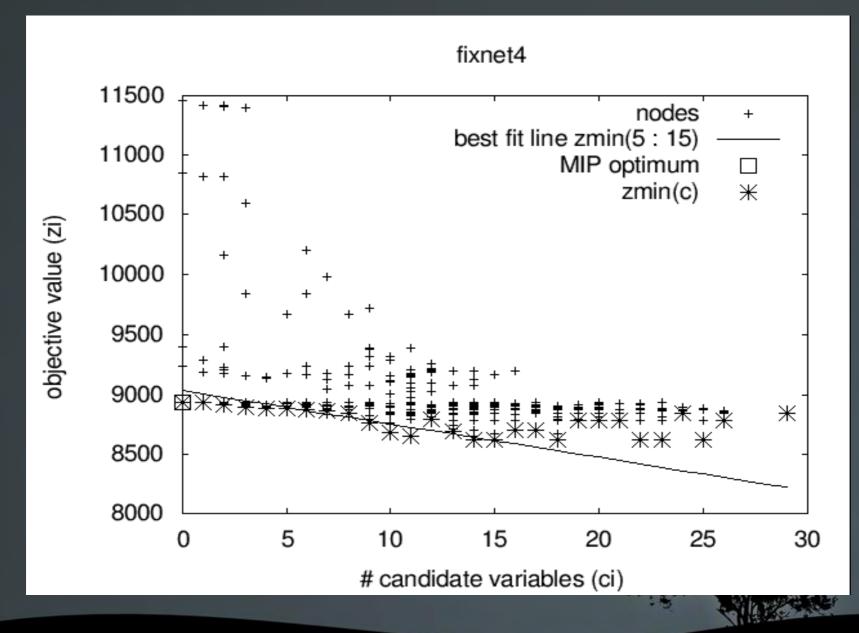
- $Z^{a} = Z^{i} + (Z^{inc} Z^{0})s^{i}/s^{0}$
 - sⁱ: sum of integer infeasibilities at node i
 - s⁰: sum of integer infeasibilities at root node
- Can we eliminate the need for an incumbent solution so this method can be applied at any node?

• Is there a pattern?

Z^{min}(c): min Z at given C



Patterns in Z^{min}(C)



Modified Best Projection Aspiration

• $Z^a = Z^i + C^i [Z^{min}(C^{min}) - Z^0] / (C^0 - C^{min})$

- Cⁱ: number of candidate variables at node i
- C^{min}: minimum number of candidate variables at any node

Notes:

- Eliminates need for an incumbent
- Closeness to feasibility measure:
 - number of candidate variables instead of sum of integer infeasibilities
- Also used for node selection

2. Choosing Node when Backtracking

State of the Art:

- Choose node that is likely to have best objective function value:
 - Best-projection
 - Best-estimate (based on Pseudo-costs)
 - Best-bound
 - Depth-first backtrack to first active node
 - **••••**
- No method dominates

NEW: Distribution-based node selection

Balance pursuit of *both* feasibility and optimality

- C^{*i*}: number of candidate variables at node *i*
- Smaller Zⁱ and Cⁱ both desirable
- Z^i tends to be *large* where C^i is *small*, and vice versa

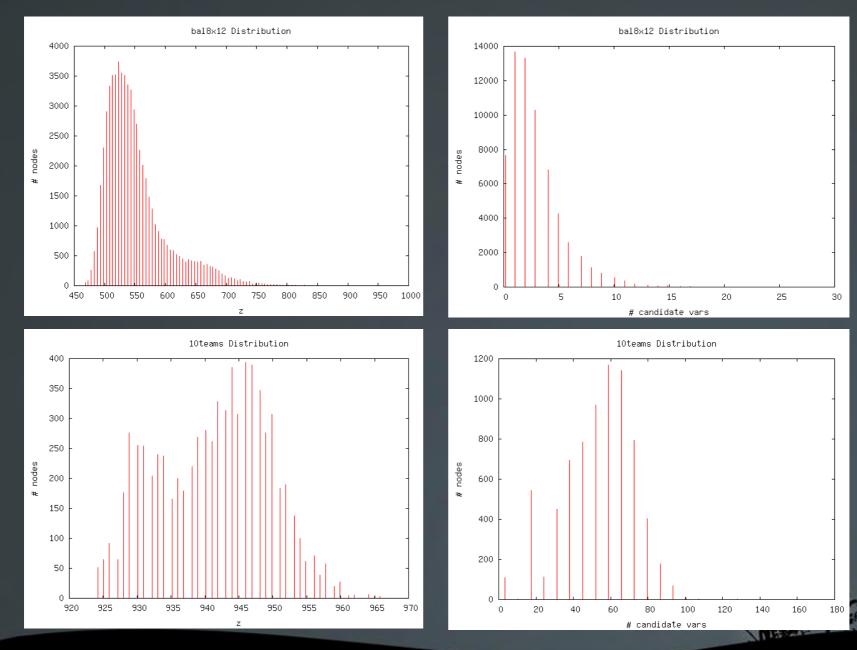
Ranges quite different: how to balance?

- Normalize ranges of Zⁱ and Cⁱ assuming independent normal probability distributions
- Choose node *n* where $n = \arg \min_i P(Z \le Z^i, C \le C^i)$

Notes on Distributions

- Joint probability function of Z and C unknown.
- Single variable functions:
 - Assume Z and C are independent (*iffy!*)
 - $P(Z \le Z^i, C \le C^i) = F_Z(Z^i) \times F_C(C^i)$
- Functions tried in experiments:
 - Uniform
 - Rayleigh
 - Gaussian (best result)
 - Central Limit Theorem: sum of random varbs usually normal
 - Easy to update as nodes created

Example Distributions



29

Distribution Node Selection Algorithm

Distribution not helpful if:

- Standard deviation of Z is 0
- (Standard deviation of C) /depth is small, i.e. < 0.1 [empirical]

Algorithm:

- If standard deviation of Z or C too small then use default node selection method (best projection) and exit.
- For every active node *i*:
 - $F_{ZC}(Z^i, C^i) = F_Z(Z^i) * F_C(C^i)$
- Choose node *n* where $n = \arg \min_i F_{ZC}(Z^i, C^i)$

2.1 Active Node Search Threshold

Observations:

- Advanced node selection can take too much time
- Fewer iterations, fewer nodes, but more *time*
- Node search time proportional to num. active nodes
- Too many active nodes?
 - Default to simple depth-first backtracking
- E.g.: mas76
 - Best-projection: 17,598 sec, *3,186,117* itns, *1,177,063* nodes
 - Depth-first: **785** sec, 5,691,683 itns, 2,165,073 nodes

Threshold

- R_t = (time for node selection)/(time for all else)
 Cumulative time
- If R_t > 0.1, then switch to simple depth-first node selection
- Notes:
 - 0.1 is empirical
 - Fix-up if aspiration cut-off is being used

3. Experiments

Software:

- Solver: GLPK 4.9
- Branching variable selection: default
- Root node cuts: Gomory cuts

Hardware:

- CPU: Intel Core 2 6600 @ 2.4 GHz
- RAM: 4 GB
- OS: Linux 2.6.18

272 Test models:

- all instances from MIPLIB/MIPLIB2003
- all instances from CORAL
- exclude instances not solved within time limit by default GLPK

79 (legal) combinations of methods!

Backtracking node selection methods:

- Methods available in GLPK:
 - **DEPF**: Depth-first
 - BREF: Breadth-first
 - **DEBP**: <u>Default</u> best-projection
 - BESF: Best-First
- Methods added to GLPK:
 - **BEES**: Best-estimate
 - **BFBE**: BEES interleaved with BESF
- New methods
 - DIST: Distribution
 - MOBP: Modified Best-Projection

New Active node search threshold

- NOAN: No ANST (<u>Default</u>).
- ANST: Use ANST.

Backtrack triggering methods:

- Methods available in GLPK.
 - NONA: Non-aspiration backtracking: backtrack only from leaves (<u>default</u>).
- Methods added to GLPK:
 - ALLT: Perform backtracking node selection after every node solution.
 - DBPA: Default best-projection aspiration
 - **PCAS**: Pseudo-cost (best-estimate) aspiration
- New methods
 - LEXA: Linear feasibility depth extrapolation aspiration
 - MPAS: Modified best-projection aspiration

Prefiltering Experiment

- Try all 79 combinations of methods on a subset of faster-solving models
 - Select better methods for more extensive testing
- 79 Models:
 - those solved by default GLPK within 30 min
- Ranking is sum of:
 - Ranking by total time over all models (TR)
 - Ranking by ratio of geom. mean of avg ratio to best (RR)
 - Number of failed solutions (FAIL)

Best Methods

Rank	Configuration	FAIL	TR	RR
1	MOBP-MPAS-ANST	1	3	2
2	MOBP-MPAS-NOAN	1	4	3
3	MOBP- <mark>PCAS</mark> -ANST	1	1	7
4	DIST-ALLT-NOAN	2	7	1
5	DIST-MPAS-ANST	1	6	4
5	MOBP-PCAS-NOAN	1	2	8
7	MOBP-LEXA-ANST	2	8	6
39	DEBP-NONA-NOAN	0	36	44
64	BESF-NONA-NOAN	6	62	65
71	BREF-NONA-NOAN	6	71	71
76	DEPF-NONA-NOAN	7	76	76

Backtracking

MOBP: Modified Best Projection DIST: Distribution

Triggering

MPAS: Modified Best Proj Asp PCAS: Pseudocost Aspiration ALLT: After Every Node LEXA: Linear Extrapolation ANST

ANST: Active Node Search Thresh.

NOAN: No ANST

Longer Experiments

- 7 top-ranked methods from prefiltering experiment
- Highest-ranked existing combination method
- GLPK default
- All 272 models
- One hour time limit
 - 9 weeks of computation

Overview of Results

272 MIP instances total:

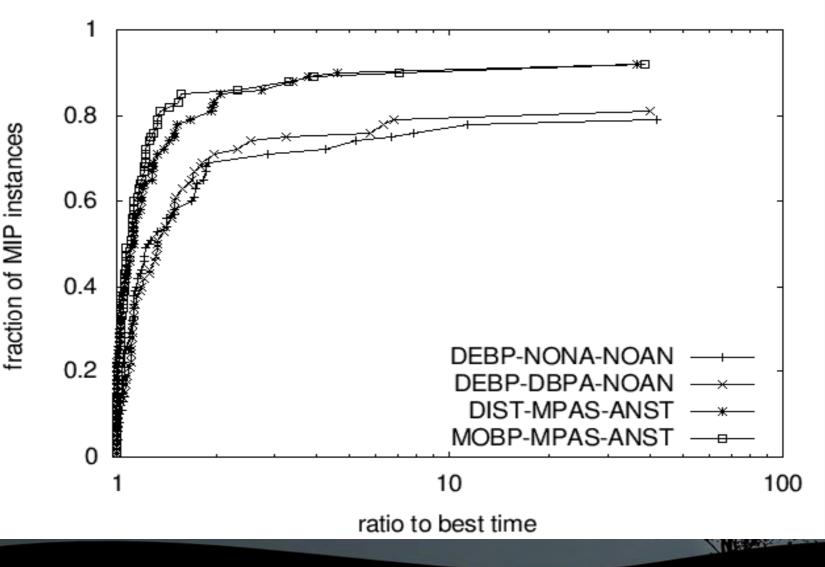
- 109 optimum found by at least 1 config
- 130 no optimum but at least one feasible soln found
- 33 no optimum and no feasible solutions found

Results

	AT LEAST 1 OPT			NO OPTIMUM		
Config	Fail	TotTim	Mratio	Avgrank	Nfirsts	NINC
MOBP-MPAS-ANST	6	86,654	1.33	4.54	8	75
DIST-MPAS-ANST	6	86,654	1.37	2.89	34	21
MOBP-PCAS-ANST	6	88,560	1.34	4.34	11	72
MOBP-LEXA-ANST	6	91,509	1.40	4.18	17	57
DIST-ALLT-NOAN	15	97,340	1.34	2.48	67	17
MOBP-MPAS-NOAN	13	99,799	1.43	4.62	7	81
MOBP-PCAS-NOAN	12	100,752	1.50	4.6	9	82
DEBP-DBPA-NOAN	14	109,240	1.75	3.74	21	15
DEBP-NONA-NOAN	15	109,579	1.78	3.47	25	15
	-			5 B	な言葉	

Performance Profiles

Performance Profile



40

Conclusions

New methods very effective in speeding MIP solutions

Best configurations:
MOBP-MPAS-ANST
DIST-MPAS-ANST

Best configurations composed entirely of new methods

Outline

I. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

Analyzing Infeasible MIPs

John W. Chinneck

Systems and Computer Engineering, Carleton University, Ottawa, Canada

Outline

- I. Analyzing Infeasible Math Programs
- 2. Extension to MIP
- 3. Special Methods for MIP
- 4. Empirical Tests
- 5. In Practice

1. Analyzing Infeasible Math Programs

General methods that also apply to MIPs

Anything that restricts the solution space:

- A functional constraint: $3x_1 + 8x_2 \le 12$
- A variable bound: $x_1 \ge 0$
- An integrality condition: x_1 is integer

Isolate an Irreducible Infeasible System (IIS)

- An infeasible set of constraints that becomes feasible if any constraint removed
- Main approach for MIPs

Find a Maximum Feasible Subset (Max FS)

- Maximum cardinality subset of constraints that is feasible
- Find "best fix" for infeasible constraints
 - Different matrix norms for measuring "best fix"

General Methods for Finding IISs

 Assume solver perfectly accurate in deciding feasibility status of a set of constraints

- Reasonable assumption only for LP
- General methods for IIS isolation:
 - Deletion Filter
 - Additive Method
 - Elastic Filter
 - Additive/Deletion method

INPUT: an infeasible set of constraints.

FOR each constraint in the set:

Temporarily drop the constraint from the set.

Test the feasibility of the reduced set:

IF feasible THEN return dropped constraint to the set.

ELSE (infeasible) drop the constraint permanently.

OUTPUT: constraints constituting a single IIS.

IIS is $\{B,D,F\}$ in $\{A,B,C,D,E,F,G\}$

- B,C,D,E,F,G infeasible.A deleted.
- {C,D,E,F,G} feasible. B reinstated.
- B,D,E,F,G infeasible. C deleted.
- B,E,F,G} feasible. D reinstated.
- {B,D,F,G} infeasible. E deleted.
- B,D,G feasible. F reinstated.
- B,D,F infeasible. G deleted.

Output: the IIS {B,D,F}

Deletion Filter: Characteristics

- Returns exactly one IIS, even if there are multiple IISs in the model
- Which IIS?
 - IIS whose first member is last in the test list.
 - Consider {A,B,C,D,E,F,G,H,I,J,K}. IIS {G,I,K} found.

Speed: isn't this slow?

- For LP: time to isolate IIS usually a small fraction of time to find infeasibility initially
 - Due to advanced starts: each LP is very similar to the previous one
- For MIP and NLP: slow

Main insight:

- Add constraints one by one and test feasibility after each constraint is added.
- As soon as the tested set becomes infeasible, the lastadded constraint *must* be part of an IIS

C: ordered set of constraints in the infeasible model. T: the current test set of constraints. I: the set of IIS members identified so far.

```
INPUT: an infeasible set of constraints C.

Step 0: Set T = I = \emptyset.

Step 1: Set T = I.

FOR each constraint c_i in C:

Set T = T \cup c_i.

IF T infeasible THEN

Set I = I \cup c_i.

Go to Step 2.

Step 2: IF I feasible THEN go to Step 1.

OUTPUT: I is an IIS.
```

IIS is $\{B,D,F\}$ in $\{A,B,C,D,E,F,G\}$

- ► {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all feasible.
- {A,B,C,D,E,F} infeasible: I = {F} is feasible.
- F,A}, {F,A,B}, {F,A,B,C} all feasible.
- {F,A,B,C,D} infeasible: $I = {F,D}$ is feasible.
- F,D,A feasible.
- {F,D,A,B} infeasible: $I = \{F,D,B\}$ infeasible. Stop. Output: the IIS {F,B,D}

Additive Method: Characteristics

- Returns exactly one IIS, even if there are multiple IISs in the model
- Which IIS?
 - IIS whose *last* member is *first* in the test list.
 - Consider {A,B,C,D,E,F,G,H,I,J,K}. IIS {B,E,J} found.
- Speed:
 - If IIS is small and early in the list of constraints, can use far fewer feasibility tests than deletion filter
 - For LP: speed similar to deletion filter due to basis re-use
 - ► For MIP and NLP: slow

Additive/Deletion Method

- 1. Apply additive method until first infeasible subset of constraints is found.
- 2. Apply deletion filter to subset.
 - Consider {A,B,C,D,E,F,G,H,I,J,K}
 - Additive alone: 29 solutions
 - Additive/deletion: 19 solutions
 - Deletion alone: || solutions

More efficient.

Dynamic reordering additive method

- If an intermediate test is feasible, scan all of the constraints past the current one and immediately add to T all those that are satisfied at the current test solution
 - Can avoid many model solutions

Speed-up: Grouping Constraints

Add/drop constraints in groups

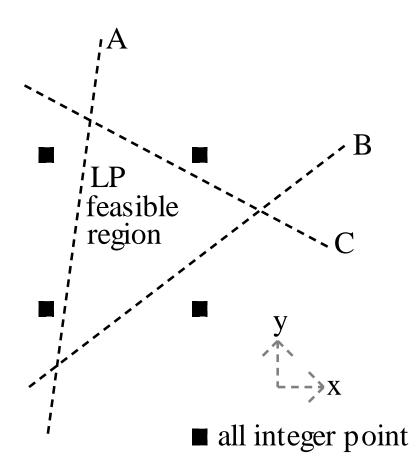
- In order, or by category
- Deletion Filter: back up and add singly if deleting a group causes feasibility
- Additive Method: back up and do singly if adding a group causes infeasibility
- Fixed group size? Adaptive group sizing?
- More recently: binary versions that split groups into halves in a combination of additive method and deletion filter

2. Extension to MIP

Analyzing Infeasible MIPs

MIP Infeasibility

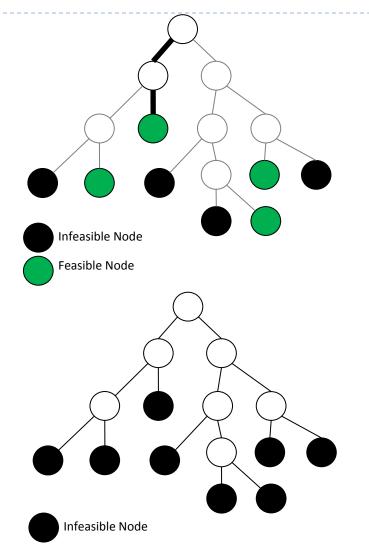
- Three classes of constraints:
 - Linear row constraints (LC)
 - Variable bounds (BD)
 - Integer Restrictions (IR)



Proving (In)feasibility in MIPs

- Proving feasibility:
 - Find any feasible node in the search tree

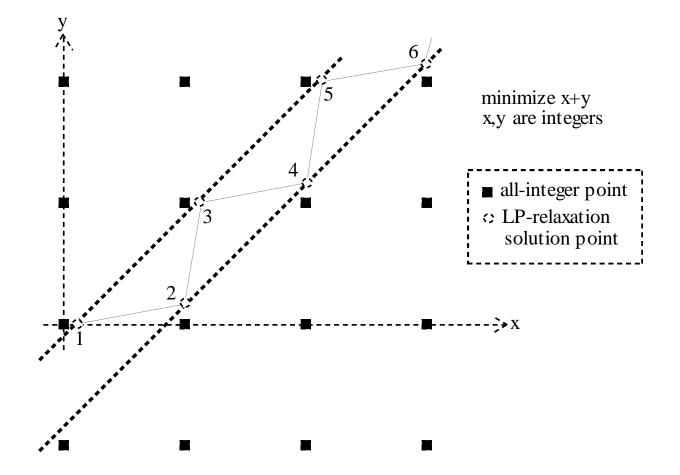
- Proving infeasibility:
 - Expand entire tree until all leaves infeasible



Analysis is Slow

- Methods rely on many MIP solutions, each having slightly different subsets of constraints
 - Fast for LP due to hot starts
 - Slow for MIPS
- Adjust methods to reduce the number of MIP solutions needed:
 - Also to deal with other nontermination

Difficulty: Nontermination in MIPs



Dealing with Non-termination

If computation limit exceeded on subproblem:

Retain constraint and label it dubious

Another approach:

Add safety bounds on variables

May return infeasible subsystem (IS) instead of IIS if there are dubious constraints or safety bounds are active

 Non-termination can be frequent as constraints are removed by the IIS-finding algorithms

State of the Art in Infeasibility Analysis

LP:

- Very well developed theory
- Fast in practice, implemented in most LP solvers

MIP

- Methods for general math programs adapted for MIPs
- Relatively slow

Infeasible MIPS:

- Easy to analyze if caused by LP infeasibility
- Interesting case is interaction with integer restrictions

Direct Application of Deletion Filter

Nontermination may be frequent:

- Preset computation limit for subproblems (max nodes in subproblem tree)
- Constraint labelled dubious.

Reducing incidence of nontermination:

- Leave variable bounds in place as long as possible
- Delete in this order: IR, LC, BD

Slow but effective

Test in groups

Direct Application of Additive Method

- Assuming initial LP relaxation is feasible:
 - Start with LC, BD in test set T
 - Feed in the integer restrictions one by one
- Cannot directly identify dubious constraints
 - Test set always feasible or indeterminate, until infeasible
 - No indication of *which* constraint caused nontermination
 - In deletion filter, last constraint removed before nontermination can be labeled dubious
- > Dynamic reordering can speed analysis

Additive/Deletion Method

- Can also be used
- Identifies dubious constraints during deletion filter

3. Special Methods for MIP

Useful Info in Original B&B Tree

Recall:

- intermediate nodes are LP-feasible, leaf nodes are LP-infeasible
- Theorem I:
 - The IR set satisfied at any intermediate node cannot be the whole IR part of any IIS

Theorem 2:

- Mark LCs and BDs having nonzero shadow prices at any leaf node.
- IR \cup {marked LCs} \cup {marked BDs} is infeasible
- Can eliminate some LCs and BDs from consideration

Theorem 3:

- > Active IRs are those actually used in the B&B tree branching
- ► {active IRs}∪LC ∪BD is infeasible
- Can eliminate some IRs from consideration

Using Info in Original Tree

- Eliminate LCs and BDs that are not sensitive in any leaf (Thm 2)
- Eliminate IRs not in active set (Thm 3)
- Path set: set of IRs used in branching on a root-to-leaf path.
 - Path sets good candidates for the IR set in an IIS
 - Use Thm I to eliminate candidate paths

- Use alternative objective function (especially one which determines infeasibility faster)
 - e.g. Elastic varbs on constraints introduced during branching
 - Minimize sum of slacks
- Other MIP solver settings
 - Branch on most infeasible variable?
 - Depth-first vs. other node selection schemes?

4. Empirical Tests

- 20 infeasible test problems (hard to find!)
 Avg. 238 LCs, 518 BDs, 80 IRs
- Software: Cplex 3.0 (!) and MINTO
 - Max 10,000 nodes in any subproblem
- Avg. initial solution:
 - 437 B&B tree nodes
 - I7I9 LP iterations
 - Soln time: 6 secs

Results

Averages over 20 models. Sun 10/30c computer, 36 MHz SPARC Sun 4 CPU, 33 Mbytes of memory

method	llSs (term)	dubious IR-LC-BD	IRs	LCs	BDs	nodes	LP itns	time
LC-IR-BD deletion	5 (0)	0-17-182	16	132	290	499,154	3,401,931	9:12:46
IR-LC-BD deletion	5 (0)	0-16-185	12	154	321	344,797	1,913,248	2:27:44
IR-LC-BD del, grp 4	5 (0)	0-16-186	12	153	311	189,561	1,246,078	1:51:31
Dyn. reorder add/del	3 (0)	0-0-8	8	135	309	124,512	1,487,991	2:25:21
Additive	4 (3)	NA	9	50	142	172,688	982,255	1:12:12
Dyn. reorder additive	4 (3)	NA	8	40	145	130,068	396,176	19:41
Initial tree w del filter (10 models)	I (0)	0-168-475	6	209	520	61,330	Not recorded	0:58:43

Conclusions (1)

Slow

Best method avg I:5I:3I vs. 6 sec for initial detection of infeasibility

Effective. Best method eliminates:

- > 90% of IRs,
- 43% of LCs
- 40% of BDs)

BUT: machine time is cheap, people time is expensive!

Conclusions (2)

- Best method (IIS fairly often, smallest IISs, fewest dubious constraints):
 - dynamic reordering additive/deletion method
- Fastest method:
 - info from original B&B tree
 - IR-LC-BD deletion filter
 - constraint grouping (fixed size)

O. Guieu and John W. Chinneck

Analyzing Infeasible Mixed-Integer and Integer Linear Programs INFORMS Journal on Computing 11, pp. 63-77, 1999

5. In Practice

Analyzing Infeasible MIPs

Cplex "Conflict Refiner" for MIPs

- May add/delete constraints in groups
- Can specify preferences for inclusion/exclusion of constraints or groups in the IIS
- Heuristics to try to find an infeasible subset more quickly, then apply detailed analysis

LINDO

Similar capabilities in LINDO/LINGO

Outline

I. Introduction and Orientation (Lodi)

Part I: Achieving Integer-Feasibility Quickly

- 2. Classic Feasibility-Seeking Algorithms (Chinneck)
- 3. Active Constraint Variable Selection (Chinneck)
- 4. Branching to Force Change (Chinneck)
- 5. The Feasibility Pump (Lodi)

Part II: Reaching Optimality Quickly

- 6. New Node Selection Rules (Chinneck)
- 7. Local Branching and RINS (Lodi)

Part III: Analyzing Infeasible MIPs

- 8. Isolating Infeasible Subsystems (Chinneck)
- 9. Repairing MIP Infeasibility via Local Branching (Lodi)
- 10. Conclusions (Chinneck)

Conclusions

John W. Chinneck and Andrea Lodi

Conclusions

 Branch-and-bound/cut framework permits a very wide variety of heuristics

- New developments mainly in heuristics
- Heuristics can interact in unpredictable ways
- MIP heuristics are an active area of research
- Significant progress in recent years
 - Feasibility-seeking especially
- New commercial players
 - Microsoft: solver foundation
 - Gurobi

Future Research Directions

- Taking advantage of multiple cores
- Choosing the best heuristics dynamically
- General disjunctions