ORSA Journal on Computing
Vol. 3, No. 2, Spring 1991

0899-1499 /91 /0302-0157 $01.25
© 1991 Operations Research Society of America

Locating Minimal Infeasible Constraint Sets in Linear

Programs

JOHN W. CHINNECK
chinneck @ sce.carleton.ca

ERIK W. DRAVNIEKS

(Recewved. December 1989; final revision received. October 1990; accepted December 1990)

Systems and Computer Engineering, Carleton University, Ottawa, Ontario KIS 5B6, Canada, EMAIL:

Systems and Computer Engineering, Carleton University, Ottawa, Ontario K18 5B6, Canada

With ongoing advances in hardware and software, the bottleneck in linear programming is no longer a model solution, it is
the correct formulation of large models in the first place. During initial formulation (or modification), a very large model
may prove infeasible, but it is often difficult to determine how to correct it. We present a formulation aid which analyzes
infeasible LPs and identifies minimal sets of inconsistent constraints from among the perhaps very large set of constraints
defining the problem. This information helps to focus the search for a diagnosis of the problem, speeding the repair of the
model. We present a series of filtering routines and a final integrated algorithm which guarantees the identification of at
least one minimal set of inconsistent constraints. This guarantee is a significant advantage over previous methods. The
algorithms are simple, relatively efficient, and easily incorporated into standard LP solvers. Preliminary computational

results are reported.

As hardware and software have advanced in recent
years, the solution of very large linear programs has
become routine. The bottleneck is no longer a numerical
solution, it is the correct initial formulation of the model.
Inadvertent errors are difficult to prevent, especially when
integrating several smaller models into a larger one, or
when modifying a complex model.

When a large model is infeasible, it is very difficult
to proceed. You need to know where the problem is in
order to repair it, but it is hard to determine which
constraints are in conflict by simple inspection guided by
the nonzero artificial variables in the phase 1 solution.
Where there are hundreds or thousands of constraints,
automated assistance in localizing the infeasibility is a
necessity.

This article develops an algorithm for automatically
localizing an infeasibility to a minimal set of causative
constraints. The algorithm can be terminated when the
first such minimal set is found, or used repeatedly to find
others.

This sort of algorithmic engine can be used alone,
but is most effective as part of a larger toolkit for infeasi-
bility analysis which may use several algorithmic engines
and intelligent tools in arriving at a useful diagnosis of the
problem. Additional algorithmic engines are described
below, and by Greenberg and Murphy.!!?

Cognitive analysis imports and uses knowledge from
the problem domain, and must generally be applied to the
output of algorithmic engines to complete the diagnosis.

For example, a minimal causative set of constraints con-
sisting of a network flow structure and a single lower
bound on an outflow arc suggests that the problem is a
reversed arc. Cognitive analysis is the domain of humans
and intelligent assistants such as expert systems, syntax
analyzers, etc., as suggested by Greenberg and Murphy.!'?!
Algorithmic engines of the type developed in this article
speed the diagnosis by focussing the cognitive tools.

In this paper we are concerned solely with algorith-
mic engines for locating minimal causative sets of con-
straints. Though various mathematical approaches to
postinfeasibility analysis have been described previously,
our algorithm and contemporary work by Gleeson and
Ryan!®! are the first robust infeasibility localizers reported.

Charnes and Cooper!® presented some of the earliest
work on the problem, and gave an enlightening compari-
son of infeasibility analysis and goal programming. Their
work is the antecedent of the elastic filtering algorithm
described later.

An early paper by Roodman!'®! describes how to
eliminate an infeasibility. When the phase 1 LP termi-
nates with some of the artificial variables having nonzero
values, sensitivity analysis is used to find the minimum
adjustment to the right hand sides of the corresponding
constraints to achieve feasibility. This is not useful if the
adjusted constraint is in fact correct while some other
conflicting constraint is in error. Roodman does not give a
method for finding the other members of the minimal
infeasible set.
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Copyright © 2001 All Rights Reserved



158 Chinneck and Dravnieks

Greenberg!"~!'! describes a set of heuristics which
rely on tracing back through a series of manipulations of
the model, such as removal of redundant constraints,
bound tightening, path and cycle generation, and matrix
analysis. While not designed specifically for locating mini-
mal infeasible sets of constraints, these heuristics often do
so, but cannot guarantee such a result.

Murty ") [p. 237] describes how to use the phase 1
LP solution to find a set of constraints which is prevent-
ing feasibility. The shadow prices of the phase 1 solution
are used to implicate possible causative constraints as is
done by Roodman, and in addition, the reduced costs for
the original variables are used to implicate possible
causative nonnegativity constraints. However, the indi-
cated set may consist of a number of minimal infeasible
sets, and no method is given for further localization. We
use Murty’s method in our sensitivity filtering algorithm,
but add further localization routines.

Van Loon!'”! presents a simplex variant and a set of
necessary and sufficient conditions for the recognition of a
minimal infeasible set. Unfortunately, the search for the
elements of the set is undirected, leaving no option but a
combinatorially explosive exhaustive search. His method
also suffers from problem blow-up because equality con-
straints must be converted to a pair of inequalities and
nonnegativity constraints must be explicitly added to the
working constraint set. Greenberg and Murphy!'? point
out that Van Loon’s method could be extended to find
minimal causative sets more efficiently by pivoting through
alternative bases.

Gleeson and Ryan' describe a complete localization
algorithm. They use a variant of Farkas Theorem of the
Alternative to obtain a polytope in which each vertex
indexes the members of a minimal infeasible set of con-
straints. Their method shares the drawbacks of van Loon’s
method, but has the advantage of a directed and efficient
search. In the absence of degeneracy, each new pivot
gives a new minimal infeasible set.

Very rough theoretical comparisons (see Section 7.3)
indicate that our algorithm may be faster than that of
Gleeson and Ryan. Full-scale computational testing awaits
an implementation of Gleeson and Ryan’s method.

Our approach to localizing an infeasibility is to grad-
ually eliminate constraints from the original set defining
the problem until those remaining constitute a minimal
infeasible set. We call this filtering the constraint set.
Three basic filtering routines are developed: deletion,
elastic and sensitivity, which are then combined into a
recommended integrated filtering algorithm. Deletion fil-
tering is the cornerstone, providing a positive identifica-
tion of a single minimal causative set, but it is relatively
slow. Elastic and sensitivity filtering speed the process by
eliminating large numbers of uninvolved constraints
quickly.

This article first presents some background material
and definitions, then develops the basic routines and the
complete integrated algorithm. Examples are provided.

1. Irreducibly Inconsistent Systems of Constraints

Van Loon""” introduced the term ‘‘irreducibly inconsis-
tent system’’ to describe a minimal infeasible set of
constraints.

DErFINITION: An  irreducibly inconsistent system
(IIS) is a minimal set of inconsistent constraints.

An [IS may include some nonnegativity constraints
on the variables, but it is not possible to construct an /IS
entirely from nonnegativity constraints. On the other hand,
as long as the LP solution algorithm enforces variable
nonnegativity automatically (as the simplex method does),
it is possible to find an IIS by identifying the participating
functional constraints only, and then finding the participat-
ing nonnegativity constraints afterward.

Perhaps for this reason, van Loon, Roodman, and
others concentrated on finding the functional constraints in
an /IS without identifying the participating nonnegativity
constraints. We identify participating nonnegativity con-
straints explicitly, so we use the following definition to
make the difference clear.

DerINITION: An  irreducibly inconsistent set of
Sunctional constraints (IISF) is the complete subset of
functional constraints in an IIS.

Note that when an I7S does not include any nonnega-
tivity constraints, then the IISF is the same as the /IS.

Figure 1 shows a system of constraints having two
IISs: {A, B,C} and {B,C, x; 2 0}; note that
{ A, B, C} is also an IISF. As defined below, these two
IISs are overlapped.

DerINITION: An IIS is overlapped if it shares at
least one constraint with another I7S.5

-
X

Figure 1. Overlapped IISs forming a cluster.
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DEerINITION: A cluster of IISs is a maximal set of
IISs such that each IIS overlaps at least one other I7S of
the cluster.

As would be expected, the cardinality of an IIS
(1ISF) means the number of constraints that makes up the
IIS (IISF).

Many infeasible models will have only a few IISs, or
a small cluster of overlapped IISs. One or more incorrect
constraints can, however, have the effect of creating many
1ISs, similar to the ripple effect in computer programming
where a single incorrect FORTRAN statement may gener-
ate numerous errors. It is generally sufficient for the
modeller to identify one /IS from each cluster in order to
proceed.

We will also use the following theorem:

THEOREM 1. If there are n variables in the original LP,
the maximum cardinality of any IIS is n + 1.

Proof. see Chvatal™ [p. 24].

2. Deletion Filtering

Deletion filtering is a novel algorithm which guarantees
the identification of all of the functional constraints in
exactly one IIS. This property is of fundamental impor-
tance for /IS localization: no other algorithm provides this
positive identification. The algorithm is computationally
expensive and is best applied after a large set of con-
straints has been whittled down by other means.

Given an LP having one or more I[ISs, deletion
filtering operates by considering each functional constraint
individually, as follows. Temporarily remove the con-
straint from the LP, then test the reduced LP for feasibil-
ity. If the reduced LP is infeasible, then remove the
constraint permanently; if the reduced LP becomes feasi-
ble, then return the constraint to the LP. Continue in this
fashion until all of the constraints have been tested.

The Deletion Filtering Algorithm

DerINITION: Q is a set of functional constraints, g,.

1. Set Q equal to the infeasible set of functional con-
straints under consideration.
2. Test constraints for possible deletion: For each ¢, in Q
DO:
2.1 Determine whether Q \ g, is feasible or infea-
sible using a phase 1 LP solution.
2.2 IF @ ™ g, is feasible THEN continue with next
q,
ELSE (Q \ g; infeasible) SO
Q = QO g, continue with next g,.
OUTPUT: Upon termination, the set Q will be exactly
one IISF. One or more nonnegativity con-
straints may also be involved in the IIS, but
these are not explicitly identified.
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2.1. Theorems and Discussion

THeOrREM 2. If there is at least one IISF in the con-
straint set input to the deletion filtering algorithm,
then the output set will contain exactly one IISF.

Proof. As the initial constraint set is infeasible, and
constraints are removed only when @ will remain infeasi-
ble, then Q contains at least one IISF at all times. As
constraints remain in Q only if their removal would
render the constraint set feasible, they must be members
of an IS, by definition. All constraints remaining in Q at
termination meet this condition, so they must all be mem-
bers of the same [IIS: if there were two or more IISs,
then you would be able to remove at least one constraint
and Q would remain infeasible. m

Deletion filtering is easily extended to the nonnegativ-
ity constraints as follows. Remove the sign restrictions on
the nonnegative variables in the IISF by introducing a
pair of variables (see Winston!'® [p. 154]), then add
explicit zeroing constraints on the ‘‘negative’’ variable of
each pair, and deletion filter only these zeroing constraints
in conjunction with the IISF.

Deletion filtering is unaffected by multiple or over-
lapped IISs: IISs or parts of IISs are removed as long as
at least one IIS remains. However, the order in which the
constraints are tested determines which IIS is reported.
When finished, there is no indication of whether other
IISs exist.

2.2. Time Complexity of Deletion Filtering

Deletion filtering is a brute force method. Each test for
feasibility is an ordinary phase 1 LP. Where there are m
functional constraints in the original infeasible LP, there
will be m phase 1 LP solutions to carry out. At worst, all
of the constraints in the original problem will constitute a
single IIS, so all of the phase 1 LPs will be of size m.
By Theorem 1, this can only happen when the number of
constraints is < n + 1, where # is the number of vari-
ables. The phase 1 LPs will ordinarily be of smaller
and smaller size as the number of retained constraints
decreases.

3. Elastic Programming and Phase 1 LPs

Brown and Graves!!! introduced the term ‘‘elastic pro-
gramming’’ to describe the addition of extra variables
which allow constraints to ‘‘stretch’’ to increase the size
of the feasible region. The basic idea is much older: it is
the principle used in the phase 1 LP to obtain an initial
feasible solution.

Constraints are converted to elastic form by introduc-
ing ‘‘elastic variables’’ v, which permit the constraint to
stretch (or ‘‘relax’’) in the direction which increases the
feasible region. The elastic constraint is easily reconverted

Copyright © 2001 All Rights Reserved



160 Chinneck and Dravnieks

>\ . B

1) original constraints
A 3x-%210
B: -x +2% 24
C: x+%, €5

P /

/’ S : {A,B,C}
—rST
PN
ii) elastic form of the constraints i) If vy =7 Then A=> A’

A’ 3x-%p 23
and the IS has been removed

A 3x-x+y 210
B: x+2x% +v, 24
C: x1+x£-vcss

Figure2. Elastic constraints and the removal of an IIS.

to nonelastic form by removing the elastic variables. The
conversion rules are:

Constraint type Nonelastic Elastic
ES Sax,=zb Sax,+v=b
1 !
= S ax,<b Sax,-vsbh
1 i
= > oax,=b S ax,+v-v =b
1 i

One elastic variable must be added and one elastic variable
must be subtracted from each equality constraint to allow
it to stretch in either direction. All elastic variables are
constrained to be nonnegative.

The resistance to stretching implied by the term
“elastic’’ is supplied by creating a new objective: mini-
mize the sum of the elastic variables.

The principal difference between elastic program-
ming and the phase 1 LP is that any constraint can be
stretched in elastic programming, while in the phase 1 LP
only = constraints are truly elastic, and = constraints are
elastic in one direction only.

A nonzero elastic or artificial variable corresponds to
an adjustment of the right hand side of a constraint when
viewed from the original solution space (i.e., the con-
straint stretches). This effect is illustrated in Figure 2.

4. Elastic filtering

Elastic filtering speeds IIS localization by quickly elimi-
nating non-7IS functional constraints from large models. It
uses elastic programming and the fact that stretching
constraints in an [IIS sufficiently permits a feasible
solution.

The algorithm generates a series of LPs in which
some of the functional constraints are elastic and some are
nonelastic. After each LP is solved, any stretched con-
straints are reconverted to nonelastic form by removing
the elastic variables, i.e. they are enforced. Enforced

constraints are members of some IIS, since only IIS
constraints are stretched in the first place. Enforcing func-
tional constraints forces another elastic member of the IS
to stretch when the next LP is solved. When all of the
members of an IISF have been enforced, the next LP
will be infeasible, halting the method.

The output of the elastic filter is the set of enforced
constraints, which must contain at least one IISF. The
advantage of elastic filtering is that only s + 1 LPs at
most are solved before termination, where s is the cardi-
nality of the smallest JISF in the model.

At any intermediate iteration, a regular phase 1 solu-
tion may be needed prior to the use of the elastic objective
function. This initial phase 1 solution determines whether
the current elastic LP is feasible or infeasible.

This full-blown use of elastic programming to iden-
tify a small set containing an IISF is novel, though
related notions were advanced by Charnes and Cooperf?!
in connection with goal programming, and by Roodman!'®!
in connection with finding a set of adjustments to the
model in order to attain feasibility.

The Elastic Filtering Algorithm
DEFINITIONS.

i. Q. is the initial set of input functional constraints.
ii. Qoyepu 18 the final set of output functional constraints.
iii. FE is a set of elastic constraints, e;.

iv. V is a set of elastic variables, v;.

v. R is a set of stretched (‘‘relaxed’’) elastic constraints
resulting from the solution of an LP.

vi. The function elastic(Q) operates on a set of nonelastic
constraints Q to convert them to elastic form. The
inverse function enforce(E) operates on a set of
elastic constraints E, converting them back to
nonelastic form by removing the elastic variables.

vii. The operator evin(E) identifies the elastic variables
in the set E of elastic constraints.

1. Initialize the sets of constraints and variables:
a. Qoutput =R = @
b. E = elastic(Q,npu)-
c. V = evin(E).
2. Solve this LP to determine if the original LP is
feasible:
minimize Z = Y v,, where v,€ V,

subject to: E, n(;nnegativity of variables.
IF Z = 0 (original LP is feasible) THEN STOP.
ELSE obtain the set R of stretched elastic constraints,
set Quupue = enforce(R).
3. Reduce the set of elastic constraints by removing the
stretched constraints:

a. E=ENR.
b. R=.
c. V= evin(E).
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4. Solve the LP:
minimize Z = ) v,, where v;€ V,

subject to: E, Q:,mpm, nonegativity of variables.
IF infeasible, THEN STOP.
ELSE this results in the set R,

Qouput = Qoupue U enforce(R), go to Step 3.

OUTPUT: At termination Q,,, contains at least one

IISF, and no non-IIS constraints. The complete IIS(s)
may also involve nonnegativity constraints which are
not explicitly identified.

4.1. Theorems and Discussion

When enough constraints are elastic, there will be feasible
solutions to the LPs in Steps 2 and 4. Strictly speaking
then, there are no IISs in these LPs, but for ease of
reference we will refer to 7ISs in these elastic sets,
meaning /7S which exist in the original problem.

Lemma 3. Elastic filtering stretches only elastic con-
straints belonging to an IIS.

Proof. This follows easily from (i) the fact that the
cost of stretching a constraint is strictly positive, and (ii)
only 7IS constraints need to be stretched to achieve feasi-
bility. m

Lemma 4. If the set Q. contains at least one IISF, and
the current Q. set does not contain an IISF, then Step
4 will stretch only previously unstretched elastic con-
straints, and it will stretch at least one such constraint
from each IIS.

Proof. In Steps 2 and 4, the LP must stretch at least
one elastic constraint from each /IS in order to achieve a
feasible solution. As the set Q. does not contain an
IISF, at least one constraint from each ZISF is still in E.
Accordingly, a feasible solution to the elastic LP is
attained.

Because all previously stretched constraints have been
enforced, they can no longer be stretched. Therefore only
constraints which have not been previously stretched are
eligible for stretching. m

THEOREM 5. The elastic filtering output set will contain
at least one IISF if and only if an IIS exists in the
original LP.

Proof. 1f no IIS exists in the original LP, then no
constraints will be stretched and the algorithm will termi-
nate at Step 2 with the message that the problem is
feasible.

If at least one /IS exists in the original LP, then
Step 2 must stretch at least one constraint from each 7ISF
to achieve feasibility, so Z will be nonzero. Accordingly,
the algorithm will not terminate prematurely.

By Lemma 4, as long as Q,,, does not contain an

Constraint Sets in Linear Programs 161

IISF, Step 4 will always stretch at least one previously
unstretched IISF constraint, which will then be added to
Qoupu- Thus at each iteration of Step 4, O is in-
creased by at least one IISF constraint.

Each [7ISF is composed of a finite number of con-
straints, so the algorithm will terminate in a finite number
of steps, as soon as at least one JISF is in Q,,, because
then no constraints from the /IS will be elastic in the LP
of Step 4, rendering it infeasible. m

output

4.2. Time Complexity of Elastic Filtering

Let s be the minimum of the cardinalities of all of the
IISFs in the original LP. Then the time complexity of
elastic filtering is at worst (s + 1)*(time complexity of
LP solutions in Steps 2 and 4). The proof uses the fact
that at least one new constraint from each IISF is identi-
fied at each iteration of the algorithm (LEMMA 4). Thus a
complete 7ISF is identified in at most s iterations, and the
(s + Dth LP will be infeasible, terminating the algo-
rithm. Theorem 1 limits the size of s.

4.3. Efficiency Improvements

During each iteration of the algorithm, stretched con-
straints are enforced from elastic form back to nonelastic
form. This is equivalent to changing the coefficients of a
basic variable in the original constraint matrix and objec-
tive function (i.e., the original coefficients of the nonzero
elastic variables are changed to zero).

Just as in ordinary sensitivity analysis, it may be
possible to update the current solution and use it as an
advanced start for finding the solution to this new prob-
lem, depending on the number of coefficients that are
changed simultaneously. The updated solution will nor-
mally be infeasible, necessitating the use of the dual
simplex method to arrive at a final solution. See Winston!!®!
for example.

5. Sensitivity Filtering

When an LP is infeasible, sensitivity analysis can be
applied to the phase 1 or elastic solution. Sensitivity
filtering uses the fact that stretching a constraint is equiva-
lent to altering the right hand side (rAs) of the constraint.
The phase 1 or elastic solution will show sensitivity to an
infinitesimal adjustment of the rks’s of some of the IIS
constraints, but never to the rhs of an non-/IS constraint.

5.1. Theorems and Discussion

We refer below only to elastic LPs, but the results apply
equally to phase 1 LPs.

The sensitivity of the elastic objective function to an
infinitesimal change in the rks of a functional constraint is
signalled by a nonzero shadow price (‘‘dual elevator’’) in
the final tableau of the elastic LP.
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DeriniTIoN. F is the set of functional constraints having
nonzero shadow prices in the optimal tableau of an elastic
LP whose objective function value is nonzero.

THEOREM 6. The set F contains at least one IISF.

Proof. Murty!" [pp. 237-238] shows that a linear
combination of the constraints in F, along with the non-
negativity constraints, is infeasible. Therefore, F must
contain at least one /ISF. m

Roodman!'® [pp. 918-919] provides similar reason-
ing and is listed as a reference by Murty.

OBSERVATION 7. The set F is not guaranteed to contain
all of the functional constraints of all of the IISs in the
original problem.

Proof. This is easily shown by example, as given in
Figures 3and 4. m

Figure 4 shows that the shadow prices correctly
indicate the members of an IISF despite a degeneracy
among the original constraints, though again not all of the
IISF's are identified.

DeFINiTION. N is the set of original variables having a
nonzero reduced cost in the optimal tableau of an elastic
LP whose objective function value is nonzero.

x, F B E
? - > Axg2
B:3x1-x2S2
)/D C:x2$3
D:-0.5x + %21
¥ 7 C E:x1;5
¥ A
L 9% IiSs : (A, B,E} {A,D,E)
- X, {C,B,E)} {C,D,E)
o -

Constraints D and E are made elastic by the addition of appropiate
elastic vanables vyand v . Solution of the elastic LP gives :

x, =4/3 % =2 vg=11/3
Constraint E is adjusted to E” 1 x; = 4/3
The adjusted original solution space 1s a point defined by the
constraints A, B, E’.

Constraint Shadow price
A -1/3
B -1/3
C 0
D 0
E 1

Shadow price analysis indicates IIS {A, B, E}, but not the other 3 11ISs

Figure 3. The shadow prices for the elastic solution do not
indicate all of the members of all of the 7ISs.

b 2 C
> 7’3 Arx »2
B:ix-%<0
A’ A
C:2x-%<l
D:x1+x2<2

1ISs: {A, B, D} {A,C, D)

X

Yok

Constraint A is made elastic by the addition of an appropiate
elastic variable v, . Solution of the elastic LP gives :

x; =1 Xy =1 v,=1
Constramnt A is adjusted to A’ : x; > 1.

There is a tie for the leaving basic variable in the second tableau
when x, enters the basis :

Case 1 : 53 leaves the basis Case 2 : 54 leaves the basis

constraint  final shadow price  constraint ~ final shadow price
A 1 A 1
B 0 B -1/2
C -1/3 C 0
D -1/3 D -172

Indicates IIS {A, C, D} Indicates I1S {A, B, D}

Figure 4, Shadow prices where there is a degeneracy among the
original constraints.

TueoreM 8. The set N indexes nonnegativity con-
straints involved in IISs.

Proof. See Murty!'¥! [p. 238]. m

Theorem 8 provides a means of identifying the non-
negativity constraints which are part of the IISs.

CoNJECTURE 9. The set F U N contains at least one 1IS
from each cluster if IISs.

We have not been able to prove Conjecture 9, but
because IIS clusters share no constraints, it is reasonable
to assume that constraint adjustments to clear the IISs in
one cluster will not affect the constraints in another clus-
ter. Accordingly, one would expect that at least one
constraint from each cluster would appear in the set
FUN.

When viewed from the original variable space, an
elastic (or phase 1) LP achieves an artificial feasible
solution by adjusting the rhs’s of some of the functional
constraints, as illustrated in Figures 2-4. The rhs adjust-
ments move the constraints just enough in the original
space to achieve a feasible solution, therefore the con-
straints in the corresponding optimum cornerpoint must be
those involved in the IIS. The nonzero shadow prices are
associated with the functional constraints defining the
cornerpoint.
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This also explains why some of the /ISs are not
identified by rhs sensitivity analysis: the movement of the
constraints in the original space alters the problem. As an
elastic constraint moves towards its final cornerpoint posi-
tion, another JIS may be removed en route, so the shadow
prices for the members of this fISF are zero.

Sensitivity filtering is very inexpensive, requiring
only the inspection of the final tableau of the phase 1 LP,
for example, and it has the important advantage of explic-
itly identifying nonnegativity constraints which are part of
some IIS.

The Sensitivity Filtering Algorithm

DEFINITIONS.

i. E is a set of elastic functional constraints, e,.

ii. Q 1s a set of nonelastic functional constraints, g,.

iii. Q,,,, defines a partially elastic set of input functional
constraints: Q... = £EU Q. Enforce(£) U Q must
be an infeasible set.

iv. Let V = evin(E).

v. p is the row vector of shadow prices.

vi. ¢, is the row vector of basic variable objective
function coefficients.

vii. B~ is the basis inverse matrix.

vili. F is the output set of functional constraints in some

11I8S.

ix. NV is the output set of nonnegativity constraints in
some I1S.

1. Solve the elastic LP:
minimize Z = Y v;, such that v, e V,

subject to £, Q,lnonnegativity of variables.
Select the appropriate case:
CASE 1. LP is infeasible.
Elastic LP is incorrectly formulated. Convert to full
elastic form and go to step 1.
CASE2. Z=0.
STOP. Original LP is feasible.
CASE 3. Z> 0.
Go to Step 2.
2. Calculate the shadow prices:
p= cbvB !
3. F= (.

FOR each constraint i in EU Q DO:

IF p, # 0 THEN F = F U {constraint i}.
N=.
FOR each original variable x; DO:

IF the reduced price of x; in the final tableau # 0

THEN N = NU {x, = 0}.

OUTPUT: At termination, the set £ U N contains at
least one [IS (and possibly at least one IS
from each cluster according to Conjecture 9).
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5.2. ldentifying More /IS Constraints

Observation 7 shows that sensitivity filtering may not
identify all of the constraints that are involved in IISs.
Where the goal is to identify a maximum number of [/Ss
with a single iteration of sensitivity filtering, additional
IIS constraints can be found by examining the basis
inverse matrix, B~ '. The nonzero elements in a row of
B~ corresponding to a basic elastic variable index the
functional constraints whose rhs’s affect the final value of
the elastic variable.

Some of the constraints so indexed may not have
been identified by the shadow prices, and can be added to
F, creating the new set F*. This may happen when, for
example, the constraint effect of increasing a certain elas-
tic variable is exactly counterbalanced by its decreasing
effect on another elastic variable, hence the net shadow
price is zero. This is what happens in the example in
Section 7.1.

Where there is a degeneracy in the solution of the
elastic LP, as indicated by a basic variable with a value of
zero, there may be other constraints that are tight at the
degenerate point which form part of an /IS. Again, these
other constraints are indexed by the nonzero elements in
the row of B~ ! belonging to the basic variable with value
zero. These constraints can be added to F* if they are not
already there, and will be filtered out later if they prove
not to be part of an I7IS.

5.3. Time Complexity

The time complexity of sensitivity filtering is negligible
beyond the initial solution of the elastic LP. Where the
original elastic LP is a phase 1 LP which must be solved
anyway, then the only additional cost is the calculation of
P, which requires m? multiplications and m(m — 1) addi-
tions, the subsequent m comparisons to zero to identify
elements of F, and n comparisons to zero to identify
elements of N.

6. The Integrated Filtering Algorithm

The three filtering routines can be combined in various
ways to create efficient integrated algorithms. Given that
infeasibility is usually discovered by solving a phase 1
LP, and that sensitivity filtering of the phase 1 solution is
very cheap, we can assume that this will be the first step
in any integrated algorithm.

Subsequent filtering of ¥ (or F*) is needed to posi-
tively identify individual /ISFs. Where there are multiple
clusters of IISs, there are probably multiple IISs in
F U N (Conjecture 9).

Depending on whether the goal is to identify a single
1IS as quickly as possible, or to identify as many IISs at
reasonable cost as possible, final filtering can proceed in a
number of different ways.
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6.1. Deletion / Sensitivity Filtering

In deletion filtering, each time a functional constraint is
dropped and the remaining constraint set is infeasible, a
new phase 1 solution is available. Sensitivity filtering this
solution may eliminate several other constraints, reducing
the number of LPs which must be solved, thereby in-
creasing the speed of the /IS identification significantly.

Sensitivity filtering has the advantage of directly iden-
tifying nonnegativity constraints which are part of an IIS.
Once the I7ISF has been found, if the appropriate phase 1
LP has not already been solved while deletion testing
another constraint, then it is necessary to construct and
solve an additional phase 1 LP in order to identify the
nonnegativity constraints in the IIS.

The nonnegativity constraints identified in this man-
ner, when combined with the IISF constraints, may form
a cluster rather than a single /ZS. In other words, where
more than one nonnegativity constraint is implicated, the
functional constraints in an JISF may be the overlapped
part of a cluster. It is generally useful to know all of the
nonnegativity constraints that are affected by the IISF, so
the extra cost of identifying a single IIS is not usually
justified. If necessary, the extension of the deletion filter-
ing algorithm described in Section 2.1 can be applied.

Deletion /sensitivity filtering may be comparatively
inefficient, depending on the number of IISs and clusters
in the problem. Let s be the minimum of all of the IISF
cardinalities, and let u be the number of IIS clusters in
the problem. If u > s then deletion/sensitivity filtering
may still be inefficient compared to elastic filtering be-
cause a relatively large number of LPs must be solved.

6.2. Elastic / Sensitivity Filtering

Sensitivity filtering can be applied to the solution obtained
for each elastic LP solved during elastic filtering. Addi-
tional constraints may be eliminated in this manner, de-
pending on how the nonzero elastic variables adjust the
constraints in the original solution space. This idea also
applies to the phase 1 LP solution which terminates the
elastic filtering algorithm by signaling infeasibility.

6.3. Finding Other IISs

Either of the final filtering methods described above will
locate a single IISF, which we can label IISF,, with the
associated nonnegativity constraints. If IISF, has cardi-
nality less than the cardinality of F, then there may be
other IISFs in F. If we remove IISF, from F and
continue filtering, then we may find another IISF, say
IISF,. We continue in this fashion until either F is empty,
or the constraints which remain do not contain an IISF.
This guarantees that we will find at least one IIS from
each cluster represented in U N.

6.4. Design of the Integrated Filtering Algorithm

The obvious first step in the integrated filtering algorithm
is to sensitivity filter the original phase 1 solution which

signals infeasibility. A final deletion filter is needed to
positively identify a single IIS. The deletion/sensitivity
and elastic/sensitivity filters can be used at intermediate
steps.

Generally speaking, it is best to use elastic/sensitivity
filtering first when the initial sensitivity filtering output set
is relatively large, and to go directly to deletion/sensitivity
filtering when the set is relatively small. Computational
studies are needed to find heuristics to guide this decision.
Possible heuristics include a decision based on the absolute
number of constraints in the initial set F or F*, or on the
ratio of the number of constraints in F or F* to the total
number of functional constraints. The integrated filtering
algorithm assumes the existence of such a heuristic.

The integrated filtering algorithm incorporates the
method of Sec. 6.3 for checking for other IISFs in the
initial input set F or F*. Where the goal is to identify
only a single IIS, then Step 3 of the algorithm can be
omitted.

The Integrated Filtering Algorithm

INPUT: a final phase 1 solution which signals infeasibil-
ity.

Definitions:

i. F is a set of functional constraints, initially equal to
the set identified by the sensitivity filtering of a phase
1 LP (either F or F* as described in Section 5.2).
ii. @ is an intermediate set of functional constraints.
ili. Qs is a set of constraints constituting an I[ISF,
resulting from an application of the deletion/sensitiv-
ity filtering algorithm.

1. Q=.
Sensitivity filter the phase 1 result to obtain the set Q.
IF indicated by heuristic decision rule THEN
elastic /sensitivity filter O to produce a possibiy
reduced set Q.
2. Qusf = @
Deletion/sensitivity filter Q to obtain Q, . Report
members.
IF phase 1 solution of Q, not already available
THEN
Set up and solve the phase 1 LP based on Q
nonnegativity of all variables in Q, ;.
Sensitivity filter the phase 1 solution of Q@ ; report
the nonnegativity constraints that are implicated.
3. F=FX\ Q-
IF F = (J, then STOP.
Solve the phase 1 LP based on F and nonnegativity of
all variables in F.
IF Z = 0 (F is feasible) THEN STOP.
GO TO step 1.
OUTPUT: at least one IIS (or IIS cluster overlapped on
the JISF) per cluster in F U N.

¢ and

it
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7. Examples and Computational Results

The examples presented in Sections 7.1 and 7.2 are small
enough that the results can be verified by inspection. To
appreciate the practical value of these methods, imagine
that these small /ISs are embedded in very large original
problems, on the order of thousands of constraints. As the
examples are small, we do not use elastic/sensitivity
filtering as an intermediate step.

The LP census of each step is expressed as Z k(g

where k£ is LP size in number of functional constralnts
and g, is the number of LPs at this size. The index &
runs from 1 to m, where m is the total number of
functional constraints in the original LP model. For
example, 6(3) means 3 LPs of size 6 constraints. Since the
total cost of solving an LP is approximately proportional
to the cube of the number of functional constraints, it is
possible to calculate a very rough overall measure of
effort as Y g, k°>.

Itis ilfformative to put the total effort into perspective
by comparing the measure of effort with the measure of
effort for the original phase 1 LP solution of the problem.
We calculate the relative measure of effort as follows:

(5 50k m
k

As these examples show, the algorithms are very
efficient when evaluated using the rough measures of

effort. Preliminary computational results are reported in
Section 7.4.

7.1. Example: A Single Cluster of liSs

This example is based on an economic analysis problem.
The original functional constraints are:

1: 0. 8x3 + x, < 10,000

2: < 90,000

3: 2x6 ~ x5 < 10,000

4: —x, + x; 2 50,000

5: —x, + x, > 87,000

6: x; < 50,000

7. =3x5 + x; = 10,000

8: 0.5x5 + 0.6 x4 < 300,000
9: x, - 0.05x, = 5,000
10: x, — 0.04x; — 0.05x, = 4,500
11: x, > 80,000

There is a large cluster which contains at least these
118s: {1,4,5,9}, {1,4,9, x, >0}, {1,5,9, x; 2 0}
{1,5,10, x; > 0}, {1, 10, 11}, {4,6,9}, {4,6,11},
{5,6,9,10}, {6, 9,11}.

The filtering process outputs different IISs depend-
ing on whether the rows of B~! are examined in addition
to the shadow prices. When only the shadow prices are
considered, the input set is F and filtering proceeds as
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follows:

1. Sensitivity filtering the phase 1 LP solution yields
F={1,4,5,6,10,11}.

2. Deletion/sensitivity filtering F yields the IIS
{4,6,11}. LP census is 6(1) + 3(4).

3. Setting F = F\ Q,; yields F = {1,5,10}.

4. Phase 1 solution of F shows it is feasible. Stop. LP
census is 3(1).

The single IS {4, 6, 11} is identified, and the total
LP census is 6(1) + 3(5). The total overall measure of
effort is 351. The relative measure of effort is 0.26, so the
localization cost about one quarter as much as the original
phase 1 solution.

When the relevant rows of B! are also analyzed,
constraint 9 is added to give the augmented set F*=
{1,4,5,6,10,11,9}. Constraint 9 is not identified by the
shadow prices because its increasing effect on the artificial
variables for constraints 4 and 5 is exactly conterbalanced
by its decreasing effect on the artificial variables for
constraints 10 and 11. In this case filtering proceeds as
follows:

1. Sensmv1ty filtering the phase 1 solution and analysis of
! yields F*= {1,4,5,6,10, 11, 9}.

2. Deletlon/sensmwty filtering yields the IIS {6,9, 11}.

Total LP census is 6(1) + 5(1) + 4(1) + 3(3) + 2(2).

. Setting F*= F*\ Q, yields F*= {1,4,5,10}.

4. The phase 1 solution of F* shows it is infeasible. LP
census is 4(1). Initial sensitivity filter gives Q =
{1,4,5,10}.

5. Deletion/sensitivity filtering Q yields the IIS {1, 4, 5}.
LP census is 3(4). In this case, an extra phase 1 LP to
detect nonnegativity constraints in the /IS is not needed
because the very last deletion/sensitivity phase 1 LP
signalled infeasibility itself, so its reduced costs could
be read.

6. Setting F*= F*\ Q , yields F*= {10}.

7. The phase 1 solution of F* shows it is feasible. Stop.
LP census is 1(1).

Two IISs are identified: {6,9,11} and {1,4,5}.
The total LP census is 6(1) + 5(1) + 4(2) + 3(7) + 2(2)
+ 1(1). The total overall measure of effort is 675, and the
relative measure of effort is 0.51, so the localization cost
about half as much as the initial phase 1 solution, and
identified 2 IISs.

w

7.2. Example: Two Clusters of /ISs

In this example, there are two distinct clusters of 11Ss,
each cluster having only one IIS. The two [ISs are
{1,2,3} and {4, 5, 6}. The original constraints are:
—=0.5x, +x, 205

2x, —x, 23

3Ix;+x,£6

X5 <2

3x, — x5 2

‘-"A.“.’!\.’t—.‘
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X, 25

X +x;<10

X +2x,+x,< 14
X, +x, 21

0o

Filtering proceeds as follows:

1. Sensitivity filtering the phase 1 solution yields F =
{1,2,3,4,5,6}. No constraints are added by analyz-
ing the rows of B~

2. Deletion/sensitivity filtering yields the IIS {4,5,6}.
LP census is 5(1) + 3(1) + 2(3).

3. Setting F = F\ Q, yields F = {1,2,3}.

4. The phase 1 solution of F shows it is infeasible. LP
census is 3(1). Sensitivity filtering the result yields
Q= {1,2,3}.

5. Deletion/sensitivity filtering Q yields the /IS {1, 2, 3}.
LP census is 3(1) + 2(3).

6. Setting F = F \ Q, yields F = . Stop.

Both IISs are discovered. The total LP census is
5(1) + 3(3) + 2(6), for an overall measure of effort of
254. The relative measure of effort is 0.35, so the cost of
localization is about one third the cost of solving the
original phase 1 LP, and two IISs are discovered.

7.3. A Comparison to the Method of Gleeson and

Ryan
An expression for the computational complexity of the
method proposed by Gleeson and Ryan'® is readily de-
rived from their paper, which permits a theoretical com-
parison of their method and ours. For Gleeson and Ryan’s
method to function correctly, each equality constraint in
the LP must first be converted to a pair of inequalities,
and the nonnegativity constraints must be explicitly added
to the set of working constraints.

Let us define the following parameters for the origi-
nal LP: m is the total number of constraints, e is the
number of equality constraints, k is the number of non-
negative variables, n is the total number of variables.
Now Gleeson and Ryan’s converted LP will have n
variables and (m + e + k) constraints. When Farkas the-
orem is applied, the resulting system has (m + e + k)
variables and (n + 1) constraints, and when the vertex
enumeration algorithm is applied, the time to find the first
IIS is O[(n + 1) (m + e + k)*].

To compare the two methods, we will use this meas-
ure of complexity as a rough measure of effort for Glee-
son and Ryan’s method. For the problem of Sec. 7.1,
n=28,m=11, e = 2, k = 8, so the measure of effort is
8 + 1) (11 + 2 + 8)? = 3969, compared to 351 for the
filtering algorithm. For the problem of Section 7.2, n = 4,
m=29, e =0, k = 4, so the measure of effort is (4 + 1)
(9 + 0 + 4)? = 845, compared to 176 for the filtering
algorithm to find the first IIS.

In these small examples it appears that the filtering
algorithm may be superior to Gleeson and Ryan’s method,

but true computational comparison awaits an implementa-
tion of their method.

The computational complexity expression for Gleeson
and Ryan’s method shows that it operates at a disadvan-
tage in any system which has numerous nonnegativity
constraints and equality constraints. This is true of many
general LPs, but it is particularly true for the important
special class of networks.

7.4. Preliminary Computational Results

Computational results were obtained by modifying the
well-known MINOS LP solver®! to perform both dele-
tion filtering and deletion /sensitivity filtering. Some modi-
fications to the algorithms as described were needed be-
cause of the manner in which MINOS implements the
simplex algorithm.

MINOS converts the input LP into the form: Mini-
mize ¢Tx subject to: Ax+Is=0, 1< [x,5]" <u,
where a slack variable s, is added to each equation in the
converted LP. Phase 1 testing uses the FORMC proce-
dure!™ which allows both slack variables and original
variables to violate their bounds as necessary to achieve a
solution. The procedure minimizes the number of vari-
ables which violate their bounds; if the number is zero,
then feasibility has been attained.

Filtering concentrates solely on the upper and lower
bounds on the variables. Because the original and the slack
variables can be treated identically in the MINOS formula-
tion, an [IS can be positively identified directly, rather
than by first finding the JISF and then checking the
nonnegativity constraints.

During sensitivity filtering of phase 1 results, bounds
are retained if they have been violated, or if the corre-
sponding variable shows sensitivity at that bound. Other-
wise they are discarded. For numerical reasons, when the
upper and lower bounds on a variable are identical (as in
equality constraints), either both bounds are kept or both
are eliminated.

The deletion filter operates first on the bounds on the
original variables and then on the bounds on the slack
variables. The deletion/sensitivity filter reverses this or-
der. This has the effect of concentrating on infeasibilities
in the functional constraints in both cases.

Some preliminary computational results are presented
in Table 1. The five test problems span a range of sizes,
where the size is the number of finite bounds on the
variables in the converted LP. These results were
obtained using Microsoft Fortran version 5.0 under DOS
3.3 on a 20 MHz 80386-based computer with numeric
COprocessor.

The algorithms work well in practice: verifiable IISs
are found in modest amounts of time. In fact the theoreti-
cal relative measures of effort are on the same order of
magnitude as the actual time ratios for the examples in
Sections 7.1 and 7.2. As expected, the deletion/sensitivity
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Table 1
1IS Localization Using the Modified MINOS
Problem Problem

Section 7.1  Section 7.2 WOODINFE FOREST6 PILOT4I
No. finite bounds 21 13 173 196 1886
Phase 1 solution (sec) 0.8 0.8 2.3 3.7 471.7
Deletion filter results
No. bounds in 7IS 4 3 3 125 44
Time Ratio, /IS : phase 1 1.07 1.00 2.90 8.18 2.65
Deletion /sensitivity filter results
No. bounds in IS 5 3 3 122 152
Time ratio, IIS : phase 1 0.86 0.78 0.30 3.61 0.31
Size ratio, IIS : original 0.24 0.23 0.02 0.62 0.08

filter is faster than the straight deletion filter, taking as
little as about one tenth of the time in one case. However,
the deletion filter is still reasonably quick, likely due to
the fact that MINOS uses the last basis (in this case from
the previous phase 1 result) as an advanced start for the
next LP.

There appears to be some correlation between the
relative size of the IIS (expressed as a ratio of the
cardinality of the IIS to the cardinality of the original
LP) and the time ratio for IIS localization using
deletion/sensitivity filtering. This is probably related to
the number of deletion filtering steps that are eliminated
by the sensitivity filter.

Where there are several IISs in the model, the
different filtering methods are likely to locate different
11Ss. For the problem of Section 7.1, the IS {1, 5, 10, X5
> 0} was found by the deletion/sensitivity filter, while
the 71S {6, 9, 11} was found by the deletion filter. For the
problem of Section 7.2, the IIS {1, 2, 3} was found by the
deletion/sensitivity filter, while the IIS {4,5,6} was
found by the deletion filter. Two IISs of very different
sizes are found by the two filters in the case of PILOT4I.

Important cognitive issues are raised by these obser-
vations. Are smaller /ISs more easily diagnosed? If this is
so, should the /IS-finding algorithms be modified so that
they search for smaller /ISs first? How useful are very
large IISs without further diagnostic tools? If further
diagnostic tools are needed, what form should they take?

While beyond the scope of this paper, these cognitive
issues are very promising areas for further research. An
experimental link between the modified MINOS and the
ANALYZE system!” ') is already operational.

8. Conclusions and Future Research

I1S-finding algorithmic engines have great practical value
in focussing the diagnostic efforts when large LPs prove
infeasible, thereby speeding model repair. The ideal algo-
rithm should be robust and efficient.

The novel integrated filtering algorithm reported here
is robust: it always identifies at least one IIS in an
infeasible LP, and at least one from each cluster in
FUN. This is a significant advantage over previous
methods which cannot guarantee the identification of an
1IS.

The integrated algorithm is relatively simple, involv-
ing nothing more than solution inspection and repeated
solution of phase 1 or elastic LPs, and so is easily
incorporated into standard LP solvers such as MINOS
with very little extra code. It is normally quite efficient for
two reasons: first, the LPs solved beyond the first phase
1 LP are frequently fairly small, and second, each phase
1 LP is usually substantially similar to the previous one,
so that most of the basis can be reused. Preliminary
computational results support these conclusions.

Improvements to the integrated algorithm will be the
subject of future research. A computational study should
be undertaken to find heuristic rules for deciding when to
initiate the elastic /sensitivity filtering step. This will likely
concentrate on the numbers of constraints and variables
involved, and the pattern of entries in the coefficient
matrix (e.g., subsets of constraints involving different
subsets of variables).

Preliminary work on using the rows of B~' as early
indicators of IISs has been done. Nonzero elements of a
row corresponding to a nonzero artificial variable index
constraints which affect the final value of that artificial
variable. These constraints are likely to be involved in an
1IS which causes the nonzero value of the artificial vari-
able. This notion could form the basis of another heuristic,
e.g. using such a row set as the initial set of enforced
constraints during elastic /sensitivity filtering.

A concerted effort to prove or disprove Conjecture 9
must also be made. We see this as part of a larger project
exploring the properties of infeasible models and elastic
LPs.

Another interesting project is to compare the speeds
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of the integrated algorithm and the method described by
Gleeson and Ryan.!®! The rough calculation in Section 7.3
indicate that the filtering algorithm may be superior, but
full implementations and computational comparisons need
to be carried out. Testing of the filtering algorithm imple-
mented in MINOS is ongoing.

Related problems suitable for future research include
the set covering problem of finding the minimum number
of constraints which must be repaired in order to achieve
feasibility,!®! and finding the minimum cost set of
repairs. !¢

Modifications to the filtering algorithms permitting
efficient operation on network problems, both pure and
with side constraints, have been proposed,”” and await
computational testing.

Finally, the cognitive issues posed by the availability
of IIS-finding algorithmic engines should be explored.
How can these new tools best be used to assist in the
diagnosis of infeasibilities?
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