
BRANCHING TO FORCE

VARIABLE VALUE

PROPAGATION IN MILP

John W. Chinneck

Systems and Computer Engineering

Carleton University, Ottawa, Canada

Goal: reaching first integer-feasible solution quickly

CPAIOR 2013: Branching to Force Value Propagation 1

Introduction

 Goal: fastest achievement of first integer-

feasible solution in MILP.

 Question: What principle underlies the

best branching heuristics for this goal?

 Intuition: branch towards the largest

number of feasible solutions.

◦ But is this correct?

CPAIOR 2013: Branching to Force Value Propagation 2

A hint

 Insight from multiple choice constraints:

◦ x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

 Branch down: xi can take real values

 Branch up: all xi forced to integer values

◦ E.g.: x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25,

0.25)

◦ Branching on x1:

 Branch down: (0, 0.333, 0.333, 0.333) or many others

 Branch up: (1, 0, 0, 0) is only solution, and all integer.

CPAIOR 2013: Branching to Force Value Propagation 3

Frequent pattern

 Each branch forces
about 1 candidate
variable to integrality

 Integer feasibility
reached when number
of candidates is zero

 25 candidates to 0
candidates in 25
branches

CPAIOR 2013: Branching to Force Value Propagation 4

Candidate branching variable:

integer/binary, but has fractional value in current LP relaxation solution.

Zero candidate variables = integer feasibility

A better pattern

CPAIOR 2013: Branching to Force Value Propagation 5

Goal: Force

many candidates

to integrality at

each branch

160 candidates to

0 candidates in 25

branches

A new principle

 Goal: force many candidates to integrality

at each branch

 How?

◦ Branch to force many candidate variables to

change value

◦ Some are forced onto “squared-off” polytope

vertices and take integer values

◦ Hope that many will take integer values

CPAIOR 2013: Branching to Force Value Propagation 6

CPAIOR 2013: Branching to Force Value Propagation 7

LP relaxation optimum

LP relaxn opt

added bound

LP relaxn opt:
all integer

added bound

Why it Works

Feasible region is “squared-off”

as you dive into tree.

Propagation forces variables

onto integer “corners”.

Hypothesis

 Branching to maximize probability of a
feasible solution does not force propagation
of changed variable values

◦ Branching to minimize probability does

 Testing:

◦ Develop branching methods where probability of
satisfying an individual active constraint can be
calculated

 Active constraints determine solution point

◦ Test branching to max vs. min probability of
satisfying active constraints

CPAIOR 2013: Branching to Force Value Propagation 8

Probability-based branching

Counting solutions [Pesant and Quimper 2008]

 l ≤ cx ≤ u : l, c, u are integer values, x integer

 Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0
Value of x2 Range for x1 Soln count Soln density

x2=0 [0,10] 11 11/18 = 0.61

x2=1 [0,5] 6 6/18 = 0.33

x2=2 [0] 1 1/18 = 0.06

Total solutions 18

 Choose x2=0 for max prob of satisfaction
 Choose x2=2 for min prob of satisfaction
 Which is best?
◦ x2=2 forces total integrality

CPAIOR 2013: Branching to Force Value Propagation 9

New: Generalization

Assume:

 All variables bounded, real-valued

 Uniform distribution within range

Result:

 linear combination of variables yields
normal distribution for function value

 Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5
has mean 25, variance 110.83

 Plot.... Look at g(x) ≤ 12

CPAIOR 2013: Branching to Force Value Propagation 10

g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5

CPAIOR 2013: Branching to Force Value Propagation 11

Probability density plot
• Cumulative prob of satisfying function in blue

P[g(x) ≤ 12]

= 0.1085

CPAIOR 2013: Branching to Force Value Propagation 12

• Separate distributions for

DOWN and UP branches due

to changed variable ranges

• Calculate cumulative

probability of satisfying

constraint in each direction

Example:

• Branch on x1=1.5

• Down: x1 range [0,1], p=0.23

• Up: x1 range [2,5], p=0.05

To use for branching:

Branch down

Branch up

New: handling equality constraints

CPAIOR 2013: Branching to Force Value Propagation 13

e.g. g(x) = 3x1 + 2x2 + 5x3 = 12 for 0 ≤ x ≤ 5

P[g(x)≤12]=0.1085 P[g(x)≥12]=0.8915

Equality “probability” =

(smaller cum. prob)

 (larger cum. prob)

0.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in

the distribution, hence larger chance

of satisfying the equality

New branching direction methods

Given the branching variable:

 Choose direction based on cum. prob. in any
active constraint branching variable is in:
◦ LCP: Lowest cum. prob. in any active constraint
◦ HCP: Highest cum. prob. in any active constraint

 Choose direction based on votes using cum. prob.
in all active constraints branching variable is in:
◦ LCPV: direction most often selected based on lowest

cum. prob.
◦ HCPV: direction most often selected based on highest

cum. prob.

CPAIOR 2013: Branching to Force Value Propagation 14

New simultaneous variable and

direction selection methods

 VDS-LCP: choose varb and direction having

lowest cum. prob. among all candidate varbs

and all active constraints containing them

 VDS-HCP: choose varb and direction having

highest cum. prob. among all candidate

varbs and all active constraints containing

them

CPAIOR 2013: Branching to Force Value Propagation 15

Experimental Setup

 Modified GLPK 4.28

 Stopping: first feasible solution, or two hours

 Node selection:

◦ Driebeek and Tomlin (GLPK default), or

◦ Depth first (best for first feasibility)

 Variable selection:

◦ GLPK default (unless otherwise noted)

 Test models

◦ 142 total, 47 equality-containing, 95 equality-free

◦ 56 from MIPLIB2003

◦ 11 from MIPLIB 3.0

◦ 7 from MIPLIB 2.0

◦ 68 from COR@L

 Speed metric: number of simplex iterations

◦ Due to variety of machines

CPAIOR 2013: Branching to Force Value Propagation 16

CPAIOR 2013: Branching to Force Value Propagation 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

LCP vs. HCP; LCPV vs. HCPV (all models)

GLPK Default

LCP

HCP

LCPV

HCPV

Branching in lower

probability direction

is better

Variable selection: GLPK default

CPAIOR 2013: Branching to Force Value Propagation 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP (all models)

GLPK default

VDS-LCP

VDS-HCP

Branching to lower

probabilities is better

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP

(at least one equality constraint)

GLPK Default

VDS-LCP

VDS-HCP

CPAIOR 2013: Branching to Force Value Propagation 19

VDS-LCP even more dominant.

The centering strategy is effective.

Lessons learned thus far

 Low probability branching directions and

low probability variables are more effective

◦ These force change in the candidate

variable values

◦ ... causing propagation of the variable values

 It’s better to choose both variable and

direction based on low probability

◦ Using a different criterion to choose the

variable first is not as effective

CPAIOR 2013: Branching to Force Value Propagation 20

MORE EVIDENCE

1. Violation-based branching
2. Branching up
3. Active constraint based branching
4. More on multiple-choice constraints

CPAIOR 2013: Branching to Force Value Propagation 21

1. New violation-based methods

 Fix all variables except branching variable. What
happens when branching UP vs. DOWN?

◦ Inequality: active constraint violated or still satisfied?

◦ Equality:
 “violated”: less centred direction

 “satisfied”: more centred direction

 MVV: Most Violated Votes method

◦ Choose direction that violates largest number of active
constraints containing branching varb.

 MSV: Most Satisfied Votes method

CPAIOR 2013: Branching to Force Value Propagation 22

CPAIOR 2013: Branching to Force Value Propagation 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV (all models)

GLPK Default

MSV

MVV

Branching to violate

constraints is better

2. Simple branch-up rule is effective

CPAIOR 2013: Branching to Force Value Propagation 24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

Up vs. Down vs. Closest Integer (all models)

GLPK Default

Up

Down

Closest Integer

Why does it work?

73% of MIPLIB models have at least

one multiple choice constraint!

3. Active Constraints Branching
[Patel and Chinneck, 2007]

 Insight: choose candidate variable having most

impact on active constraints in current LP

relaxation

◦ i.e. force change

◦ All other methods look at impact on objective fcn

 Several variants indicated by letters

 Method A: choose candidate variable

appearing in largest number of active

constraints, branch up

CPAIOR 2013: Branching to Force Value Propagation 25

CPAIOR 2013: Branching to Force Value Propagation 26

Cplex heuristics all turned off

Experiment 1 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (simplex iterations)

fr
a
c
ti

o
n

 o
f

m
o

d
e
ls

Cplex 9.0

A

O

P

HM

HO

CPAIOR 2013: Branching to Force Value Propagation 27

Cplex heuristics all turned on

Experiment 2 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (iterations)

fr
a
c

ti
o

n
 o

f
m

o
d

e
ls

Cplex 9.0

B

L

P

HM

HO

CPAIOR 2013: Branching to Force Value Propagation 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

A-UP vs. VDS-LCP (all models)

GLPK Default

A-UP

VDS-LCP

A-UP: Method A to

select variable, always

branch up.

4. More on multiple choice constraints

Variables Cum. Prob. Up Cum. Prob. Down

2 0.158655254 0.841344746

3 0.078649604 0.5

4 0.041632258 0.281851431

5 0.022750132 0.158655254

6 0.012673659 0.089856247

Variables Equality Ratio Up Equality Ratio Down

2 0.188573417 0.188573417

3 0.085363401 1

4 0.043440797 0.392469529

5 0.023279749 0.188573417

6 0.012836343 0.098727533

CPAIOR 2013: Branching to Force Value Propagation 29

x1 + x2 = 1

x1 + x2 ≤ 1

Comparing the better methods on subsets

with/without multiple choice constraints

CPAIOR 2013: Branching to Force Value Propagation 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

Ratio to Fewest Simplex Iterations

At Least One Multiple Choice Constraint

GLPK Default

A-UP

VDS-LCP

A-LCP

A-LCPV

A-MVV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Ratio to Fewest Simplex Iterations

No Multiple Choice Constraints

GLPK Default

A-UP

VDS-LCP

A-LCP

A-LCPV

A-MVV

Without multiple choice constraints, other methods

outperform A-UP. Note A-UP vs. A-MVV.

Conclusions

1. Branching to force variable value propagation is best
for MILP:

◦ Variables/directions that most affect the active constraints

◦ Variables/directions that have low probability of satisfying
active constraints

◦ Direction that violates the most active constraints

2. Multiple choice constraints are important
◦ Equality constraints also have an impact

3. Compare:
◦ MILP: constraints always satisfied, varbs not integer. Try to

force variables to integrality.

◦ CP: varbs always integer, constraints not satisfied. Try to
satisfy constraints.

CPAIOR 2013: Branching to Force Value Propagation 31

References

 J. Patel and J.W. Chinneck (2007), Active-
Constraint Variable Ordering for Faster
Feasibility of Mixed Integer Linear Programs,
Mathematical Programming Series A, vol.
110, pp. 445-474. Preprint version.

 J. Pryor and J.W. Chinneck (2011), Faster
Integer-Feasibility in Mixed-Integer Linear
Programs by Branching to Force Change,
Computers and Operations Research, vol.
38, no. 8, pp. 1143-1152. Preprint version.

CPAIOR 2013: Branching to Force Value Propagation 32

http://www.sce.carleton.ca/faculty/chinneck/docs/PatelChinneck.pdf
http://www.sce.carleton.ca/faculty/chinneck/docs/PryorChinneck.pdf

