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Introduction 

 Goal:  fastest achievement of first integer-

feasible solution in MILP. 

 

 Question:  What principle underlies the 

best branching heuristics for this goal? 

 

 Intuition: branch towards the largest 

number of feasible solutions. 

◦ But is this correct? 
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A hint 

 Insight from multiple choice constraints: 

◦ x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary 

 Branch down: xi can take real values 

 Branch up: all xi forced to integer values 

◦ E.g.:  x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 

0.25) 

◦ Branching on x1: 

 Branch down: (0, 0.333, 0.333, 0.333) or many others 

 Branch up: (1, 0, 0, 0) is only solution, and all integer. 
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Frequent pattern 

 Each branch forces 
about 1 candidate 
variable to integrality 

 

 Integer feasibility 
reached when number 
of candidates is zero 

 

 25 candidates to 0 
candidates  in 25 
branches 
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Candidate branching variable:  

integer/binary, but has fractional value in current LP relaxation solution. 

Zero candidate variables = integer feasibility 



A better pattern 
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Goal:  Force 

many candidates 

to integrality at 

each branch 

 

160 candidates to 

0 candidates in 25 

branches 



A new principle 

 Goal: force many candidates to integrality 

at each branch 

 How? 

◦ Branch to force many candidate variables to 

change value 

◦ Some are forced onto “squared-off” polytope 

vertices and take integer values 

◦ Hope that many will take integer values 
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LP relaxation optimum 

LP relaxn opt 

added bound 

LP relaxn opt: 
all integer 

added bound 

Why it Works 

 

Feasible region is “squared-off” 

as you dive into tree. 

 

Propagation forces variables 

onto integer “corners”. 



Hypothesis 

 Branching to maximize probability of a 
feasible solution does not force propagation 
of changed variable values 

◦ Branching to minimize probability does 

 Testing: 

◦ Develop branching methods where probability of 
satisfying an individual active constraint can be 
calculated 

 Active constraints determine solution point 

◦ Test branching to max vs. min probability of 
satisfying active constraints 
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Probability-based branching 

Counting solutions [Pesant and Quimper 2008] 

 l ≤ cx ≤ u : l, c, u are integer values, x integer 

 Example:  x1 + 5x2 ≤ 10 where x1, x2 ≥ 0 
Value of x2 Range for x1 Soln count Soln density 

x2=0  [0,10]  11  11/18 = 0.61 

x2=1  [0,5]  6  6/18 = 0.33 

x2=2  [0]  1  1/18 = 0.06 

Total solutions  18 

 Choose x2=0 for max prob of satisfaction 
 Choose x2=2 for min prob of satisfaction 
 Which is best?  
◦ x2=2 forces total integrality 
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New: Generalization 

Assume: 

 All variables bounded, real-valued 

 Uniform distribution within range 

Result: 

 linear combination of variables yields 
normal distribution for function value 

 Example:  g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5 
has mean 25, variance 110.83 

 Plot.... Look at  g(x) ≤ 12 
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g(x) = 3x1 + 2x2 + 5x3 ≤ 12 for 0 ≤ x ≤ 5 
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Probability density plot 
•  Cumulative prob of satisfying function in blue 

 

P[g(x) ≤ 12]  

= 0.1085  
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• Separate distributions for 

DOWN and UP branches due 

to changed variable ranges 

• Calculate cumulative 

probability of satisfying 

constraint in each direction 

 

Example: 

• Branch on x1=1.5 

• Down:  x1 range [0,1], p=0.23 

• Up: x1 range [2,5], p=0.05 

 

To use for branching: 

Branch down 

Branch up 



New: handling equality constraints 
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e.g.  g(x) = 3x1 + 2x2 + 5x3 = 12 for 0 ≤ x ≤ 5 

P[g(x)≤12]=0.1085            P[g(x)≥12]=0.8915 

Equality “probability” = 

(smaller cum. prob) 

 (larger cum. prob) 

 

0.1085/0.8915 = 0.1217 

 

Gives value between 0 and 1. 

 

Larger value means more centred in 

the distribution, hence larger chance 

of satisfying the equality 



New branching direction methods 

Given the branching variable: 
 

 Choose direction based on cum. prob. in any 
active constraint branching variable is in: 
◦ LCP: Lowest cum. prob. in any active constraint 
◦ HCP: Highest cum. prob. in any active constraint 

 

 Choose direction based on votes using cum. prob. 
in all active constraints branching variable is in: 
◦ LCPV: direction most often selected based on lowest 

cum. prob. 
◦ HCPV: direction most often selected based on highest 

cum. prob. 
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New simultaneous variable and 

direction selection methods 

 VDS-LCP: choose varb and direction having 

lowest cum. prob. among all candidate varbs 

and all active constraints containing them 

 

 VDS-HCP: choose varb and direction having 

highest cum. prob. among all candidate 

varbs and all active constraints containing 

them 
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Experimental Setup 

 Modified GLPK 4.28 

 Stopping:  first feasible solution, or two hours 

 Node selection: 

◦ Driebeek and Tomlin (GLPK default), or 

◦ Depth first (best for first feasibility) 

 Variable selection: 

◦ GLPK default (unless otherwise noted) 

 Test models 

◦ 142 total, 47 equality-containing, 95 equality-free  

◦ 56 from MIPLIB2003 

◦ 11 from MIPLIB 3.0 

◦ 7 from MIPLIB 2.0 

◦ 68 from COR@L 

 Speed metric: number of simplex iterations 

◦ Due to variety of machines 
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VDS-LCP even more dominant. 

The centering strategy is effective. 



Lessons learned thus far 

 Low probability branching directions and 

low probability variables are more effective 

◦ These force change in the candidate 

variable values 

◦ ... causing propagation of the variable values 

 It’s better to choose both variable and 

direction based on low probability 

◦ Using a different criterion to choose the 

variable first is not as effective 
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MORE EVIDENCE 

1. Violation-based branching 
2. Branching up 
3. Active constraint based branching 
4. More on multiple-choice constraints 
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1. New violation-based methods 

 Fix all variables except branching variable. What 
happens when branching UP vs. DOWN? 

◦ Inequality: active constraint violated or still satisfied? 

◦ Equality: 
 “violated”: less centred direction 

 “satisfied”: more centred direction 

 MVV: Most Violated Votes method 

◦ Choose direction that violates largest number of active 
constraints containing branching varb. 

 MSV: Most Satisfied Votes method 
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2. Simple branch-up rule is effective 
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Why does it work? 

73% of MIPLIB models have at least 

one multiple choice constraint! 



3.  Active Constraints Branching 
[Patel and Chinneck, 2007] 

 Insight: choose candidate variable having most 

impact on active constraints in current LP 

relaxation 

◦ i.e. force change 

◦ All other methods look at impact on objective fcn 

 Several variants indicated by letters 

 Method A: choose candidate variable 

appearing in largest number of active 

constraints, branch up 
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Cplex heuristics all turned off 
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Cplex heuristics all turned on 

Experiment 2 Iterations Performance Profiles
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select variable, always 
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4. More on multiple choice constraints 

# Variables Cum. Prob. Up Cum. Prob. Down 

2 0.158655254 0.841344746 

3 0.078649604 0.5 

4 0.041632258 0.281851431 

5 0.022750132 0.158655254 

6 0.012673659 0.089856247 

# Variables Equality Ratio Up Equality Ratio Down 

2 0.188573417 0.188573417 

3 0.085363401 1 

4 0.043440797 0.392469529 

5 0.023279749 0.188573417 

6 0.012836343 0.098727533 
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x1 + x2 = 1 

x1 + x2 ≤ 1 



Comparing the better methods on subsets 

with/without multiple choice constraints 
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Conclusions 

1. Branching to force variable value propagation is best 
for MILP: 

◦ Variables/directions that most affect the active constraints 

◦ Variables/directions that have low probability of satisfying 
active constraints 

◦ Direction that violates the most active constraints 

2. Multiple choice constraints are important 
◦ Equality constraints also have an impact 

3. Compare: 
◦ MILP: constraints always satisfied, varbs not integer. Try to 

force variables to integrality. 

◦ CP: varbs always integer, constraints not satisfied. Try to 
satisfy constraints. 
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