Goal: reaching first integer-feasible solution quickly

BRANCHING TO FORCE VARIABLE VALUE PROPAGATION IN MILP

John W. Chinneck Systems and Computer Engineering Carleton University, Ottawa, Canada

Introduction

• **Goal:** fastest achievement of first integerfeasible solution in MILP.

- **Question:** What **principle** underlies the best branching heuristics for this goal?
- Intuition: branch towards the largest number of feasible solutions.
 - But is this correct?

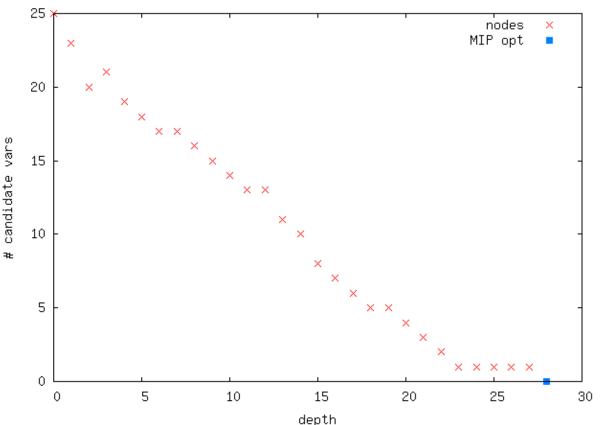
A hint

• Insight from *multiple choice* constraints:

- $x_1 + x_2 + x_3 + ... x_n \{\leq,=\} 1$, where x_i are binary
 - Branch down: x_i can take real values
 - Branch up: all x_i forced to integer values
- E.g.: $x_1 + x_2 + x_3 + x_4 = 1$ at (0.25, 0.25, 0.25, 0.25)
- Branching on x_1 :
 - Branch down: (0, 0.333, 0.333, 0.333) or many others
 - Branch up: (1, 0, 0, 0) is **only solution**, and **all integer**.

Frequent pattern

Candidate branching variable: integer/binary, but has fractional value in current LP relaxation solution. Zero candidate variables = integer feasibility

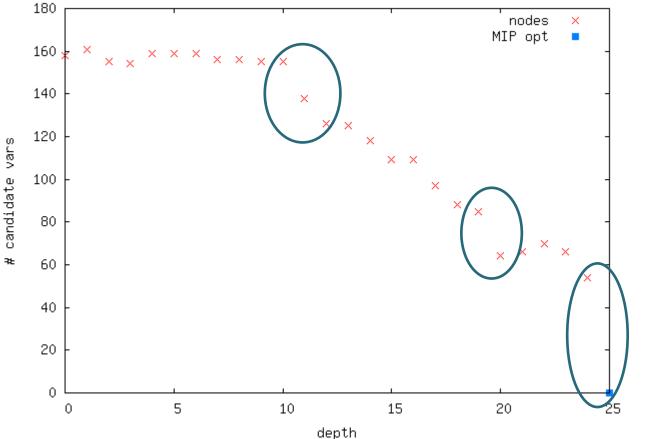


bell5 Branch Plot

- Each branch forces about 1 candidate variable to integrality
- Integer feasibility reached when number of candidates is zero
- 25 candidates to 0 candidates in 25 branches

A better pattern

10teams Branch Plot



Goal: Force many candidates to integrality at each branch

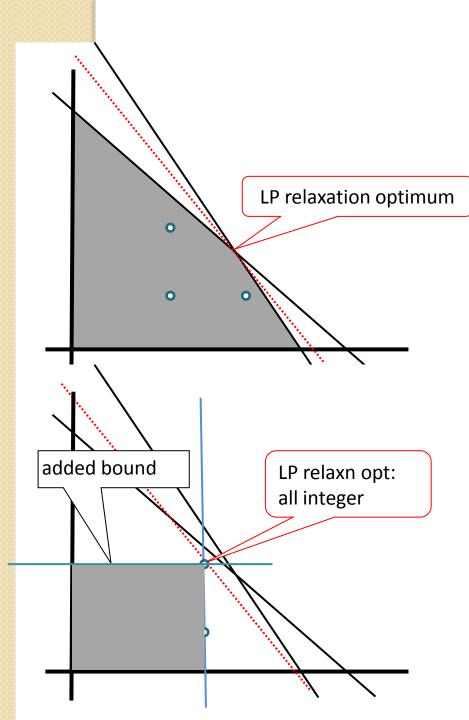
160 candidates to0 candidates in 25branches

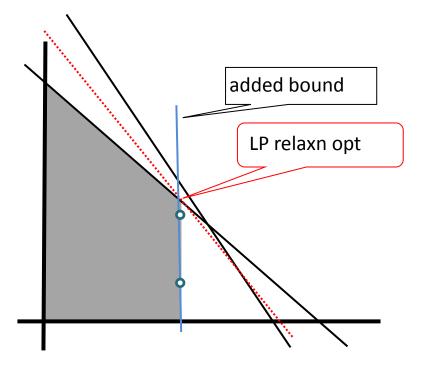
A new principle

 Goal: force many candidates to integrality at each branch

• How?

- Branch to force many candidate variables to change value
- Some are forced onto "squared-off" polytope vertices and take integer values
- Hope that *many* will take integer values





Why it Works

Feasible region is "squared-off" as you dive into tree.

Propagation forces variables onto integer "corners".

Hypothesis

- Branching to maximize probability of a feasible solution does not force propagation of changed variable values
 - Branching to minimize probability does

Testing:

- Develop branching methods where probability of satisfying an individual *active constraint* can be calculated
 - Active constraints determine solution point
- Test branching to max vs. min probability of satisfying active constraints

Probability-based branching

Counting solutions [Pesant and Quimper 2008]

- $l \le cx \le u : l, c, u$ are integer values, x integer
- Example: $x_1 + 5x_2 \le 10$ where $x_1, x_2 \ge 0$ Value of x_2 Range for x_1 Soln count Soln density [0,10] 11/18 = 0.61 $x_2 = 0$ 11 [0,5] 6/18 = 0.33 $x_2 = l$ 6 $x_2 = 2$ 1/18 = 0.06[0] 1 Total solutions 18
- Choose x₂=0 for max prob of satisfaction
- Choose x₂=2 for min prob of satisfaction
- Which is best?
 - $x_2=2$ forces total integrality

New: Generalization

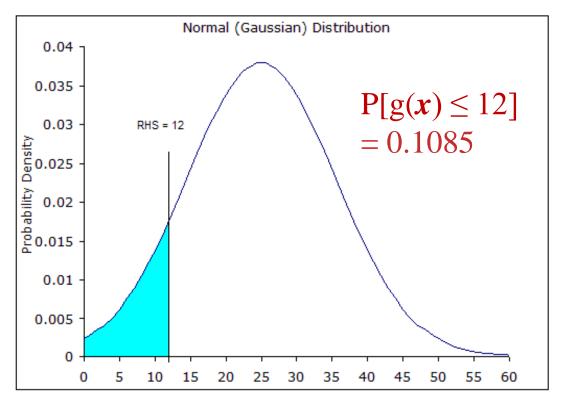
Assume:

- All variables bounded, real-valued
- Uniform distribution within range
 Result:
- linear combination of variables yields normal distribution for function value
- Example: $g(x) = 3x_1 + 2x_2 + 5x_3, 0 \le x \le 5$ has mean 25, variance 110.83
- Plot.... Look at $g(x) \le 12$

$g(\mathbf{x}) = 3x_1 + 2x_2 + 5x_3 \le 12$ for $0 \le \mathbf{x} \le 5$

Probability density plot

Cumulative prob of satisfying function in blue

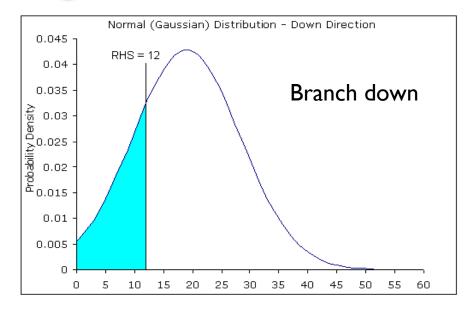


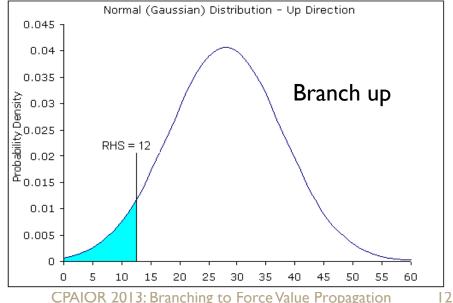
To use for branching:

- Separate distributions for DOWN and UP branches due to changed variable ranges
- Calculate cumulative probability of satisfying constraint in each direction

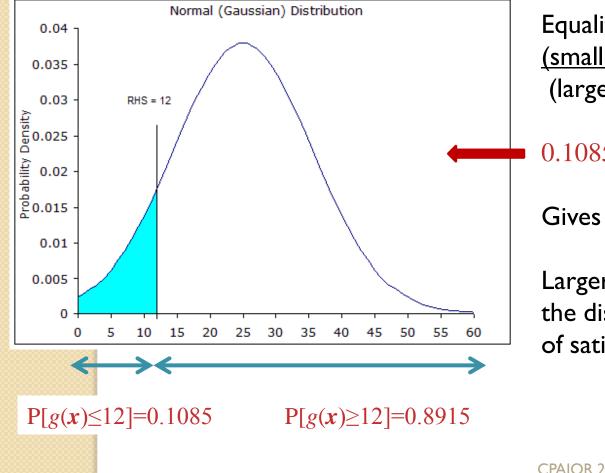
Example:

- Branch on $x_1 = 1.5$
- *Down*: *x*₁ range [0,1], p=0.23
- *Up*: *x*₁ range [2,5], p=0.05





New: handling equality constraints e.g. $g(\mathbf{x}) = 3x_1 + 2x_2 + 5x_3 = 12$ for $0 \le \mathbf{x} \le 5$



Equality "probability" = <u>(smaller cum. prob)</u> (larger cum. prob)

0.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in the distribution, hence larger chance of satisfying the equality

New branching direction methods

Given the branching variable:

- Choose direction based on cum. prob. in <u>any</u> active constraint branching variable is in:
 - LCP: Lowest cum. prob. in any active constraint
 - HCP: Highest cum. prob. in any active constraint
- Choose direction based on votes using cum. prob. in <u>all</u> active constraints branching variable is in:
 - LCPV: direction most often selected based on lowest cum. prob.
 - HCPV: direction most often selected based on highest cum. prob.

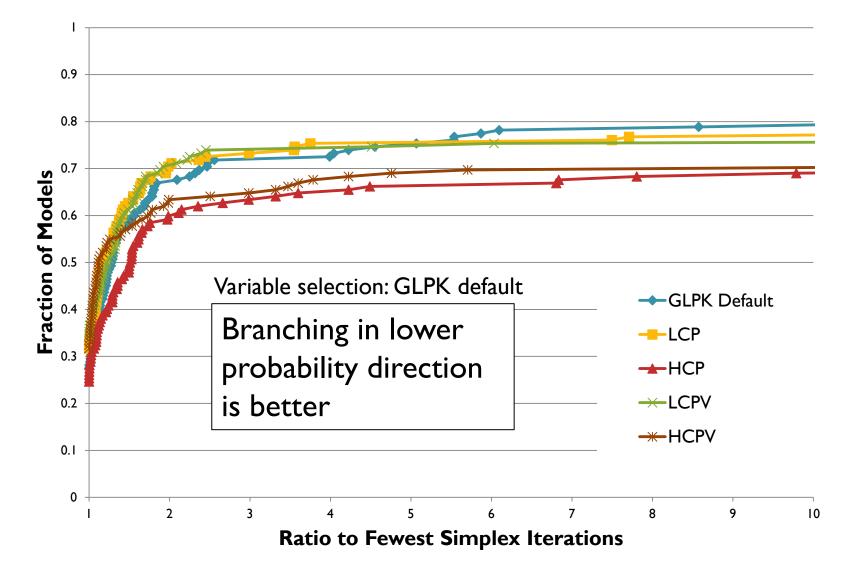
New simultaneous variable and direction selection methods

- VDS-LCP: choose varb *and* direction having lowest cum. prob. among all candidate varbs and all active constraints containing them
- VDS-HCP: choose varb and direction having highest cum. prob. among all candidate varbs and all active constraints containing them

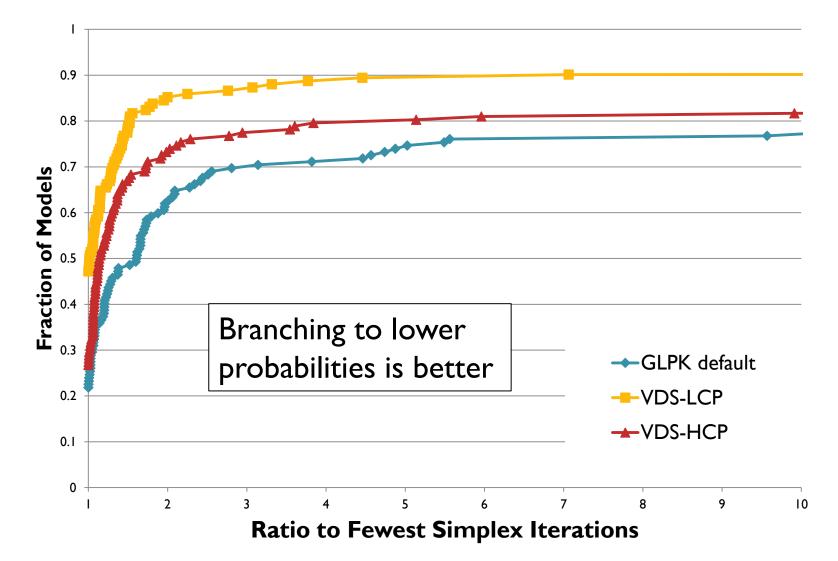
Experimental Setup

- Modified GLPK 4.28
- Stopping: first feasible solution, or two hours
- Node selection:
 - Driebeek and Tomlin (GLPK default), or
 - Depth first (best for first feasibility)
- Variable selection:
 - GLPK default (unless otherwise noted)
- Test models
 - 142 total, 47 equality-containing, 95 equality-free
 - 56 from MIPLIB2003
 - II from MIPLIB 3.0
 - 7 from MIPLIB 2.0
 - 68 from COR@L
- Speed metric: number of simplex iterations
 - Due to variety of machines

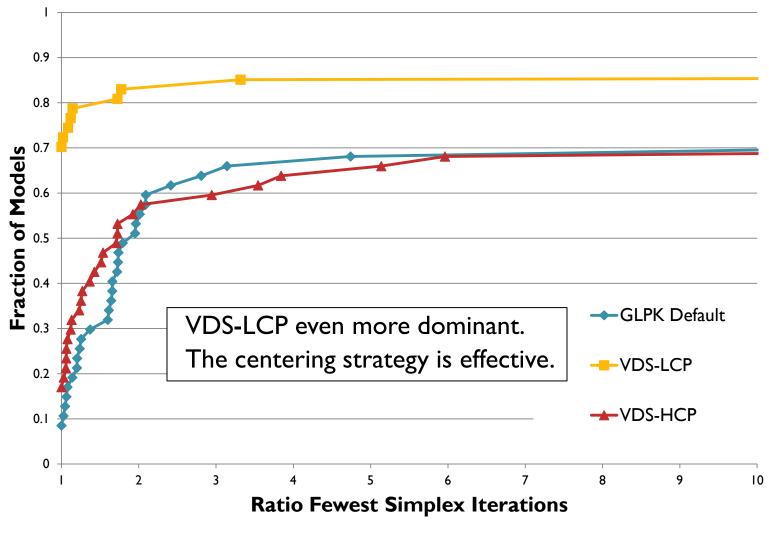
LCP vs. HCP; LCPV vs. HCPV (all models)



VDS-LCP vs.**VDS-HCP** (all models)



VDS-LCP vs.VDS-HCP (at least one equality constraint)



Lessons learned thus far

- Low probability branching directions and low probability variables are more effective
 - These force change in the candidate variable values
 - ... causing propagation of the variable values
- It's better to choose both variable and direction based on low probability
 - Using a different criterion to choose the variable first is not as effective

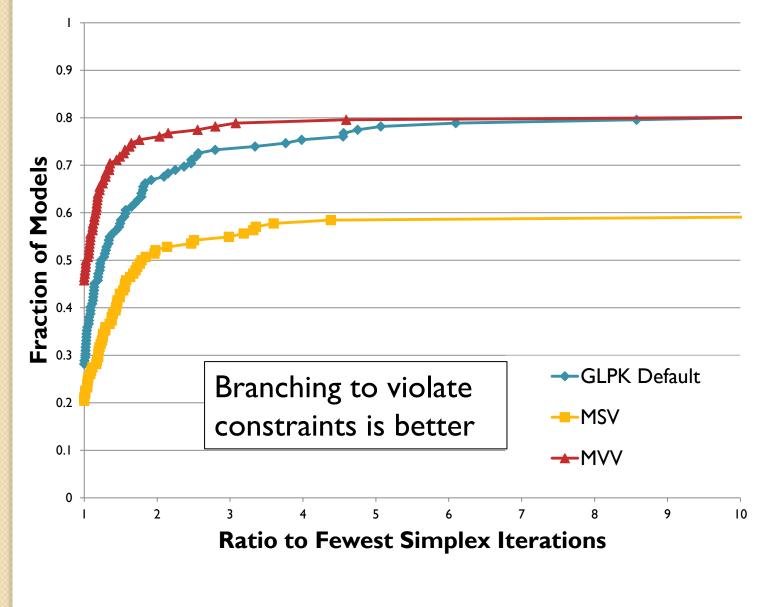
MORE EVIDENCE

- I. Violation-based branching
- 2. Branching up
- 3. Active constraint based branching
- 4. More on multiple-choice constraints

I. New violation-based methods

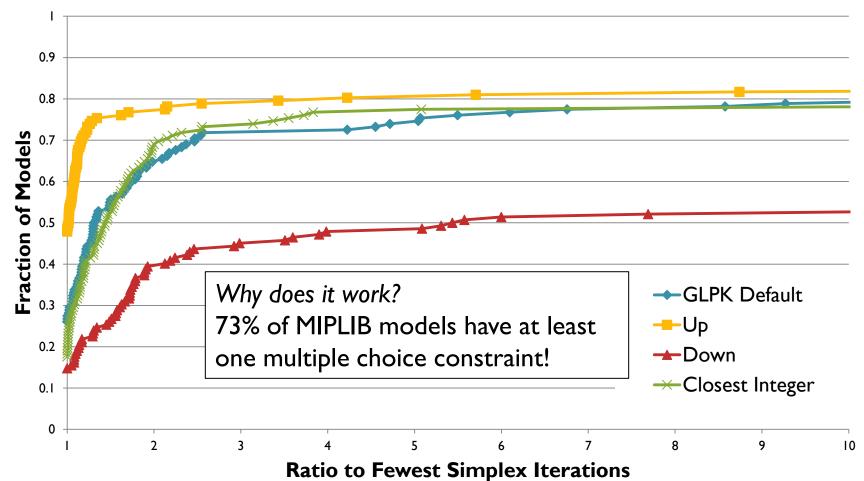
- Fix all variables except branching variable. What happens when branching UP vs. DOWN?
 - Inequality: active constraint violated or still satisfied?
 - Equality:
 - "violated": less centred direction
 - "satisfied": more centred direction
- MVV: Most Violated Votes method
 - Choose direction that violates largest number of active constraints containing branching varb.
- MSV: Most Satisfied Votes method

MVV vs. MSV (all models)



2. Simple branch-up rule is effective

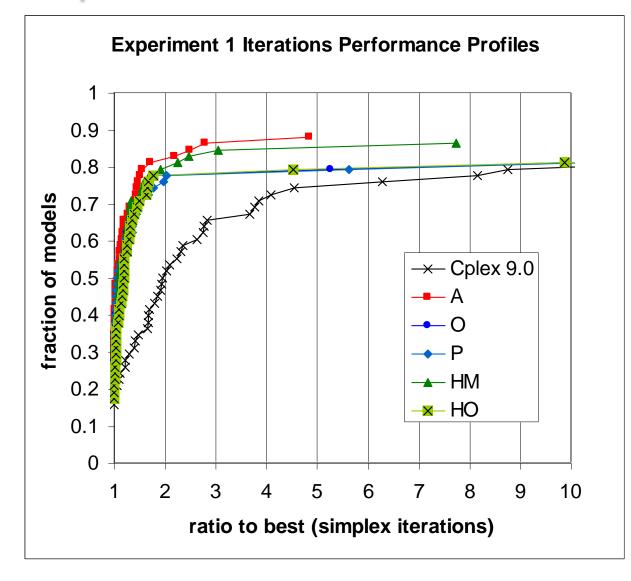
Up vs. Down vs. Closest Integer (all models)



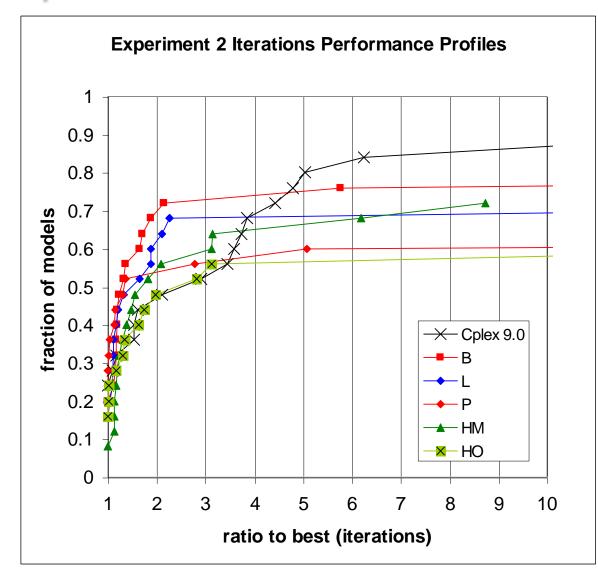
3. Active Constraints Branching [Patel and Chinneck, 2007]

- Insight: choose candidate variable having most impact on active constraints in current LP relaxation
 - i.e. force change
 - All other methods look at impact on *objective fcn*
- Several variants indicated by letters
- Method A: choose candidate variable appearing in largest number of active constraints, branch **up**

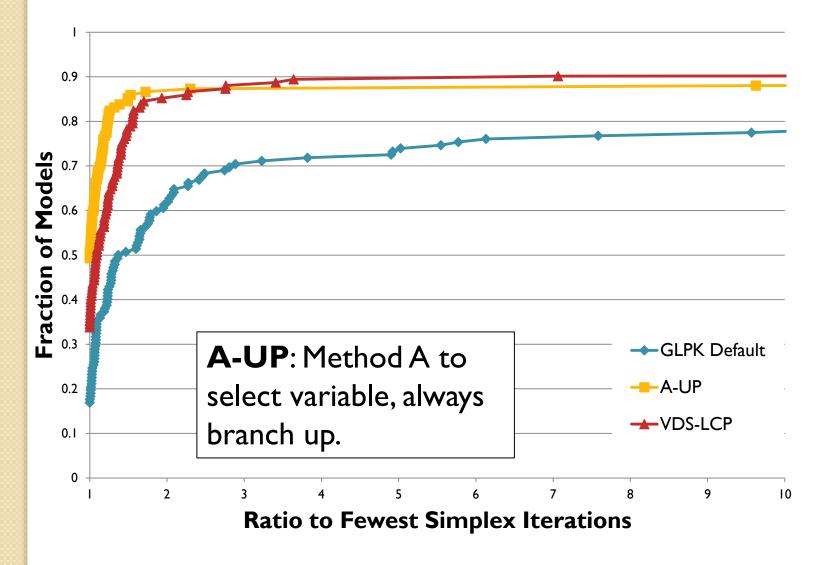
Cplex heuristics all turned off



Cplex heuristics all turned on



A-UP vs.VDS-LCP (all models)



4. More on multiple choice constraints

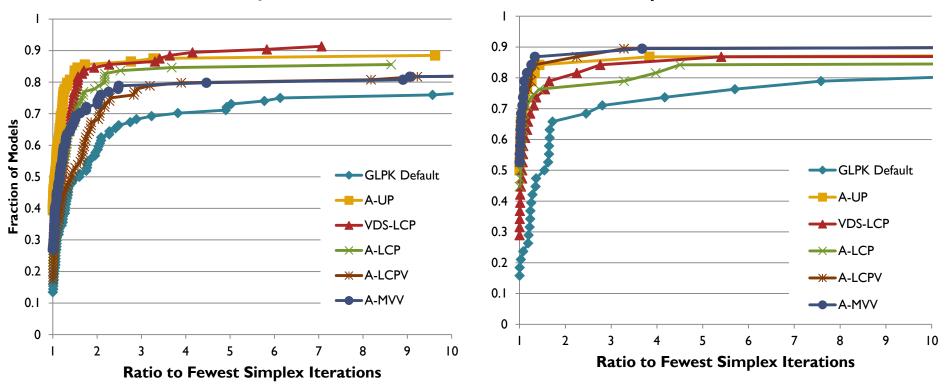
$x_1 + x_2 \le 1$	# Variables	Cum. Prob. Up	Cum. Prob. Down
1 2	2	0.158655254	0.841344746
	3	0.078649604	0.5
	4	0.041632258	0.281851431
	5	0.022750132	0.158655254
	6	0.012673659	0.089856247

$x_1 + x_2 = 1$	# Variables	Equality Ratio Up	Equality Ratio Down
1 2	2	0.188573417	0.188573417
	3	0.085363401	1
	4	0.043440797	0.392469529
	5	0.023279749	0.188573417
	6	0.012836343	0.098727533

Comparing the better methods on subsets with/without multiple choice constraints

At Least One Multiple Choice Constraint

No Multiple Choice Constraints



Without multiple choice constraints, other methods outperform A-UP. *Note A-UP vs. A-MVV.*

Conclusions

- Branching to force variable value propagation is best for MILP:
 - Variables/directions that most affect the active constraints
 - Variables/directions that have low probability of satisfying active constraints
 - Direction that violates the most active constraints
- 2. Multiple choice constraints are important
 - Equality constraints also have an impact
- 3. Compare:
 - MILP: constraints always satisfied, varbs not integer. Try to force variables to integrality.
 - CP: varbs always integer, constraints not satisfied. Try to satisfy constraints.

References

- J. Patel and J.W. Chinneck (2007), Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs, Mathematical Programming Series A, vol. 110, pp. 445-474. <u>Preprint version</u>.
- J. Pryor and J.W. Chinneck (2011), Faster Integer-Feasibility in Mixed-Integer Linear Programs by Branching to Force Change, Computers and Operations Research, vol. 38, no. 8, pp. 1143-1152. <u>Preprint version</u>.