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Introduction

e Goal: fastest achievement of first integer-
feasible solution in MILP.

e Question: What principle underlies the
best branching heuristics for this goal?

e Intuition: branch towards the largest
number of feasible solutions.

o But is this correct?



A hint

* Insight from multiple choice constraints:

° Xy + X, + x3 + ... x, {<,=} 1, where x; are binary
Branch down: x; can take real values
Branch up: all x; forced to integer values

° E.g.: x; + x5 + x5 + x, = 1 at (0.25,0.25,0.25,

0.25)

> Branching on x:
Branch down: (0, 0.333,0.333, 0.333) or many others
Branch up: (1,0, 0, 0) is only solution, and all integer.
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Candidate branching variable:
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bellS Branch Plot

nbdes
MIF opt

E
]

15 20 25
depth

30

Each branch forces
about 1 candidate
variable to integrality

Integer feasibility
reached when number
of candidates is zero

25 candidates to O
candidates in 25
branches



# candidate wvars

150

160

140

120

100

ga

=10

40

20

A better pattern

10teams Branch Flot

nodes
MIF opt

depth

15

20

Goal: Force
many candidates
to integrality at
each branch

| 60 candidates to
0 candidates in 25
branches



A new principle

* Goal: force many candidates to integrality
at each branch

e How?

> Branch to force many candidate variables to
change value

> Some are forced onto “squared-off”’ polytope
vertices and take integer values

> Hope that many will take integer values
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Why it Works

LP relaxn opt:
all integer

Feasible region is “squared-off”
as you dive into tree.

Propagation forces variables
onto integer “corners’’.
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Hypothesis

* Branching to maximize probability of a
feasible solution does not force propagation
of changed variable values

> Branching to minimize probability does
* Testing:

> Develop branching methods where probability of
satisfying an individual active constraint can be
calculated

Active constraints determine solution point

o Test branching to max vs. min probability of
satisfying active constraints



Probability-based branching

Counting solutions [Pesant and Quimper 2008]

o | <cx<u:l, c, uare integer values, X integer
o Example: X; + 5%, < 10 where X;, X, = 0

Value of x, Range for x, Soln count  Soln density

X,=0 0,10] 11 11/18 =0.61
X,=1 0,5] 6 6/18 =0.33
Xy=2 0] 1 1/18 = 0.06
Total solutions 18

* Choose X,=0 for max prob of satisfaction

* Choose x,=2 for min prob of satisfaction
» Which is best?
> X,=2 forces total integrality



New: Generalization

Assume:

e All variables bounded, real-valued
e Uniform distribution within range
Result:

¢ linear combination of variables yields
normal distribution for function value

» Example: g(X) = 3x; + 2X, + 9X3, 0 <X <5
has mean 25, variance 110.83

* Plot.... Look at ((x) <12



g(x) =3x; + 2%, + X< 12 for0 <x <5

* Probability density plot

* Cumulative prob of satisfying function in blue
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To use for branching:

- Separate distributions for
DOWN and UP branches due
to changed variable ranges

- Calculate cumulative
probability of satisfying
constraint in each direction

Example:

- Branch on x;=1.5

- Down: X, range [0,1], p=0.23
- Up: X, range [2,5], p=0.05
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New: handling equality constraints

e.0. g(X) =3x; + 2X, + SX3 = 12 for 0 <X <5
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P[g(x)<12]=0.1085 Plg(x)>12]=0.8915

Equality “probability” =
(smaller cum. prob)
(larger cum. prob)

=== (.1085/0.8915 = 0.1217

Gives value between 0 and 1.

Larger value means more centred in
the distribution, hence larger chance
of satisfying the equality



New branching direction methods

Given the branching variable:

e Choose direction based on cum. prob. in any
active constraint branching variable is in:

> LCP: Lowest cum. prob. in any active constraint
o HCP: Highest cum. prob. in any active constraint

* Choose direction based on votes using cum. prob.
in all active constraints branching variable is in:

o LCPV: direction most often selected based on lowest
cum. prob.

o HCPV: direction most often selected based on highest
cum. prob.



New simultaneous variable and
direction selection methods

* VDS-LCP: choose varb and direction having
lowest cum. prob. among all candidate varbs
and all active constraints containing them

e VDS-HCP: choose varb and direction having
highest cum. prob. among all candidate
varbs and all active constraints containing
them



Experimental Setup

* Modified GLPK 4.28
» Stopping: first feasible solution, or two hours
* Node selection:
> Driebeek and Tomlin (GLPK default), or
> Depth first (best for first feasibility)
e Variable selection:
> GLPK default (unless otherwise noted)
e Test models
° 142 total, 47 equality-containing, 95 equality-free
56 from MIPLIB2003
| I from MIPLIB 3.0
7 from MIPLIB 2.0
68 from COR@L
» Speed metric: number of simplex iterations
> Due to variety of machines

(o]

(o]

(o]

(o]



Fraction of Models

LCP vs. HCP; LCPYV vs. HCPV (all models)
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Fraction of Models

VDS-LCP vs.VDS-HCP
(at least one equality constraint)
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Lessons learned thus far

* Low probability branching directions and
low probability variables are more effective

> These force change in the candidate
variable values

° ...causing propagation of the variable values
* It’s better to choose both variable and
direction based on low probability

> Using a different criterion to choose the
variable first is not as effective



MORE EVIDENCE

Violation-based branching
Branching up

Active constraint based branching
More on multiple-choice constraints
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|. New violation-based methods

 Fix all variables except branching variable.What
happens when branching UP vs. DOWN?!
° Inequality: active constraint violated or still satisfied?
o Equality:
“violated”: less centred direction
“satisfied”: more centred direction

e MVV:Most Violated Votes method

> Choose direction that violates largest number of active
constraints containing branching varb.

e MSV: Most Satisfied Votes method
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2. Simple branch-up rule is effective

Up vs. Down vs. Closest Integer (all models)

Why does it work? —~GLPK Default

73% of MIPLIB models have at least Up

one multiple choice constraint! —+Down
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3. Active Constraints Branching
[Patel and Chinneck, 2007]

e Insight: choose candidate variable having most

impact on active constraints in current LP
relaxation

> i.e. force change
> All other methods look at impact on objective fcn
 Several variants indicated by letters

e Method A: choose candidate variable

appearing in largest number of active
constraints, branch up



Cplex heuristics all turned off

fraction of models
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Cplex heuristics all turned on

fraction of models
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4. More on multiple choice constraints

X, <1 # Variables | Cum. Prob. Up Cum. Prob. Down

0.158655254 0.841344746
3 0.078649604 0.5
4 0.041632258 0.281851431
5 0.022750132 0.158655254
6 0.012673659 0.089856247
X, =1
0.188573417 0.188573417
3 0.085363401 1
4 0.043440797 0.392469529
5 0.023279749 0.188573417
6 0.012836343 0.098727533



Fraction of Models

Comparing the better methods on subsets
with/without multiple choice constraints
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Without multiple choice constraints, other methods
outperform A-UP.  Note A-UP vs.A-MVV.



Conclusions

I. Branching to force variable value propagation is best
for MILP:

Variables/directions that most affect the active constraints

Variables/directions that have low probability of satisfying
active constraints

Direction that violates the most active constraints
2. Multiple choice constraints are important
Equality constraints also have an impact

3. Compare:

o MILP: constraints always satisfied, varbs not integer. Try to
force variables to integrality.

o CP:varbs always integer, constraints not satisfied. Try to
satisfy constraints.
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