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Why (In)feasibility is Interesting

Sometimes any feasible solution will do.
Feasibility question can be same as optimality question.
Assistance in formulating complex optimization models: 
why is it infeasible?
Applications of infeasibility analysis:

Backtracking in constraint logic programs
Training neural networks / classification
Radiation treatment planning
Statistical analysis
Applications to NP-hard problems
Protein folding …
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Outline

1. Finding Irreducible Infeasible Subsets of Constraints (IISs) 
1. General Methods
2. Linear Programming
3. Mixed-Integer Programming
4. Nonlinear Programming
5. Software
6. Constraint Programming
7. Application to Other Model Issues

2. Finding Maximum Feasible Subsets of Constraints 
(Max FS)

3. Repairing Infeasibilities
4. Faster Feasibility

1. Mixed-Integer Programs
2. Nonlinear Programs
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Analyzing Infeasible Math Programs

Three main approaches:

Isolate an Irreducible Infeasible System (IIS)
An infeasible set of constraints that becomes feasible if 
any constraint removed

Find a Maximum Feasible Subset (Max FS)
Maximum cardinality subset of constraints that is 
feasible

Find “best fix” for infeasible constraints
Different matrix norms for measuring “best fix”
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1. Isolating IISs

Using IISs

Cycle:
1. Isolate an IIS
2. Repair the 

infeasibility
3. If still not feasible, 

go to step 1.

B

D

F
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1.1 General Methods for Finding IISs

Assume solver perfectly accurate in 
deciding feasibility status of a set of 
constraints

Reasonable assumption only for LP
General methods for IIS isolation:

Deletion Filter
Additive Method
Elastic Filter
Additive/Deletion method
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The Deletion Filter

INPUT: an infeasible set of constraints.
FOR each constraint in the set:

Temporarily drop the constraint from the set.
Test the feasibility of the reduced set:
IF feasible THEN return dropped constraint to the set.
ELSE (infeasible) drop the constraint permanently.

OUTPUT: constraints constituting a single IIS.
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Deletion Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
{B,C,D,E,F,G} infeasible. A deleted.
{C,D,E,F,G} feasible. B reinstated.
{B,D,E,F,G} infeasible. C deleted.
{B,E,F,G} feasible. D reinstated.
{B,D,F,G} infeasible. E deleted.
{B,D,G} feasible. F reinstated.
{B,D,F} infeasible. G deleted.

Output: the IIS {B,D,F} 



Chinneck: Feasibility and Infeasibility in Optimization 9

Deletion Filter: Characteristics

Returns exactly one IIS, even if there are 
multiple IISs in the model
Which IIS?

IIS whose first member is last in the test list.
Speed: isn’t this slow?

For LP: time to isolate IIS usually a small 
fraction of time to find infeasibility initially

Due to advanced starts: 
each LP is very similar to the previous one

For MIP and NLP: slow
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The Additive Method

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
Step 0: Set T = I = ∅.
Step 1: Set T = I.

FOR each constraint ci in C:
Set T = T ∪ ci.
IF T infeasible THEN

Set I = I ∪ ci.
Go to Step 2.

Step 2: IF I feasible THEN go to Step 1.
OUTPUT: I is an IIS.
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Additive Method: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
{A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all 
feasible.
{A,B,C,D,E,F} infeasible: I = {F} is feasible.
{F,A}, {F,A,B}, {F,A,B,C} all feasible.
{F,A,B,C,D} infeasible: I = {F,D} is feasible.
{F,D,A} feasible.
{F,D,A,B} infeasible: I = {F,D,B} infeasible. Stop.

Output: the IIS {F,B,D}
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Additive Method: Characteristics

Returns exactly one IIS, even if there are 
multiple IISs in the model
Which IIS?

IIS whose last member is first in the test list.

Speed:
If IIS is small and early in the list of constraints, can use 
far fewer feasibility tests than deletion filter
For LP:
speed similar to deletion filter due to basis re-use
For MIP and NLP: slow
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Additive/Deletion Method

1. Apply additive method until first 
infeasible subset of constraints is found. 

2. Apply deletion filter to subset.

More efficient.
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Elasticizing Constraints

Make all constraints elastic by adding elastic 
variables, ei

Elastic objective: Min Σei  (SINF: sum of infeasibilities)

original constraint elastic version
g(x) ≥ bi g(x) + ei ≥ bi

g(x) ≤ bi g(x) - ei ≤ bi

g(x) = bi g(x) + ei’ - ei” = bi
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The Elastic Filter

INPUT: an infeasible set of constraints.
1. Make all constraints elastic by adding nonnegative 

elastic variables ei.
2. Solve the model using the elastic objective function.
3. IF feasible THEN

Enforce the constraints in which any ei>0 by 
permanently removing their elastic variable(s).
Go to step 2.

ELSE (infeasible): Exit.
OUTPUT: the set of de-elasticized constraints contains at 

least one IIS.
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The Elastic Filter: Example

IIS is {B,D,F} in {A,B,C,D,E,F,G}
Elasticized constraints are underscored.

{A,B,C,D,E,F,G} feasible. B stretched.
{A,B,C,D,E,F,G} feasible. F stretched.
{A,B,C,D,E,F,G} feasible. D stretched.
{A,B,C,D,E,F,G} infeasible.

Output: the set {B,F,D}
Not necessarily an IIS until deletion filtered
Why? Parts of larger IISs also returned in output
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The Elastic Filter: Characteristics

At least one member of every IIS will 
stretch at each iteration
Number of iterations: at most equal to 
cardinality of smallest IIS

Useful in finding small IISs
Output needs deletion filter to identify a 
single IIS
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Speed-up: Grouping Constraints

Add/drop constraints in groups
In order, or by category

Deletion Filter: back up and add singly if 
deleting a group causes feasibility
Additive Method: back up and do singly if 
adding a group causes infeasibility

Fixed group size? Adaptive group sizing?
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1.2 Special Methods for LP

Bound-Tightening
Standard presolver techniques: iterative 
tightening of bounds. E.g.:

2x1 − 5x2 ≤ 10 where -10 ≤ x1,x2 ≤ 10
Apply constraint with x1 is at it’s lower bound: 
2(-10) − 5x2 ≤ 10 ⇒ x2 ≥ -6.   
Lower bound on x2 tightened.

May lead to detection of infeasibility.
Difficult to deduce IIS from long sequence of 
operations.
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The Sensitivity Filter

Drop all constraints to which the phase 1 
objective is not sensitive

Insensitive if dual variable is zero
Can apply when infeasibility first detected

Characteristics:
Eliminates many constraints very quickly
Tends to lead to larger IISs
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Sensitivity Filter: Characteristics

Tends to isolate larger IISs

A B

C

D

B' A
C

D

a) before: two IISs,
{A,B} and {B,C,D}.

b) after: one IIS,
{B',C,D}.

Constraints 
shift during 
phase 1
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Interior Point Methods

Solution from interior point method can separate 
the set of constraints into two parts: 

those that might be part of some IIS
those that are irrelevant to any IIS. 

Theorem on strictly complementary partitions.
Some advantages over the sensitivity filter, 
which cannot always identify all the constraints 
that are part of some IIS
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Deletion/Sensitivity, Reciprocal Filters

Deletion/Sensitivity Filter
Apply sensitivity filter each time deletion 
filter deletes a constraint permanently

Reciprocal Filter
For ranged constraints
Barring simple bound reversal:

If one of the bounds is involved in an IIS, then 
the other bound cannot be in the same IIS

Au
AL

BC
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Simplex Pivoting

A: p×n matrix (nonnegativity constraints included 
in Ax ≤ b),
Theorem: Ax ≤ b, x,b ≥ 0, is an IIS iff:

there exist (p-1) linearly independent rows, and 
there exist λ > 0 such that Σλiaij= 0 and 
Σλibi< 0.

Efficient pivoting schemes to find such systems
Characteristics:

Size doubles when equalities converted to inequalities
Generally slower than filtering methods
Not commercially implemented
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Guiding the IIS Search

Mark some constraints prior to IIS search:
remove immediately
encourage removal
discourage removal
never remove

Give constraints different weights during elastic filter
Why might this be done?

It is known that parts of the model are OK
There are several “reflections” of the same IIS, some easier 
to understand than others.

Available in MINOS(IIS) [1994] and Cplex 9.0 [2003].
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Finding Better IISs in LPs

May have multiple IISs for same infeasibility
IISs having few row constraints preferred

Most effective heuristic tested:
1. elastic filter the row constraints
2. deletion/sensitivity filter the row constraints while 

protecting the variable bounds
3. sensitivity filter the variable bounds
4. deletion/sensitivity filter the variable bounds
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Networks: Supply-Demand Balancing

Logical reductions based on supply and demand 
connected via balance nodes

Uses theorems by Gale, Fulkerson, Hoffman
Hao and Orlin: use maximum flow algorithm to find 
a minimal "witness" set of nodes for which the net 
supply and the total outflow capacity conflict.

Characteristics:
Similar to presolver bound reductions
Difficult to arrive at solid diagnosis by following the 
sequence of reductions
Methods work only on simple network forms.
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Networks: Aggregating Large IISs
Rows in the IIS:
c125: - x50 + x379 - x380 = -1825
c126: - x379 + x380 - x382 = -2535
c127: - x381 + x382 + x383 - x384 = -1658
c128: - x30 - x383 + x384 + x387 - x459 = 

-15466
c147: - x69 + x435 - x437 = -338
c148: - x435 + x437 + x438 - x439 = -1037
c149: - x438 + x439 + x440 - x442 = -5713
c150: - x440 + x442 + x443 - x444 = -16
c151: - x443 + x444 + x446 - x448 = -1954
c153: - x446 + x448 + x449 - x450 = -4255
c154: - x449 + x450 + x451 - x453 = -5155
c155: - x451 + x453 + x454 - x455 = -1274
c156: - x454 + x455 + x456 + x457 - x458 - x463 

= -1454
c157: - x387 - x456 + x458 + x459 = -6401
c158: - x457 + x463 + x464 - x491 = -14

c165: - x475 + x477 + x478 - x479 = -246
c166: - x478 + x479 + x480 - x482 = -232
c167: - x480 + x482 + x483 - x484 = -61
c168: - x483 + x484 + x485 - x486 = -1536
c169: - x485 + x486 + x487 - x488 = -3648
c170: - x487 + x488 + x489 - x490 = -3676
c171: - x464 - x489 + x490 + x491 = -1848

Column Bounds in the IIS:
x30 <= 12509
x50 <= 12509
x69 <= 14434
x475 <= 14434
x477 >= 0

Aggregate sum of the balance constraints:
- x30 - x50 - x69 - x475 + x477 = -60342

Before: 22 rows, 5 bounds, numerous variables
After: 1 row, 5 bounds, 5 variables
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1.3 Special Methods for MIPs

Three classes of 
constraints:

Linear row 
constraints (LC)
Variable bounds 
(BD)
Integer 
Restrictions (IR)

feasible
region

all integer point

LP

A

B

C

x

y
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Nontermination in MIPs

all-integer point
LP-relaxation

x
1

2

3

4

5

6

solution point

y

minimize x+y
x,y are integers
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Simple Deletion Filtering for MIPs

Test rows, bounds, and integer restrictions
Can suffer from nontermination

Test variable bounds last
If computation limit exceeded on subproblem, retain 
constraint and label it dubious
Get “infeasible subsystem” (IS) instead of IIS if there are 
dubious constraints

Very slow
Each test requires full B&B tree expansion
Test integer restrictions first: IR-LC-BD method
Often returns small IS instead of IIS
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Additive Method for MIPs

Assume initial LP is feasible
Add IRs to LC∪BD

Cannot identify dubious constraints
Dynamic Reordering variant:

When a subproblem is feasible:
scan all constraints later in list; add all constraints satisfied 
at current solution point to T

Additive/Deletion Method
Identifies dubious constraints via deletion filter

Very slow
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Using the Initial B&B Tree

Any information in original B&B tree?
No IIS has IR set identical to the set of IRs
satisfied at any intermediate node.
Mark sensitive LCs and BDs at all leaf nodes. 
IR∪{marked LCs}∪{marked BDs} is infeasible.

Some LCs and BDs can be eliminated
LC∪BD∪{IRs on all branching variables} is 
infeasible.

IRs not in this set can be eliminated
Get candidate ISs by looking at sets of IRs defined by 
root-to-leaf paths.
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1.4 Special Methods for NLP

NLP solvers not perfectly accurate in deciding feasibility.
Factors: NLP algorithm, implementation, tolerances, initial point, 
termination criteria, method of approximating derivatives, etc.
If feasibility detected: status is certain
if unable to find feasible pt.: status is unknown

Minimal Intractable Subsystem (MIS): minimal set of 
constraints causing NLP solver to report infeasibility with 
a given set of parameter settings (including initial point, 
tolerances, termination conditions, etc.)
Missing constraints can cause math errors: sqrt(x), x ≥ 0

Guard constraints prevent math errors
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Deletion Filter for NLPs

INPUT: an infeasible set of nonlinear constraints.
FOR each constraint in the set:

1. reset the initial point and solver parameters.
2. temporarily drop the constraint from the set.
3. test the feasibility of the reduced set and DO CASE:

i. solver reports feasibility: 
return dropped constraint to the set.

ii. solver reports infeasibility (ordinary): 
drop constraint permanently.

iii. solver reports infeasibility (math error):
a. mark dropped constraint as a guard.
b. return dropped constraint to the set.

OUTPUT: constraints constituting a single MIS (including guards).

Interpretation: this solver finds this MIS intractable with these settings
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1.5 Software (1)

MINOS(IIS) [research: from 1989]
IIS isolation: Deletion, sensitivity, elastic, reciprocal filtering and 
all combinations.  Guide codes.
MIN IIS COVER: Chinneck’s heuristics

CLAUDIA [proprietary: from 1985]
Several heuristics for finding ISs
1994: deletion filtering added to find IISs

LINDO [commercial: from 1994]
IIS isolation via deletion filter
Classes IIS members as necessary or sufficient

Cplex [commercial: from 1994]
Deletion/sensitivity filter for speed, elastic filter followed by 
deletion/sensitivity for small IISs. Row aggregation for equalities.
2003: weights for guiding IIS search
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Software (2)

OSL [commercial: from 1995]
Deletion/sensitivity and elastic filtering
Now discontinued

XPress-MP [commercial: from 1997]
Deletion/sensitivity and elastic filtering
2004: added to Mosel

Frontline Systems [commercial: from 1997]
Deletion/sensitivity and elastic filtering
Excel add-in

OR/MS Today LP Survey Dec. 2003
27 of 44 solvers or modelling systems surveyed have 
infeasibility analysis capability (mostly IIS isolation)
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1.6 IISs in Constraint Programming

IIS same as:
Minimal conflict set
Minimal unsatisfiable core (MUC)
Minimally unsatisfiable subformula (MUS)

IISs used for intelligent backtracking:
Backtrack only on members of IIS
Create new constraints based on IISs (“no-goods” learning)

For pure logic:
Additive method, deletion filter, additive/deletion filter, grouping

For mixed logic and linear constraints:
…add sensitivity filter, pivoting methods, advanced subsets

For mixed logic, linear, nonlinear, integer constraints:
…try all above
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Timeline of Early Papers (1)

The additive method.
De Siqueira N. and Puget (1988): prototype for conjunction of 
clauses. 
Tamiz, Mardle and Jones (1995, 1996): for linear programming.  
Junker (2001): extends to general constraint programs.

The deletion filter.
Dravnieks (1989) introduces deletion filter, sensitivity filter for LP, 
and elastic method.  Finalized in Chinneck and Dravnieks 
(1991). 
Bakker et al (1993):  rediscovery for constraint satisfaction 
problems.

Pivoting methods.
Gleeson and Ryan (1990)
De Backer and Beringer (1991): similar methods for constraint 
programming.
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Timeline (2)
Constraint grouping. 

Chinneck (1995): initial suggestion
Guieu and Chinneck (1999): grouping in deletion filter and additive 
method for MIPs
Junker (2001): binary grouping for constraint satisfaction problems.  
Atlihan and Schrage (2006) binary grouping for mathematical programs.  

Additive/deletion filter.
Guieu and Chinneck (1999): initial suggestion
Junker (2001): QuickXplain variants

Advanced subset of constraints. 
Guieu and Chinneck (1999): for MIP, only variables branched on form 
infeasible set in conjunction with their bounds and integer restrictions 
and the complete set of linear constraints.
Hemery et al (2006): the wcore concept eliminates some of the original 
constraints during IIS search based on the fact that they have not been 
used to reduce the range of any variables.
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1.7 Application to Other Model Issues

Analyzing LP Unboundedness
primal unbounded ⇒ dual infeasible
IIS isolation on infeasible dual yields a “minimal 
unbounded set” of variables in the primal
Available in LINDO

Analyzing Network Viability
Structural property forces all flows to zero
Add positivity constraint, find IIS
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Other Model Issues (contd)

Analyzing Multiple-Objective Programs
True MOLP: at least two objectives are in conflict 
(optima at different extreme points).
Convert objectives to constraints at their extreme points
Creates an infeasible LP
Analyze objective interactions via IIS isolation and Max 
FS solution

Feasible 
region
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2. Finding Maximum Feasible Subsets

Progress only on linear constraints
Equivalent problems for an infeasible set:

MAX FS: find max cardinality feasible subset
MIN ULR: find min cardinality subset of constraints 
to remove so that remaining set is feasible
MIN IIS COVER: find smallest cardinality subset 
of constraints to remove such that at least one 
constraint is removed from every IIS

MIN IIS COVER is not unique
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Difficulty

MaxFS, MinULR, MinIISCover are NP-hard
Sankaran 1993, Chakravarti 1994, Amaldi and Kann 1995

NP-hard for homogeneous systems of 
inequalities and binary coefficients

Amaldi and Kann (1995) 

Can be approximated within a factor of 2 but 
does not have a polynomial-time approximation 
scheme unless P=NP

Amaldi 1994, Amaldi and Kann 1995, Amaldi et al. 1999
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Example

IISs: 
{A,B,D} and {A,C,D}
MaxFS: 
{A,B,C} or {B,C,D}
MinULR or 
MinIISCover: 
{A} or {D}

D

C

BA
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Application:
Classification, Training Neural Networks

 20

 30

 40

 50

 60

 70

 40  60  80  100  120  140  160  180  200

f0(x) Find 
separating
hyperplane
that 
misclassifies 
the fewest 
points
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Classification: Convert to LP

Training set: I data points in J dimensions
Attributes: value of attribute j for point i is denoted by dij
Outcomes known: either type 0 or type 1
Constraints: one for each data point:

for points of Type 0: Σjdijwj ≤ w0 − ∈
for points of Type 1: Σjdijwj ≥ w0 + ∈

Where
∈: small positive constant.
dij: known constants 
wj: variables, unrestricted in sign

If LP is feasible, then data set is linearly classifiable
Solution: Σjxjwj = w0 is classifier hyperplane
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Classification: Solve via MinULR

If not linearly classifiable (the usual case):
LP is infeasible
MinULR solution = min number unsatisfied constraints 

Same as min number of misclassified data points
Remove constraints indicated by MinULR solution. 
LP now feasible 

Same as data set now linearly classifiable
Solve feasible LP: gives eqn of separating hyperplane

Same as hyperplane that misclassifies fewest points

Build decision trees, train neural networks
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Other Applications
Analyzing infeasible LPs
Statistics: data depth, fixing errors, etc.
Digital Video Broadcasting

Maximize regions with sufficient signal quality
Protein Folding Potentials

Tens of millions of inequalities in hundreds of 
variables

Radiation Therapy
Linear constraints and max and min radiation at 
locations in body

Image and Signal Processing
Etc.!
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Exact Big-M MIP Formulation

Minimize Z=Σyi   (MinULR approach)
Subject to:

aix ≤ bi + Myi for constraints i of type ≤
aix ≥ bi − Myi for constraints i of type ≥
aix = bi + Myi’ – Myi” for constraints i of type =

Where:
y: binary variables
M: the usual “big-M” large positive value

In practice:
Slow
Numerical difficulties
Selection of M
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Exact LPEC Formulation

MaxFS approach
Subst 0≤yi≤1without problems
NLP solution needed
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LPEC for Inequalities

Machine learning 
formulation

Mangasarian (1994)

For inequalities Ax≤b
yi=0 only when si=0
NLP solved by 
successive LP
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Approximate Parametric NLP

When zi=0, then aix≤bi
is satisfied
α: control parameter
NLP solved by 
successive LP

Mangasarian (1996)
Bennett and Bredensteiner
(1997)
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IIS Enumeration and Covering

Parker (1995) Parker and Ryan (1996):
Enumerate IISs one at a time

Efficient algorithm for this
Solve MinIISCover each time a new IIS is found

By exact MIP or by greedy heuristic
Pfetsch (2002, 2005), Codato and Fischetti (2004, 
2006): special cuts to solve MIP faster

Tamiz (1995)
Heuristic enumeration of IISs
Frequency based heuristic to solve MinIISCover
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Phase 1 Heuristics

Solve phase 1 LP:
Observation: violated constraints constitute an 
IIS set cover (Chinneck 1996)

Observation: if just 1 violated constraint in 
phase1 then minimum cardinality IIS set cover 
(Chinneck 1996)

Phase 1 and elastic programs:
Simple phase 1: ≥ and = constraints elasticized
MINOS phase 1: min number of violations and Σsi
Standard elastic program: bounds not elasticized
Full elastic program: bounds also elasticized
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Phase 1 IIS Covers
Model Minimum cover cardinality 

(Parker and Ryan 1996) 
MINOS Phase 1  

cover 
Standard elastic pro-
gram Phase 1 cover 

bgdbg1 12 23 13 
bgindy 1 14 1 
bgprtr 1 2 2 
chemcom 1 11 12 
cplex1 1 211 212 
gran not calculated 244 473 
greenbea 2 3 2 
itest2 2 2 2 
itest6 2 3 4 
klein2 1 3 5 
klein3 1 4 19 
mondou2 3 3 5 
reactor 1 3 2 
refinery 1 3 6 
woodinfe 2 2 2 
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Chinneck’s Elastic Heuristics (1996)

Observation:
Eliminating constraint 
in minimum-cardinality 
IIS set cover should 
reduce SINF more
than eliminating 
constraint that is not in 
minimum-cardinality 
IIS set cover

D

C

BA

SINF=0 if  
{A} or {D} 
removed
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Chinneck’s Elastic Heuristics

Observation: Constraints to which the elastic 
objective function is not sensitive do not reduce 
SINF when removed from the model
Algorithm:

1. For every constraint having nonzero dual price:
Temporarily remove and note new SINF

2. Permanently remove constraint that gives 
lowest new SINF

3. If feasible, then stop.  Else go to Step 1.
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Chinneck’s Elastic Heuristics

Details:
Full elastic model recommended
Remember nonzero dual prices for best new 
SINF seen so far: do not have to recalculate
If NumInfeasibilities = 1 during test, remember 
this and use it directly in next round
Many LPs solved

LP hot starts make soln times reasonable
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Chinneck’s Elastic Heuristics (2001)

Observation: for constraints that are 
violated during phase 1 a good predictor of 
SINF drop when removed is (constraint 
violation) × |dual price|.
Small study: 

over 95% accurate in 87% of cases
over 90% accurate in 94% of cases
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Chinneck’s Elastic Heuristics

Observation: for constraints that are 
satisfied during phase 1 a good predictor 
of the relative magnitude of the SINF drop 
when removed is |dual price|. 

Use these two observations to shorten 
length of candidate list
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Chinneck’s Elastic Heuristics

Revised algorithm:
1. Sort violated constraints by violn×|dual price|, 

sort satisfied constraints by |dual price|
2. For top k constraints in violated and satisfied lists:

Temporarily remove, re-solve LP, note new SINF
3. Permanently remove constraint giving lowest new SINF
4. If feasible, then stop.  Else go to Step 1.
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Chinneck’s Elastic Heuristics

Details:
Alg 2(k): just top k violated constraints
Alg 3(k): top k violated, top k satisfied

Solve at most 2k LPs at each iteration 
Alg 4(k): 

May use ordinary phase 1 to detect initial infeasibility, then full 
elastic phase 1 thereafter
Keep IIS covers from both phase 1 solns as backups
Otherwise same as Alg 3(k)

Trade-off: speed vs. accuracy
Testing: Alg 3(7) and 4(7) almost as good as original 
and an order of magnitude faster
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Classification data sets
Original Alg. 1 Algorithm 2(1) MISMIN Data set 
% acc. secs % acc. secs % acc. secs 

breast cancer 98.4 17 98.4 4.3 98.2 0.7 
bupa 75.1 159 75.9 1.3 73.9 0.6 
glass (type 2 vs. others) 81.8 38 78.5 0.6 76.6 0.6 
ionosphere 98.3 44 98.3 5.4 98.3 2.6 
iris (versicolor vs. others) 83.3 5 83.3 0.2 82.0 0.3 
iris (virginica vs. others) 99.3 0.4 99.3 0.1 99.3 0.3 
new thyroid (normal vs. others) 94.9 3 94.9 0.3 93.5 0.3 
pima 80.6 1434 80.2 7.2 80.5 1.5 
wpbc 96.9 17 96.9 1.2 91.2 1.5 
average: 89.8 216.2 89.5 2.3 88.2 0.9 

 

MISMIN: parametric NLP approximation
(Bennett and Bredensteiner 1997)
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Two-Phase Relaxation Heuristic

First phase: heuristic soln for MaxFS
A linearization of the big-M formulation, or
A linearization of the bilinear LPEC, or
LP phase 1 heuristic

Second phase: add constraints to first 
phase soln using more exact method:

Exact “big-M” MIP on smaller 2nd phase

Amaldi, Bruglieri, Casale 2007
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Two-Phase Relaxation Heuristic

Linearization 
of LPEC
bounded 
inequalities 
only
ui, li: bounds
zij = yixj
Generally 
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Randomized Thermal Relaxation
For very large systems.

Tens of millions of inequalities
Amaldi, Belotti, Hauser 2005

Thermal perceptron heuristic (Frean
1992), or sequential projection algorithm 
(Censor et al 2001)

xi+1 = xi + ηiaki with probability pi if 
constraint ki is violated, or xi+1 = xi
otherwise
Select constraints with large violations 
near start; select constraints with small 
violations near end. Control by 
temperature parameter as in simulated 
annealing.
Variations: how adjust ηi, pi, constraint 
selection, etc.
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Randomized Thermal Relaxation

Digital Video Broadcasting data sets:
Solves many more problems that Big-M MIP

Protein-folding potentials tests:
Up to 837,802 rows, 301 cols
Cplex 8.1 Big-M unable to solve any
6 very large feasible instances

RTR comes within 6 constraints of total number in all 
cases
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3. Repairing Infeasibility
How to define the “best fix”?

Shifting constraints: smallest number 
same as Max FS, weighted or unweighted

Shifting constraints: smallest total penalty 
same as minimizing l1 norm
same as elastic program, weighted or unweighted

Altering constraint body: minimize a matrix norm
l1 or l∞, Frobenius norms

Solution methods:
•Phase 1 solution
•Elastic programs
•Max FS algorithms
•Least-squares

•Fuzzy methods
•Goal programming
•Reformulation-Linearization-Convexification
•Etc….
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4.1  Faster MIP Feasibility
Methods to date:

Pivot-and-complement for BIP
BIP: max cx s.t. Ax≤b, xj binary
LP: max cx s.t. Ax+y=b, 0≤x≤1, y≥0, yi basic
Pivot to make yi basic. Flip varbs when stuck

Pivot-and-shift variant for MIP
OCTANE for BIP

Ray in improving direction passes through extended facets of 
hyper-octagon surrounding hypercube of solns
Hit facets of octagon indicate binary solns to try in order

The feasibility pump
After solving intial LP-relaxation, alternate between (i) rounding 
to get integer-feasible soln (that violates constraints) and (ii) 
nearest LP-feasible soln (that violates integrality).
Randomization if get stuck. 

1st intersection

2nd intersection

x
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Branch and bound

Steps after start-up:
1. If no unexplored nodes left then exit: 

optimal or infeasible.
2. Choose unexplored node for expansion and 

solve its LP relaxation.
Infeasible: discard the node, go to Step 1.
Feasible and integer-feasible: check for new 
incumbent, go to Step 1.

3. Choose branching variable in current node 
and create two new child nodes.
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Is Branching Variable Selection Important?

B&B nodes to First Feasible Soln

model Cplex 9.0 Active-Constraints Method

aflow30a 23481 22 (A, HM, HO, O, P)

aflow40b 100,000+ (limit) 33 (HO, O, P)

fast0507 14753 26 (A)

glass4 7940 62 (A, HM, HO, O, P)

nsrand-ipx 3301 18 (HM)

timtab2 14059 100,000+ (limit)
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Traditional Branching Variable Selection

Based on estimated impact on objective 
function
Goal: maximize degradation in the 
objective function value at optimal solution 
of child node LP relaxations.
e.g. pseudo-costs
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New: Active Constraints Approach

Goal: make child node LP-relaxation optima far 
from parent node LP-relaxation optimum.
Active constraints fix the position of the LP 
optimum solution in parent, so…
Choose branching variable that has most impact 
on the active constraints in parent LP relaxation 
optimum solution.
Constraint-oriented approach [Patel and Chinneck 2006]

Note: “active constraints” include tight degenerate 
constraints
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Impact of the Branching Variable
y 

x 

LP relaxation 
before 
branching 

Branch on x Branch on y 

Feasible 
Region 
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Estimating Candidate Variable Impact on 
Active Constraints

1. Calculate the “weight” Wik of each candidate 
variable i in each active constraint k

0 if the variable does not appear in constraint

2. For each variable, total weights over all active 
constraints.

3. Choose variable that has the largest total 
weight.

Dynamic variable ordering: changes at each node.
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Overview of Weighting Methods

Is candidate variable in active constraint or not?
Relative importance of active constraint:

Smaller weight if more candidate or integer variables: changes in 
other variables compensate for changes in selected variable.
Normalize by absolute sum of coefficients.

Relative importance of candidate variable within active 
constraint:

Greater weight if coefficient size is larger: 
candidate variable has more impact.

Sum weights over all active constraints? Look at biggest 
impact on single constraint?
Etc.



Chinneck: Feasibility and Infeasibility in Optimization 78

Methods A, B, L

Numerous variants. Subset of best:
A: Wik=1.

Is candidate variable present in the active constraint?

B: Wik = 1/ [Σ(|coeff of all variables|].
Like A, but relative impact of a constraint normalized by 
absolute sum of coefficients

L: Wik = 1/(no. integer variables)
Like A, but relative impact of a constraint normalized by 
number of integer variables it contains
Related to MOMS rule?
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Methods M, O, P

M: Wik = 1/(no. candidate variables)
Like A, but relative impact of a constraint normalized by 
number of candidate variables it contains
Not used directly: see H methods

O: Wik = |coeffi|/(no. of integer variables)
Like L, but size of coefficient affects weight of varb in 
constraint

P: Wik = |coeffi|/(no. of candidate variables)
Like M, but size of coefficient affects weight of varb in 
constraint
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Methods HM, HO

H methods: for a given base method, 
choose the variable that has largest weight 
in any single active constraint

Do not sum across active constraints
HM: based on method M
HO: based on method O
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Experiments

Solver built on Cplex 9.1
Limits on time, nodes, node file size
MIPLIB 2003 models 
Experiment 1 (basic B&B): all heuristics off
Experiment 2: all heuristics turned on
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Exp 1: Nodes Peformance Profiles
Experiment 1 Nodes Performance Profile
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Exp 1: Simplex Iterations Perf. Profiles
Experiment 1 Iterations Performance Profiles
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Experiment 2: Notes

All internal heuristics on.
Heuristics impact is mixed:

Many models solved at root node
Others: using Cplex alone:

half slower with heuristics on, half faster.
1 model solvable with heuristics off, but not 
solvable with heuristics on

Active constraints methods generally 
better than Cplex
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Quality Success Ratios

Experiment 1 
over 40 comparable models  

Experiment 2 
over 12 comparable models

method QSR  method QSR  
A 0.53 B 0.75 

HM 0.55 HM 0.50 
HO 0.58 HO 0.50 
O 0.70 L 0.58 
P 0.78 P 0.33 
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4.2 Faster NLP Feasibility

Goal: given arbitrary initial point, move to a 
near-feasible point quickly

Unbounded variables? Ranges too wide?
“near-feasible”?

Traditional: |RHS-LHS| ≤ tolerance
Function scaling means this varies widely!

New: Euclidean distance to feasible region
This is a variable-space measure



Chinneck: Feasibility and Infeasibility in Optimization 87

The Constraint Consensus Method

Feasibility vector: for a violated constraint, a vector indicating 
step to closest feasible point

|feasibility vector| gives distance to feasibility
Exact for linear constraints, approximation based on gradient for 
nonlinear constraints

Consensus vector: update step from combination of feasibility 
vectors

Method:
Construct feasibility vector for each violated constraint
Construct consensus vector (various options)
Take the step indicated by the consensus vector
Repeat until close enough to feasibility

Simple: no LP solutions, line search, matrix inversion, etc.
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Example Constraint Consensus Step

Next step will reach feasibility

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 0  0.5  1  1.5  2  2.5  3  3.5

Feasible region 
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A 
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Where to start? Initial Point Heuristic

What if initial point is not given?
New initial point heuristic avoids various problems:

If doubly bounded: set at midpoint + (small random ε)
If single lower bound: set at bound + (small random ε)
If single upper bound: set at bound - (small random ε)
If unbounded both directions: set at zero + (small random ε)

Couple with CC algorithm, use to start NLP solvers
Tested on ~230 CUTE models

At least one NL constraint
Less than 300 constraints

Impact on NL solver ability to reach feasibility
MINOS, SNOPT, KNITRO, DONLP2, CONOPT
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New Heuristic + CC + solver

Using feasibility distance 0.1 for CC algorithms
Improves over new heuristic + solver

MINOS SNOPT KNITRO DONLP2 CONOPT

modeller 0.864 0.684 0.939 0.899 0.877

simple

DBmax

DBavg

DBbnd

FDnear

FDfar

0.868 0.689 0.908 0.899 0.877

0.864 0.693 0.912 0.908 0.882

0.864 0.702 0.908 0.895 0.890

0.873 0.697 0.921 0.899 0.890

0.864 0.689 0.904 0.882 0.890

0.873 0.706 0.917 0.908 0.904
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Useful Sources
General overview of state of the art:

J.W. Chinneck (2007), “Feasibility and Infeasibility in Optimization: 
Algorithms and Computational Methods”, Springer, in preparation.
J.W. Chinneck (1997), “Feasibility and Viability” in Advances in Sensitivity 
Analysis and Parametric Programming, T. Gal and H.J. Greenberg (eds.), 
International Series in Operations Research and Management Science, Vol. 
6, pp. 14-1 to 14-41, Kluwer Academic Publishers.

On constraint consensus method for NLPs:
W. Ibrahim and J.W. Chinneck (2005), "Improving Solver Success in 
Reaching Feasibility for Sets of Nonlinear Constraints", Computers and 
Operations Research, to appear 

On active constraints method for MIPs:
J. Patel and J. Chinneck (2006), “Active-Constraint Variable Ordering for 
Faster Feasibility of Mixed Integer Linear Programs”, Mathematical 
Programming, to appear.

Other info/software:
www.sce.carleton.ca/faculty/chinneck.html
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