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Introduction 

MProbe is the software implementation of a collection of tools that assist in the formulation of 
complex mathematical programming models.  It is a utility that supports mathematical 
programmers in the same way that debuggers, profilers and other tools support computer 
programmers in standard languages such as C.  The overall goal of the MProbe project is to provide 
helpful formulation tools for any kind of model that can be expressed in a standard mathematical 
programming modeling language such as AMPL, GAMS, MPL or AIMMS.  Note that this includes 
constraint programs.  More information about the project, including links to relevant papers, is 
available at the MProbe homepage: http://www.sce.carleton.ca/faculty/chinneck/mprobe.html.   

There is now a significant need for tools of this sort.  As computers have grown cheaper and more 
powerful, extremely large and/or complex models are being attempted with greater frequency.  At 
the same time, novices are being introduced to mathematical programming via, for example, the 
solvers built into popular spreadsheet programs.  In both cases, formulation assistance is needed.  
With very few exceptions (e.g. ANALYZE [Greenberg 1993]), the mathematical programming 
community has not come to grips with this pressing need. 

There are two significant research challenges: 

• Inventing the algorithmic tools that can provide useful insights to modelers.  This requires 
original thinking given difficulties such as numerous different types of variables in a single 
model (real, binary, integer), and the high dimension of some functions. 

• Organizing the interface in a way that is natural and intuitive for users.  This is a difficult 
challenge in the face of the vast amounts of information in a large-scale industrial model. 

The purpose of this document is to outline some research opportunities in this field, and to invite 
others to participate in this effort. 

Sampling 

• Assessment of accuracy.  A basic question about the sampling methods of assessing e.g. 
nonlinear function shape is this: can you quantify the accuracy of the shape estimate?  For 
example, can you indicate the probability of accurate shape assessment?   
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• Sampling methodology.  More accurate estimates of model characteristics may be obtained 
by different sampling methods.  For example, latin hypercube sampling in box enclosures 
may give better results, especially on functions of very high dimension.  The co-ordinate 
directions method of hit-and-run sampling may give better results in convex sampling 
enclosures (see Berbee et al [1987]).  Is there an advantage to increasing the sampling in 
important areas, e.g. near edges or near stationary points?  Is there any way to determine the 
best way to place sample points so as to extract the maximum amount of information from 
the minimum number of function evaluations (see e.g. Jones et al [1998])? 

• Discrete variables.  What is the best way to sample discrete variables (binary and integer)?  
At present you have the option of “snapping” discrete variables by rounding the real values 
returned by the random number generator to the nearest discrete value.  This is probably a 
good thing for assessing constraint effectiveness, but does not work when assessing 
function shape (which requires interpolation at specific real-valued points).  How do you 
prevent the rounding from giving a non-uniform sampling?  What is the best way to snap 
discrete variables when sampling inside a general convex enclosure rather than a box? 

• Random number generators.  A better random number generator is needed.  Methods are 
also needed to make sure that sampling is uniform over a very large range (± 1×1020).  
Should a multi-level strategy be used?  Should the range of unbounded variables be 
restricted even further?   

• Subdividing the sampling enclosure.  Subdividing the sampling enclosure and sampling in 
each of the subdivisions separately may return useful information.  How should the 
subdivisions be decided?  How should the information from the subdivisions be stitched 
back together? 

Constraint Necessity and Redundancy 

• The Prime Analytic Centre.  The Prime Analytic Centre, may not be the best measure of 
the “centre” of a region.  The location of the PAC can be influenced by a clustering of many 
necessary constraints that each have a very small surface fraction.  There may be better 
alternatives such as e.g. the “center of gravity” idea, or biasing the effect of each necessary 
constraint in proportion to its surface fraction.   

• Surface fraction.  The “surface fraction” indicates the fraction of hits that a particular 
sampling enclosure constraint receives during hit-and-run sampling.  This is a true measure 
of the surface fraction if the launch points of the hitting rays are uniformly distributed in the 
sampling enclosure and if the launch directions are uniformly distributed on the unit 
hypersphere.  This may not be the case if we do not choose the next launch point randomly 
along the length of the last spanning line segment.  If the rays are launched from a point 
approximating the Prime Analytic Center (as in the current software), then the reported 
surface fraction may more accurately represent the angular fraction of the enclosing surface 
viewed from that point.  How is this information best used?   

• Identifying implied equality contraints.  A method of identifying implied equality 
constraints is needed.  Some possible indicators of an implied equality: (i) if a spanning line 
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segment has length zero during hit-and-run testing, (ii) two constraints have complementary 
results with respect to feasibility/infeasibility at all test points.  How to detect implied 
equalities constructed from more than two constraints?  There is some existing literature on 
this topic.   

• Redundancy relative to objective function.  Imagine a linear objective function.  If you 
move only in the objective function gradient direction from anywhere in the feasible region, 
there are certain necessary constraints which are never hit because you would need to move 
in the reverse direction to hit them.  Such constraints might be defined as “redundant 
relative to the objective function” in the sense that they will never be used in guiding a 
gradient-based method to the optimum point.  This concept can be extended to nonlinear 
and discrete cases as well.  Will this information be useful to the modeler?  There may be an 
existing literature on this subject.   

Constraint Effectiveness and Model Feasibility 

• Equality constraints.  Three figures are returned for equality constraints: (i) fraction of test 
points that are less than or equal to the right hand side, (ii) the fraction of test points that are 
equal to the right hand side (within a tolerance), and (iii) the fraction of test points that are 
greater than or equal to the right hand side.  It may be possible to extract useful information 
by looking at the ratio of (i) to (iii), for example. 

• Point feasibility.  At present, MProbe considers each constraint function individually.  By 
considering the feasibility of all constraints at a given sample point, we can gain 
information about the overall feasibility of the model at that point.  This can also assist in 
shrinking the sampling zone. 

Others 

• New methods of shrinking the sampling enclosure. Testing shows that some functions 
pose difficulties for the existing methods of shrinking the sampling box or convex sampling 
enclosure (nonlinear interval analysis via sampling, finding a nucleus box, nonlinear range 
cutting via sampling, convex enclosure sampling, and their various combinations).  There is 
scope for research on entirely new methods.  One example: use existing software for data 
classification to derive hyperplanes that separate feasible from infeasible points, thereby 
defining a containing polytope (could also separate points below a certain objective function 
aspiration level from those above such a level).  Shrinking the sampling box is especially 
important when there are unbounded variables. 

• New visualization aids.  What sort of visualizations will provide useful insights?  Ideas 
include a radar-like sweep around a point of interest, or the ability to browse through a 
region of space under joystick control.   

• Design of the software interface.  A major issue is the practical usability of the software 
interface.  Experimental work is needed to arrive at an interface that organizes the tools and 
resulting data in ways that are intuitive and natural for users.   
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• Probing and analyzing constraint programs.  Mathematical programming and constraint 
programming are gradually merging, as witnessed by the migration of constraint 
programming structures into traditional mathematical programming languages such as 
AMPL.  New tools for formulation assistance are needed.   

• Link to a symbolic algebra system.  There is scope for linking to a symbolic algebra 
system such as Maple.  Many tools are possible thereafter, e.g. derivation of the Hessian, 
various matrix reductions, simplification of algebraic forms, etc. 

• Function approximation.  When a function is determined to be a good candidate for 
approximation (e.g. it is almost linear or almost convex), then methods are needed to 
provide the best approximation for the function (linear, piecewise linear, convex, etc.), and 
to return the statement of the approximation in the original modeling language. 

• Standard test set.  A set of mathematical and constraint programming models needs to be 
assembled as a kind of standard test set on which to exercise MProbe and related software.  
The models should have a range of difficulty, and should exhibit a broad range of behaviors 
requiring analysis. 

A Note on Commercialization 

The MProbe software implementation has been developed over a number of years.  Because of this 
investment of effort, the copyright and commercialization rights will remain with me.  However, I 
am happy to produce experimental versions of the software with interface hooks to other codes so 
that you can test new algorithms while avoiding the tedium of recreating an interface to the 
modeling languages and the other utilities available in the existing MProbe.  Useful new routines 
can certainly be packaged for sale as add-ins to MProbe. 
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