
 1

Analyzing Mathematical Programs using MProbe

John W. Chinneck

Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario K1S 5B6

Canada
email: chinneck@sce.carleton.ca

July 28, 1999

Abstract

Just as modern general-purpose programming languages (e.g. C++, Java) are supported
by a suite of tools (debuggers, profilers, etc.), mathematical programming languages need
supporting tools. MProbe is an example of a suite of tools supporting a mathematical
programming language, in this case AMPL. MProbe includes tools for empirically
estimating the shape of nonlinear functions of many variables, nonlinearly-constrained
region shape, the effect of the objective shape on the ability to find a global optimum,
tools for estimating the effectiveness of constraints and for navigating through the model,
among others.

1. Introduction

Mathematical programs can be very complex to formulate and solve, and there are
many instances when a tool for analyzing the characteristics of the mathematical
program, rather than simply expressing it or solving it, can be extremely helpful.
Examples of situations calling for analysis include:
•= you wish to select an appropriate solver for a nonlinear program, but in order to do so,

you need to know whether the constrained region is convex or nonconvex, and
whether the objective function shape is likely to limit you to a local optimum, or
whether a global optimum is possible,

•= you are solving a mixed-integer linear program and wish to order your integer and
binary variables according to the number of constraints in which they appear,

•= you wish to simplify a complicated nonlinear program, and wish to know which of
the constraints are linear or close to linear,

•= you are having difficulty solving a nonlinear formulation, and suspect that the solver
may be stuck at a local optimum,

mailto:chinneck@sce.carleton.ca

 2

•= you wish to reduce the number of constraints in the model, keeping only those that
are effective in eliminating points from the feasible region, hence you need to analyze
and rank the effectiveness of every constraint.

MProbe is a software tool for analyzing mathematical programs to answer questions

of this sort. It has special strengths in analyzing the “shape” (convex? concave? etc.) of
nonlinear functions of many variables which cannot be plotted and assessed by eye, and a
long list of other capabilities. MProbe works with mathematical models specified in the
AMPL language [Fourer et al 1993]. As currently implemented, AMPL must first be
invoked to specify a model which is subsequently read and analyzed by MProbe.
However, closer integration with AMPL or other modeling languages would be
straightforward to realize, to the extent that the current MProbe can be considered a
preview of formulation and analysis capabilities that might one day be a standard part of
every effective modeling language.

 Most modern computer languages (e.g. C++, Java) provide more than simple
compilation; they are packaged with a suite of tools that assist in the process of producing
good code. Common tools include a visual development environment, a debugger, and a
profiler. In a similar vein, MProbe provides tools to accompany mathematical
programming languages to assist in the mathematical programming process. In fact, the
name “MProbe” derives from “Mathematical Programming Probe”.

 MProbe belongs to the relatively recent body of work in computer-assisted analysis of
mathematical programs best exemplified by Harvey Greenberg’s ANALYZE software
[Greenberg 1993]. ANALYZE provides numerous tools for the analysis of linear
programs and mixed-integer programs, including a selection of model debugging tools,
and works in conjunction with the MPS file specification of the model and various
formats of solver output. MProbe provides a different selection of tools than ANALYZE,
including tools for the analysis of nonlinear programs, and is more closely tied to the
modeling language itself, in this case AMPL.

 Consult Greenberg [1996] for a comprehensive bibliography of work in the area of
computer-assisted mathematical programming, including the antecedents to ANALYZE
and MProbe. See also the article by Chinneck and Greenberg [1999] for a background
orientation to the field of “intelligent mathematical programming”.

 This paper summarizes the analytic algorithms used in MProbe, and its other
capabilities and features. Section 2 introduces background concepts used in MProbe.
Section 3 provides an overview of the tools in the suite, and Section 4 suggests which
tools can be used for each class of mathematical program. Brief implementation details
and conclusions follow.

Readers are invited to download a demonstration edition of MProbe from the World

Wide Web at http://www.sce.carleton.ca/faculty/chinneck/mprobe.html.

 3

2. Background

 The state of the art in modeling languages for mathematical programming is quite
advanced. Languages such as AMPL can express most forms of mathematical programs
(linear programs, mixed-integer programs, nonlinear programs, etc.), and provide
services such as presolvers, database interfaces, etc. The languages also provide an
interface to a variety of solvers for the mathematical programs.

 An analytic tool such as MProbe also needs expressive power and services similar to
those provided by modern mathematical programming languages. Hence it is convenient
to link MProbe directly with existing well-developed modeling languages rather than
duplicating their features internally. A link between MProbe and the modeling language
is straightforward to create based on the existing facilities for interfacing with solvers.
See Section 5 for futher details.

A significant portion of the information returned by MProbe is obtained by sampling
in the variable space of the mathematical model. The concept of assessing some
properties of a mathematical program by random sampling is not new. For example,
Boneh [1983] describes numerical experiments with a sampling algorithm named
PREDUCE (for Probabilistic Reduce) which is primarily designed to assess redundancy
of constraints, but also delivers information on boundedness, convexity, and
dimensionality of the feasible region. Early versions of MProbe date to 1994, with the
first public release in 1996.

The variable space of a mathematical program is the multidimensional “box” defined

by the variables and their bounds. The quality of the result obtained by sampling is
obviously affected by the size of the variable space; more accurate assessments are
returned for smaller variable spaces. Analysts can improve accuracy in several ways:

•= by providing the smallest initial variable bounds possible, based on knowledge of
the application,

•= by applying presolve routines which tighten the variable bounds before analysis
begins (using the AMPL presolve routines invoked by MProbe),

•= by directly reducing individual variable bounds to focus on a region of interest
within the original variable space (via MProbe commands).

For computational reasons, unbounded variables are automatically assigned very large
fixed bounds.

MProbe samples the variable space by scattering randomly placed line segments of
random length. The placement of each line is determined by first generating two random
endpoints in the variable space. Test points are then equally spaced along the interior of
the line segment. Assume that there are l random line segments, each having i internal
test points. As described in Section 3, information is obtained from the line segments in
several ways:

•= the test points and the line segment end points are sample points for function
value and constraint effectiveness (l×(i+2) sample points),

 4

•= function “shape” samples are obtained at the test points by comparing actual
function values with values interpolated from the function values at the line
segment end points; see Sec. 3.1 for details (l×i sample points),

•= function “slope” samples are obtained using the difference in function value at the
end points and the length of the line; see Sec. 3.1.2 for further details (l sample
points).

In practice, this sort of sampling procedure must deal with several kinds of sampling

errors. The routines in MProbe handle the following errors:
•= Mathematical errors (e.g. divide by zero) are handled automatically. The sample

point is rejected, reducing the count of valid test points. When the number of
mathematical errors is large (more than 15% of sample points), a warning is
returned in place of any conclusions.

•= Line segments that are too long are rejected as “line errors” because they
invalidate the slope estimates. This reduces the number of valid sample points.

•= Too few valid sample points: a warning is returned in place of any conclusions.
•= Too few test lines: a warning is issued.

3. MProbe Analytic Capabilities

This section briefly reviews the major analytic capabilities available in MProbe.

3.1 Analyzing Function Shape

 Function shape refers to the form that the function assumes in the variable space.
The algebraic shape (e.g. linear, quadratic, general nonlinear, etc.) is deduced from the
algebra of the mathematical formula expressing the function, and hence is not specific to
any particular region in the variable space. In contrast, the empirical shape (convex,
concave, both convex and concave, etc.) refers to the shape actually taken by the function
in some specific region of interest. The distinction is important. For example, it may
happen that a function has a highly nonlinear algebraic shape, yet within the region of
interest it is actually linear, which permits much simpler modeling and solution.

 The assessment of the algebraic shape of functions is a service provided by many
modeling languages because this information is needed by many of the nonlinear solvers
that the modeling language calls. Hence MProbe simply displays the algebraic shape as
deduced by the modeling language (AMPL can classify functions as linear, quadratic, or
general nonlinear), but performs its own analysis of individual functions to arrive at an
estimate of the empirical shape.

The method that MProbe uses to assess empirical shape must be effective for

functions of many variables. This rules out simple plotting and visual inspection, which
is practical only for functions of one or two variables. MProbe uses the basic definitions
of convexity and concavity in conjunction with sampling using the random line segments
described above. A number of test points are evenly spaced along the interior of each
random line segment. Two values are calculated at each test point: (i) the interpolated

 5

value of the function based on the function values at the two line segment endpoints, and
(ii) the actual function value at the test point. Now the difference between (i) and (ii) is
calculated. A positive value indicates convexity, while a negative value indicates
concavity. Consult a basic textbook on nonlinear programming (e.g. Ecker and
Kupferschmid [1988], p. 295) for more information on this simple test of function shape.

A large number of line segments and test points are generated, and the difference
results are collected in a histogram. Binary and integer variables are treated as real-
valued during these tests. An evaluation of the histogram allows MProbe to arrive at a
conclusion about the shape of the function within a specified region. As required, this
method is effective for functions of many variables. Histograms are generated at the
same time for function values, function “slope” estimators, and the lengths of the test
lines. In addition, if the function is a constraint, data are collected about whether or not
the constraint is satisfied at each sample point.

 Consider the simple nonlinear function singularity, whose equation is:

z2 - z1/(1 - z2/2) ≤ 100, where -10 ≤ z1,z2 ≤ 10
The shape histogram for this function over the specified variable space is shown in Fig. 1.
A concluding statement about the estimated empirical shape is returned as described
below, but the shape histogram is also useful in assessing the extent of the shape. Fig. 1
shows that the singularity function has regions that are extremely concave as well as
regions that are extremely convex. This function is not a good candidate for linearization
in the tested region, for example.

Two special tolerances are used in assessing function shape. As is common practice,
the equality limit provides a small interval within which two numbers are deemed to be
essentially equal. The “almost” limit provides a larger interval in which two numbers are
deemed to be “almost equal”. For example, the equality limit in Fig. 1 is ±0.0001 and the
“almost” limit is ±0.1. The user can set both tolerances.

The possible empirical shape estimates returned by MProbe are listed below.
“Difference” refers to the difference between the interpolated value of the function on a
test line and the actual value of the function at the same point.

•= linear: all differences are within the equality tolerances (negative and positive).
•= convex: all differences are above the negative equality tolerance and at least one

is above the positive “almost” tolerance.
•= convex, almost linear: all differences are above the negative equality tolerance,

at least one is between the positive equality tolerance and the positive “almost”
tolerance, and none are above the positive “almost” tolerance.

•= almost convex: at least one difference is between the negative “almost” tolerance
and the negative equality tolerance, and at least one difference is above the
positive “almost” tolerance

•= concave: all differences are below the positive equality tolerance, and at least one
is below the negative “almost” tolerance.

•= concave, almost linear: all differences are below the positive equality tolerance,
at least one is between the negative equality tolerance and the negative “almost”
tolerance, and none are below the negative “almost” tolerance.

 6

•= almost concave: at least one difference is between the positive “almost” tolerance
and the positive equality tolerance, and at least one difference is below the
negative “almost” tolerance.

•= convex and concave: at least one difference is above the positive “almost”
tolerance, and at least one difference is below the negative “almost” tolerance.

•= convex and concave, almost linear: at least one difference is between the
positive equality tolerance and the positive “almost” tolerance, and at least one
difference is between the negative equality tolerance and the negative “almost”
tolerance.

•= not a function: there is more than one possible function value for a given set of
variable values.

•= excessive math errors: evaluating the function at various points yielded so many
mathematical errors that the empirical shape evaluation is not reliable.

•= error in shape finder: unspecified errors occurred in the shape analysis.

As shown in Fig. 2, the empirical shape of the singularity function over the specified

variable space is estimated by MProbe to be “convex and concave”. What is interesting

Figure 1: Shape histogram for the singularity constraint.

for mathematical programmers is that the empirical shape may differ in different variable
spaces. For example, the empirical shape of the singularity function is estimated to be
“convex and concave, almost linear” in the variable space -10 ≤ z1 ≤10, -10 ≤ z2 ≤ -9.
This opens the possibility of using simpler models of functions depending on the variable
space of interest. The degree of simplification can be surprising. In research at Carleton
University, various lengthy nonlinear functions expressing transistor behavior (hundreds
of lines of AMPL code each) were found by MProbe to be almost linear in shape.

Figure 2: Shape assessment for the singularity function.
 7

 8

3.1.1 Function Value Distribution

 Because numerous points on the function surface are sampled while assessing the
empirical shape of a function, it is simple to construct a histogram of function values at
the same time. MProbe allows the user to specify the cell limits, and displays a
histogram similar to the shape histogram in Fig. 1, along with other useful data output
with all MProbe histograms: maximum value, minimum value, average value, and the
standard deviation.

3.1.2 Function “Slope” Distribution

 The concept of function slope is intuitive for functions of one or two variables that
can be readily plotted and viewed. For functions of higher dimensions, the only available
analytic tool is the gradient, which does not have a direct intuitive meaning for most
analysts. MProbe introduces and uses a simple slope analog that is valid for functions of
many variables. For a random line segment in a multidimensional variable space, the
“slope” is the difference in the function value at the end points, divided by the length of
the line segment. The absolute value of this quantity is used since the sign has no
particular meaning for functions of many variables.

 The intuitive meaning of this slope analog is obvious: how much the function value
changes over a distance. Large values indicate a “steep” change in the function, while
small values indicate a “flat” region. Sample points for the slope analog histogram are
collected at the same time as data points for the shape histogram. The resulting slope
histogram is useful in assessing whether the multidimensional function is relatively steep
or relatively flat in the region of interest. This can be especially helpful in assessing the
region around a reported optimum point. If this region is very flat for example, then there
may be multiple optima, or alternatively, it may be worth restarting the solver far away
from this region to see if a better optimum can be found.

3.1.3 Function Profiling

 It is often revealing to see a plot of a function, but this is difficult for functions of
many variables. MProbe handles this difficulty by providing plots of a function along a
straight line between two arbitrary points in n-space, as illustrated for the singularity
function in Fig. 3. Note that the function profile in Fig. 3 is along a line segment from
Point A in (z1,z2) space to Point B in (z1,z2) space; it is not simply a plot along the z1
axis as might be inferred from the displays in the drop-down lists under Point A and Point
B. This one-dimensional plot which cuts through n-space is referred to in MProbe as a
profile to distinguish it from a full-dimensional plot. The horizontal axis gives the point
number for the evenly spaced points along the line segment from point A to point B. The
vertical axis gives the function value. If there are mathematical errors along the profiling
line, the user is alerted and has the opportunity to recover the points for use in off-line
analysis.

Figure 3: Profile for the singularity function.
 9

 The line segment end points can be arbitrarily set. Binary and integer variables are
again treated as real-valued for the purposes of function profiling.

3.1.4 Test Line Length Distribution

 MProbe also collects a histogram of the lengths of the random line segments used in
assessing function shape because test line length affects the assessment of the slope
analog. Consider a function which is essentially flat but which has numerous small hills
and valleys. A scattering of very short test lines may show the function to have some
steep “slopes” because a modest change in function value divided by the length of a very
short test line may produce a large “slope”. On the other hand, a scattering of very long
test lines over this function will always produce very small “slopes”. These ideas are
related to the concept of scaling, and are slated for further development in future versions
of MProbe.

3.2 Constraint Effectiveness

 The effectiveness of a constraint is defined as the fraction of the variable space that it
eliminates. This is a useful concept for inequality constraints. Statistics on constraint
effectiveness are collected during the random sampling process used to estimate
empirical function shape. For example, a constraint effectiveness of 75% is reported if
75% of the tested points did not satisfy the inequality constraint. An inequality constraint
effectiveness of 0% indicates that the constraint has no impact on the feasible region, and

 10

can be dropped from the model. An effectiveness of 100% indicates that none of the
sampled points in the variable space satisfy the constraint, hence the model is infeasible.
To achieve feasibility in this case, either the constraint must be modified, or the variable
space must be changed.

 Constraint effectiveness is not meaningful for equality constraints. A sampling
approach would usually find all equality constraints to be 100% effective due to the small
probability of hitting on a combination of variable values that satisfied the equality to
within acceptable tolerances. Instead, we can only estimate whether or not it is possible
to satisfy the equality within the current variable space. MProbe does this as follows.
Each sample point is assigned to one of three categories:

•= LT: function value is less than the right hand side,
•= EQ: function value is equal to the right hand side within the equality tolerances,
•= GT: function value is greater than the right hand side.

It is possible to satisfy the equality constraint in the current variable space in two cases:
•= at least one point is in the EQ category, or
•= at least one point is in the LT category and at least one point is in the GT

category. This shows that at least one point satisfying the equality constraint
exists in the variable space: it will lie on a line connecting a point in the LT
category to a point in the GT category.

If neither of these two conditions is met (i.e. if all points are in the GT category, or if all
points are in the LT category), then MProbe concludes that it is not possible to satisfy the
equality constraint in the current variable space.

Knowing the constraint effectiveness can be useful in determining which constraints
to eliminate in simplifying a model. Highly effective constraints should be retained, but
constraints with low effectiveness estimates may be candidates for elimination from the
model. The constraint effectiveness can also be used to set the order of the constraints in
a constraint logic programming model: placing the more effective constraints earlier in
the constraint list usually results in a smaller search tree.

Fig. 2 shows that the singularity constraint is a good candidate for elimination from

the model due to its low effectiveness.

3.3 Analyzing Objective Function Effect

 The sense of an objective function (maximize or minimize) coupled with its empirical
shape (convex, concave, linear, etc.) determines whether a global optimum is likely to be
found, or whether a local optimum is probable. MProbe returns the following empirical
optimum effect outcomes for an objective:

•= Global optimum possible: given for (i) linear objective, (ii) convex objective to
be minimized and (iii) concave objective to be maximized.

•= Local optimum likely: given for (i) convex (or almost convex) objective to be
maximized, (ii) concave (or almost concave) objective to be minimized, (iii)
convex and concave objective.

 11

•= Local, almost global: given for (i) almost linear objective, (ii) almost convex
objective to be minimized, (iii) almost concave objective to be maximized.

3.4 Analyzing the Shape of a Constrained Region

 Taken together, the empirical shapes of the constraints affect whether or not the
constrained region is convex or not. MProbe estimates the empirical region effect for
each constraint as it is analyzed (see Fig. 2, for example). One of three possible
empirical region effects is assigned to each constraint:

•= Convex: the constraint contributes to a convex constrained region. This is given
for (i) any linear constraint, (ii) convex inequalities of less-than-or-equal-to type,
(iii) concave inequalities of greater-than-or-equal-to type.

•= Almost convex: the constraint contributes to a convex constrained region except
for a minor nonconvexity within the “almost” tolerance. This is given for (i)
almost linear equality constraints, (ii) almost convex inequalities of less-than-or-
equal-to type, (iii) almost concave inequalities of greater-than-or-equal-to type.

•= Nonconvex: the constraint contributes to a nonconvex constrained region. This is
given for all constraints whose empirical region effect is not “convex” or “almost
convex”.

Figure 4: The Constrained Region Workshop.

 12

The overall effect of the individual constraint region effects is summarized in the
Estimated Shape of Constrained Region box in the Constrained Region Workshop
window, as illustrated in Fig. 4. Note that the constrained region is not to be confused
with the feasible region. If it exists, the feasible region is normally a subset of the
constrained region. The shape of the feasible region affects the progress of a solver
towards the optimum once a feasible point has been found, but the shape of the larger
constrained region affects the progress of the solver towards finding a feasible point.
Note in particular that it is entirely possible for MProbe to report a nonconvex
constrained region when a convex feasible region exists.

The Constrained Region Workshop comments on feasibility only when there are

100% effective constraints. In this case it is known that the model is infeasible. Further
tools for the analysis of feasible regions are under development.

3.5 Filtering and Sorting Variables and Constraints

 A huge volume of information is available in large models, so it is helpful to be able
to selectively view and sort subsets of the information in order to focus on the material
that is important to the question at hand. MProbe provides tools for filtering and sorting
of the information about variables and constraints. Filtering refers to the selection of a
subset of the information for viewing, based on specified criteria. For example, you may
choose to display only constraints that contain only binary variables; these so-called
“multiple choice” constraints are often the cause of modeling difficulties in mixed-integer
problems. The Constraints Workshop includes a long list of constraint filtering criteria
based on algebraic shapes, empirical shapes, types of variables, constraint effectiveness,
etc. The Variables Workshop includes a similar list of filtering criteria appropriate for
variable information.

Fig. 5 shows the spreadsheet-like display of information found in the Constraints
Workshop. The constraints in Fig. 5 have been filtered so that only those having a
nonlinear algebraic shape are shown.

 Information about variables and constraints can also be sorted in user-defined ways.
In Fig. 5, the constraints have been sorted in descending order by constraint effectiveness.
This may be useful in determining the ordering of constraints for a constraint logic
program for example. Similar sorting of variables can be done, based on data such as
type (real, integer, binary) or the number of functions in which the variable appears. The
latter sort criterion can be important in creating Special Ordered Sets of variables in
mixed-integer linear programs. Subordering is also possible by selecting a subset of the
data and re-sorting.

3.6 Other Features

 MProbe provides various other tools of use to mathematical programmers:

•= A Statistics window summarizes the numbers of variables, constraints, and objectives
in various categories (e.g. number of binary variables, number of general nonlinear
constraints).

•= Simple navigation of the model is available via the Variables Workshop and the
Constraints Workshop. You can view all of the constraints that contain a specified
variable, or all of the variables that are used in a specified function.

•= A text file trace of an analysis session can be written, viewed, and saved.
Figure 5: Constraints filtered and sorted.
 13

4. Analyzing Mathematical Programs using MProbe

MProbe can be used with all of the common forms of mathematical programs. Tools
that are useful with all forms of mathematical program include:

•= listing of statistics about the model,
•= simple navigation of the model in the Variables Workshop and Constraints

Workshop,
•= analysis of constraint effectiveness,
•= ability to filter and sort constraints and variables in user-defined ways,
•= optional generation of a trace file record of the analysis session.

While the analytic and empirical function shapes are all known for linear programs,

analysts may still be interested in the estimates of constraint effectiveness and the various
display and navigation tools listed above.

 There is a wider range of tools that are of special interest for nonlinear programming,
including:

 14

•= analysis of constraint and objective empirical shape in the Constraints Workshop
and the Function Details window, including the detailed histograms of sample
points relating to function shape, function value, “slope”, and test line length,

•= estimation of the shape of the constrained region in the Constrained Region
Workshop,

•= estimation of the effect of the objective function empirical shape on the ability to
find a global optimum in the Function Details window,

•= function profiling between any two points in n-space.

Integer, binary, and mixed-integer programmers can use the following techniques:
•= sorting the constraints in decreasing order by number of integer, binary (or both)

variables, in the Constraints Workshop,
•= setting up Special Ordered Sets by sorting the integer and binary variables in

decreasing order by number of constraints in which they appear,
•= identification of “multiple choice” constraints by appropriate filtering in the

Constraints Workshop.

Constraint logic programmers can sort the constraints in decreasing order by
constraint effectiveness. It is usually a good idea to order the constraints in this manner
so as to reduce the size of the search tree by encouraging early failure of search paths.

5. Implementation Details

 There are three main software elements in MProbe: (i) AMPL (32-bit DOS
executable), (ii) the AMPL solver interface library (32-bit C language DLL), and (iii) the
MProbe interface (32-bit Visual Basic program). The AMPL solver interface library,
available from Bell Labs [Gay 1997], is augmented with additional C routines that return
data in the specific formats required by MProbe.

MProbe interacts with the AMPL model description as follows. MProbe first invokes
AMPL, allowing the user to create or recall a model. Entering a keyword in the AMPL
window causes it to write the model files and close. Thereafter, MProbe makes DLL
calls to the modified AMPL solver interface library, which in turn operates on the model
files to obtain information about variables and constraints, to evaluate function values at a
given point, etc. Other types of interfaces, such as file-passing or object calls, are
possible, and may prove more convenient for interaction with other modeling languages.

 Because the MProbe interface is compiled Visual Basic, it runs only under the
Windows 95/98 or Windows NT (version 3.51 service pack 5 or later, version 4.0
preferred) operating systems. A full help system is included. A fully functional
demonstration edition of MProbe version 2.1 is available for download from the Web at
http://www.sce.carleton.ca/faculty/chinneck/mprobe.html.

 15

6. Conclusions

 MProbe provides a suite of tools that assist in the process of mathematical modeling.
These tools complement the mathematical programming language which expresses the
model in much the same way that tools such as visual development environments,
debuggers, and profilers complement general purpose programming languages such as
C++ or Java. MProbe can empirically estimate the shapes of nonlinear functions of many
variables and of nonlinearly-constrained regions, estimate the effectiveness of
constraints, and estimate the effect of the objective shape on the ability to find a global
optimum. Many of the tools in MProbe are original:

•= the method of estimating function “slope”,
•= the estimator for constraint effectiveness,
•= use of the equality and “almost” tolerances to arrive at meaningful statements

about the shape of nonlinear functions of many variables,
•= the filtering and sorting facilities for information about variables and constraints,
•= the collection of information about the shapes of individual functions to arrive at a

statement about the shape of the constrained region.

It is reasonable to expect that analytic features of the type demonstrated in MProbe
will see gradual adoption into the modeling environments accompanying mathematical
programming languages.

Acknowledgements

David Gay (Bell Labs, Lucent Technologies), the main author of AMPL, assisted greatly
by making key modifications to the AMPL-solver interface library to permit easy
connection with MProbe. He was also a skillful beta-tester. Rania Awad (formerly of
Carleton University) provided an excellent user interface for the original release of
MProbe.

References

A. Boneh (1983). PREDUCE: a Probabilistic Algorithm Identifying Redundancy by a
Random Feasible Point Generator (RFPG) in Redundancy in Mathematical
Programming: A State of the Art Survey, Lecture Notes in Economics and
Mathematical Systems No. 206, pp. 108-134, M. Karwan, V. Lotfi, J. Telgen, S. Zionts
(eds.), Springer-Verlag.

J.W. Chinneck, H.J. Greenberg (1999). Intelligent Mathematical Programming
Software: Past, Present, and Future, INFORMS Computing Society Newsletter, April.
Also appeared in the CORS Bulletin, vol. 33, no. 2, April.

J.G. Ecker, M. Kupferschmid (1988). Introduction to Operations Research, John
Wiley & Sons, New York.

 16

R. Fourer, D.M. Gay, B.W. Kernighan (1993). AMPL: A Modeling Language for
Mathematical Programming, Duxbury Press/Wadsworth Publishing Company.

D.M. Gay (1997). Hooking Your Solver to AMPL, technical report, Bell Laboratories,
Lucent Technologies, Murray Hill, NJ, USA. Routines are available via the World Wide
Web at http://netlib.bell-labs.com/netlib/ampl/solvers/

H.J. Greenberg (1993). A Computer-Assisted Analysis System for Mathematical
Programming Models and Solutions: A User’s Guide for ANALYZE, Kluwer
Academic Publishers, Boston.

H.J. Greenberg (1996). A Bibliography for the Development of an Intelligent
Mathematical Programming System, Annals of Operations Research 65, pp. 55-90. A
1997 update is at http://www.cudenver.edu/~hgreenbe/imps/impsbib/impsbib.html.

	Analyzing Mathematical Programs using MProbe
	John W. Chinneck

	Abstract
	1. Introduction
	2. Background
	3. MProbe Analytic Capabilities
	3.1 Analyzing Function Shape
	3.1.1 Function Value Distribution
	3.1.2 Function “Slope” Distribution
	3.1.3 Function Profiling
	3.1.4 Test Line Length Distribution

	3.2 Constraint Effectiveness
	3.3 Analyzing Objective Function Effect
	3.4 Analyzing the Shape of a Constrained Region
	3.5 Filtering and Sorting Variables and Constraints
	3.6 Other Features

	4. Analyzing Mathematical Programs using MProbe
	5. Implementation Details
	6. Conclusions
	Acknowledgements

	References

