Discovering the Characteristics of Mathematical Programs

John W. Chinneck Systems and Computer Eng. Carleton University Ottawa, Canada

Motivation

- Complex models, large scale:
 - Unexpected results, bad performance, solver failure...
- Limited information returned by (e.g. NLP) solvers:
 - Feasible, KKT conditions satisfied
 - No improvement in many iterations: stopping.
 - Unable to find feasible point.
 - Too many iterations.
 - Various specific failure messages...
- Questions:
 - Why do I have this problem?
 - How do I make the solver run better on this model?
- **Needed:** tools to discover the characteristics of models

Model Characteristics

Some characteristics (e.g. for NLPs):

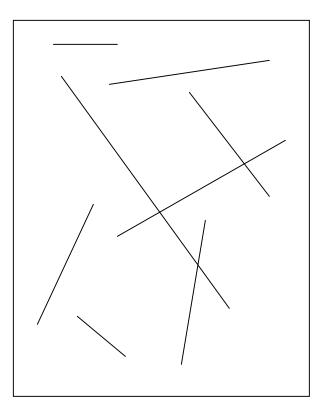
- Shapes of the constraints and objective (convex, concave, both, almost linear, etc.)
- Shape of the feasible region (convex, non-convex)
- Redundancy of constraints
- Location of feasible region

Insights gained:

- Better understanding of outcomes and behaviour
- Functions that can be approximated (e.g. linear)
- Constraints that can be ignored
- Best type of solution algorithm to apply
- Good starting point

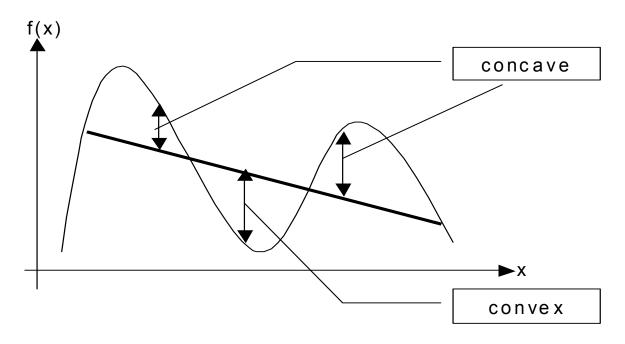
Outline

Theory


- Sampling for Characteristic Discovery
 - What you can discover
- Tightening Sampling Box for Better Accuracy
- Sampling in Convex Envelopes
 - Hit and run methods
 - Approximating the analytic centre
- Point-Oriented Analysis

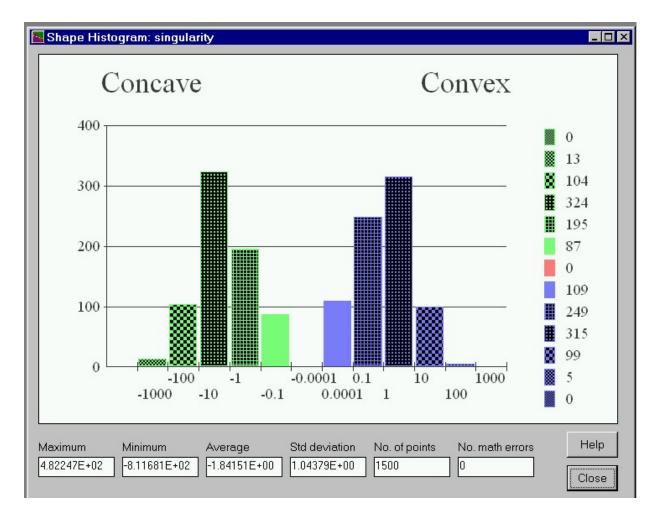
Practice

• MProbe software


Box Sampling

- Random line segments within variable bounds:
 - Uniform distrn for endpoint 1
 - Uniform distrn for endpoint 2
- Interior points at fixed positions on line segment (e.g. 3 equally spaced)
- Default settings:
 - 500 line segments
 - 3 interior points per line segment
- Info from pts, info from lines

Empirical Function Shape


- Empirical Shape: based on sampled *differences* between actual and interpolated function values
- Depends on where you sample
 - E.g. algebraically nonlinear function may be linear in region of interest

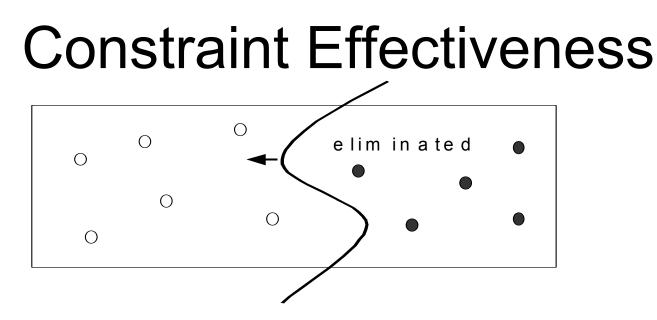
Tolerances

- Difference: interpolated actual value
- Equality tolerance: if difference less than $\pm tol_{equality}$ then interpolated=actual at that point
- Almost tolerance: if difference is less than ±tol_{almost} then interpolated almost equals actual at that point
- E.g.: *tol_{equality}*=0.00001, *tol_{almost}*=0.001
- Almost identifies candidates for approximation

Shape Histogram

Discovering Characteristics of Math Programs

Function Shape Assessment

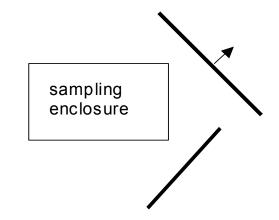

linear: all diffs within ±tol_{equality} **convex**: all diffs are above -tol_{equality} and at least one above +tol_{almost}. **convex, almost linear**: all diffs are above -tol_{equality}, at least one is between +tol_{equality} and +tol_{almost}, and none are above +tol_{almost}. almost convex: at least one diff is between the -tol_{almost} and -tol_{equality}, and at least one diff is above +tol_{almost} **concave**: all diffs are below +tol_{equality}, and at least one is below -tol_{almost} **concave, almost linear**: all diffs are below +tol_{equality}, at least one is between -tol_{equality} and -tol_{almost}, and none are below -tol_{almost}. almost concave: at least one diff is between +tol_{almost} and +tol_{equality}, and at least one diff is below -tol_{almost}. **convex and concave**: at least one diff is above +tol_{almost}, and at least one diff is below -tol_{almost}. convex and concave, almost linear: at least one diff is between +tol_{equality} and the +tol_{almost}, and at least one diff is between -tol_{equality} and -tol_{almost}.

Summary of Constraint Shape Assessments

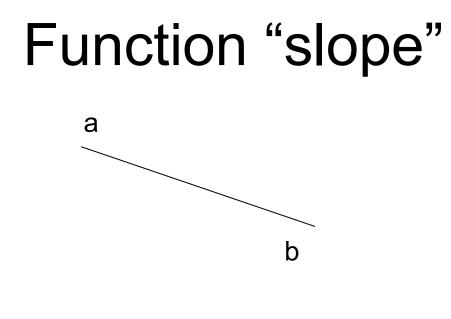
name	i.d.	bound	alg. shape	emp. shape	reg. effect
myquadratic	0	Less than a constant	Quadratic	Convex	Convex
mynonlinear	1	Greater than a constant	General nonlinear, not quadratic	Convex and concave	Nonconvex
myerrors	2	Less than a constant	General nonlinear, not quadratic	Error	Shape errors
singularity	3	Less than a constant	General nonlinear, not quadratic	Convex and concave	Nonconvex
singuadratic	4	Equality	General nonlinear, not quadratic	Convex	Nonconvex
impossible	5	Greater than a constant	Quadratic	Convex	Nonconvex
ineffective	6	Greater than a constant	Quadratic	Convex	Nonconvex
ImpossEquality	7	Equality	Quadratic	Convex and concave	Nonconvex
mylinear	8	Less than a constant	Linear	Linear	Convex
multipleChoice	9	Equality	Linear	Linear	Convex
mixedTypes	10	Less than a constant	Linear	Linear	Convex
allints	11	Interval	Linear	Linear	Convex

(Un)certainty of Empirical Assessments

- Linear report: confidence increases with testing
- Almost linear reports: confidence increases with testing:
 - Convex, almost linear
 - Concave, almost linear
 - Convex and concave, almost linear
- *Nonlinearity* is certain if report is:
 - Convex
 - Concave
 - Convex and concave
 - xxx, almost linear
- Convex and concave is certain if report is:
 - almost convex
 - almost concave
 - convex and concave


- *Inequalities*: what fraction of the sampling enclosure is eliminated?
- *Equalities*: fractions of sample points above, below, on the function?

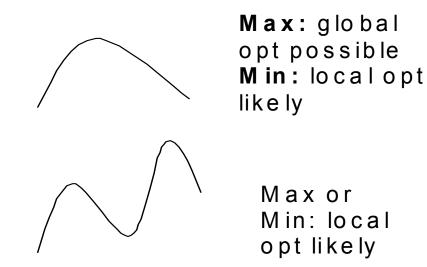
Simple Feasibility & Redundancy


 Simple constraint redundancy (0% effective)

sampling enclosure

• Simple feasibility test (100% effective)

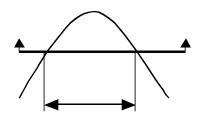
Discovering Characteristics of Math Programs

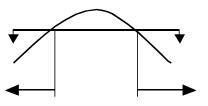


|f(a) - f(b)| / (length a to b)

- Multidimensional idea of "steepness"
- Collect in histogram
- Especially useful for objective functions

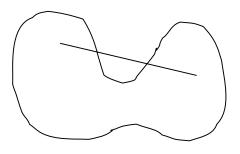
Objective Optimum Effects

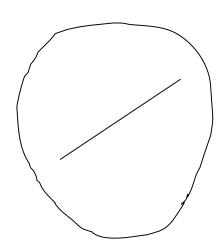

- Objective sense and shape interact:
 - global optimum possible by descent methods
 - Local optimum likely


Discovering Characteristics of Math Programs

Constraint Region Effect

- Effect on shape of constrained region
- Inequalities: sense interacts with shape
- Equalities:
 - Linear: convex region effect
 - Others: nonconvex region effect

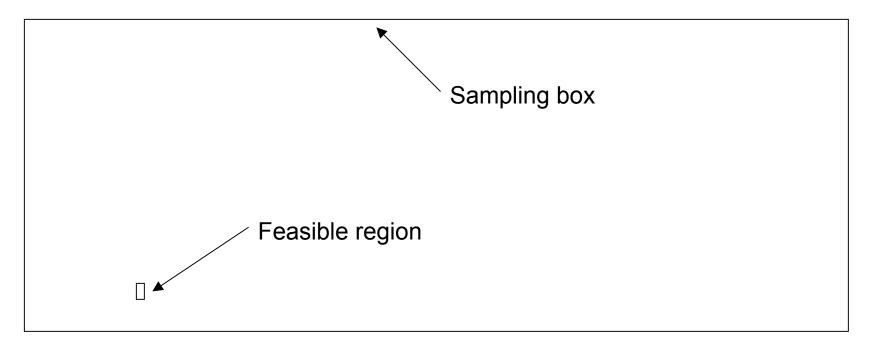

convex region effect



nonconvex region effect

Shape of Constrained Region

- Assessing shape of the constrained region:
 - All constraints have convex region effect: *feasible region is convex* (if it exists)
 - Else constrained region is nonconvex
- Note: constraints sampled individually, results compiled


Other Info from Sampling

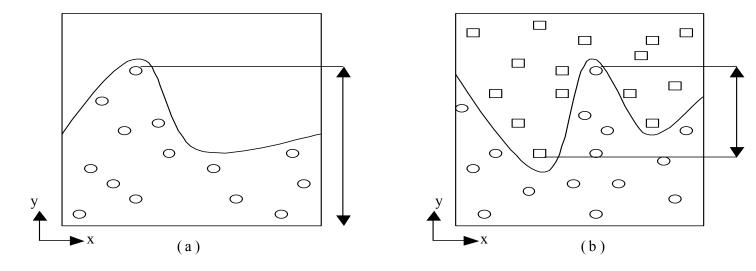
Function value statistics

– histogram, max, min, etc.

- Objective function best sampled value and point (not nec. feasible)
- variables min and max sampled values
- Line segment length
 effect on conclusions

 Sampling box should be a close outer approximation of the feasible region

Tightening Bounds


Methods:

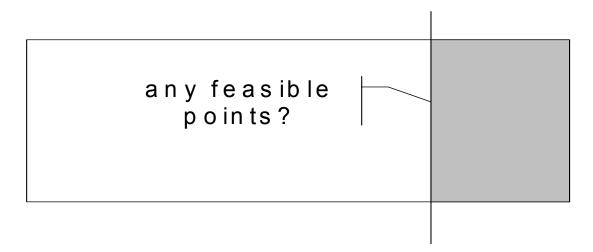
- Manual adjustment
- Linear interval analysis
- Nonlinear interval sampling
- Get a nucleus box
- Range cutting
- Constraint Consensus bound tightening
- Max/min sampled values from convex enclosure (explanation deferred)

Linear Interval Analysis

- Applies to the subset of linear constraints
- Like standard presolve: bound changes percolate
- E.g.:
 - constraint $2x_1 5x_2 \le 10$ when $-10 \le x_1, x_2 \le 10$
 - Tighten x_2 lower bound by applying the constraint when x_1 is at it's lower bound: $2(-10) - 5x_2 \le 10 \Rightarrow x_2 \ge -6$.
 - Conclusion: true bounds are $-6 \le x_2 \le 10$.

Nonlinear Interval Sampling

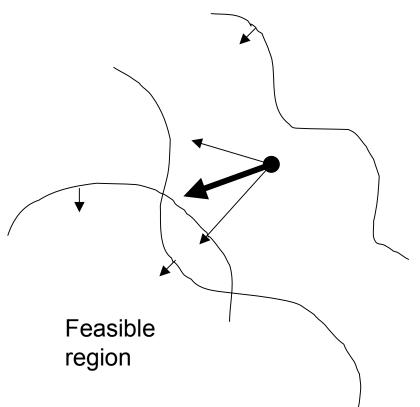
a) inequality

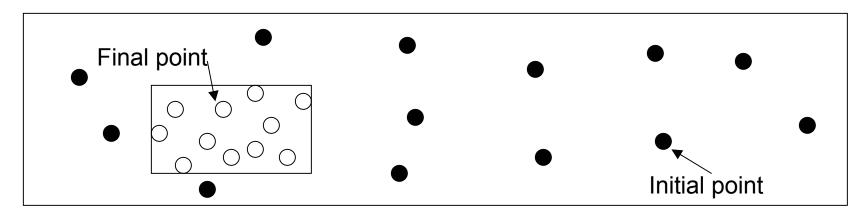

- b) equality
- Apply to each constraint in turn
- overtightens
- non-overlap? return the gap itself

Discovering Characteristics of Math Programs

Get a Nucleus

- For unbounded variables
- Look at constraints involving the variable that were never satisfied during interval sampling
- try gradually larger boxes centred at origin. Stop when next box shows no feasible points


Nonlinear Range Cutting


- Accept cut if at least one constraint never satisfied when sampling in the zone
- equalities: "satisfied" if find one pt ≤ rhs and one pt ≥ rhs

Constraint Consensus Heuristic

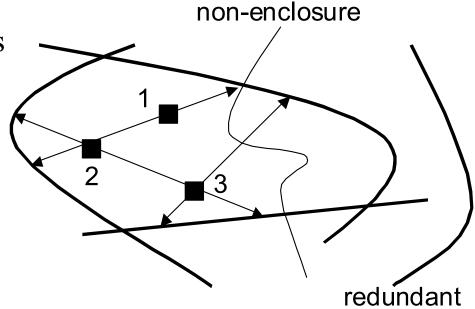
- Quickly achieves approximate feasibility
- For each violated constraint: estimate vector to achieve feasibility
- Consensus vector: Component-wise average of feasibility vectors
- Update point using consensus vector
- Repeat until close to feasible

Constraint Consensus bound tightening

- Apply CC method from numerous random initial points in current sampling box
- Shrink bounds to encompass cloud of final points

Sampling in Convex Enclosures

How do you find a <u>convex</u> region that encloses the feasible region?


Procedure:

- analyze constraint region effects by box sampling
- 2. select <u>inequalities</u> that have convex region effects and all variable bounds

Sample via hit-and-run methods

Hit-and-Run Sampling

- hit constraints are necessary; unhit constraints are redundant (relative to enclosure)
- estimate fraction of enclosure surface area
- non-enclosure constraints sampled as usual (shape, effectiveness, etc.)

Finding an Initial Feasible Point

Need an initial feasible point to start hit-and-run

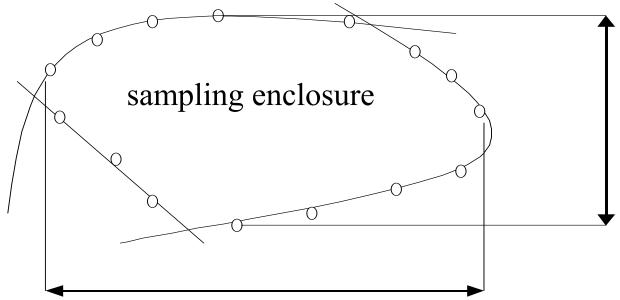
Method 1:

- Sample randomly until at least one constraint satisfied
- Thereafter use hit-and-run to keep constraints satisfied
- Stop when all constraints satisfied.
- *Note:* bias hit-and-run sampling rays according to variable bounds (long thin boxes are a problem)

Method 2:

• Apply constraint consensus method

The Analytic Centre


- **Analytic centre**: **P** is point that maximizes $W=\sum[ln(distance \ to \ constraint)]$ over all constraints.
- Best place to launch rays for estimating surface frac.
 Heuristic for finding analytic centre:
- Initial feasible pt is first estimate of *P*. *W* always calculated over necessary constraints found <u>so far</u>.
- Launch hitting rays from *P*.
- Get new hit-and-run launch point **x**.
- If *W*(*x*)>*W*(*P*) then *P*=*x*.

Advantages:

- Pushes *P* away from discovered necessary constraints towards undiscovered necessary constraints
- Quick convergence to analytic centre.

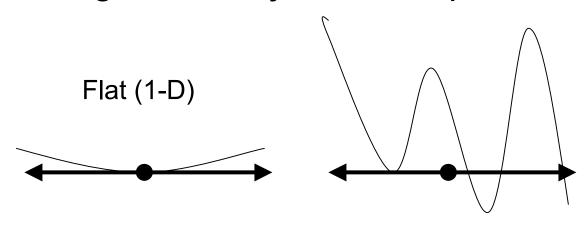
"replace current bounds with max/min sampled values"

- After convex enclosure sampling: tighten bounds
- Use hit points to (over)tighten the variable bounds

Point-Oriented Analysis

- Finding (near) feasible points
 What is a good starting point?
- Finding (near) optimal points
- Analyzing features of points
 - Why did my solver stop here?

Finding (Near) Feasible and Optimum Points


• Finding a near-feasible point:

– constraint consensus method

- Finding a near-optimal point:
 - keep track of feasibility status and objective function value of all sampled points.
 - Note best found point and best found feasible point

Analyzing Point Features

- Create a small box around a point:
 - E.g. shrink bounds to 1% of each current edge dimension, centred around point
- Look at objective "flatness" in the box – Histogram of objective "slope" in the box.

Discovering Characteristics of Math Programs

MProbe

- Software tool embodying these and other analytic methods
- Reads AMPL, GAMS, MPS files
- Essential part of an *integrated* development environment for math programming

MProbe Workshops

Variables Workshop

- Shift, tighten variable bounds

Constraints and Objectives Workshops

 Analyze shape, effectiveness, redundancy, set up convex enclosures for tighter sampling

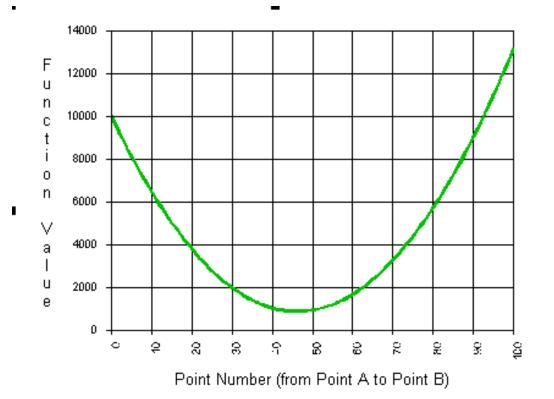
Constrained Region Workshop

Analyze shape of feasible region

Points Workshop

Exchange points with solvers, look for near-feasible points, etc.

Additional Features


- Model statistics
- "Snapping" of integer/binary variables
- Spreadsheet-like displays of constraints, objectives, variables
 - View subsets by category (e.g. only nonlinear constraints, only binary variables)
 - Sort on any column
 - Navigate (e.g. see all constraints that contain variable x)
- User adjustment of tolerances, histogram cells
- Text file trace of session
- Help system

Constraints Workshop

s	Show only > all Reverse selection 12 of 12 constraints visible														
	name	i.d.	bound	alg. shape	emp. shape	reg. effect	effectiveness	tot. var	real va	int+bin	int. var.	bin, var	sampling	redundancy	surface
▶ r	nyquadratic	0	Less than a	Quadratic	Convex	Convex	n.a.	2	2	0	0	0	Enclosure	Necessary	0.165
r	nynonlinear	1	Greater tha	General nonlin	Convex and concave	Nonconvex	0.5120	2	2	0	0	0	Analyze	n.a.	0
r	nyerrors	2	Less than a	General nonlin	Convex and concave	Nonconvex	0.1974	2	2	0	0	0	Analyze	n.a.	0
s	singularity	3	Less than a	General nonlin	Almost convex	Almost convex	0.0000	2	2	0	0	0	Analyze	n.a.	0
s	sinquadratic	4	Equality	General nonlin	Convex	Nonconvex	Possible, LT:0.	2	2	0	0	0	Analyze	n.a.	0
i	mpossible	5	Greater tha	Quadratic	Convex	Nonconvex	1.0000	1	1	0	0	0	Analyze	n.a.	0
i	neffective	6	Greater tha	Quadratic	Convex	Nonconvex	0.0000	2	2	0	0	0	Analyze	n.a.	0
h	mpossEquality	7	Equality	Quadratic	Convex and concave	Nonconvex	1.0000	4	2	2	0	2	Analyze	n.a.	0
r	nylinear	8	Less than a	Linear	Linear	Convex	n.a.	2	2	0	0	0	Enclosure	Necessary	0.043
r	nultipleChoice	9	Equality	Linear	Linear	Convex	Possible, LT:0.	3	0	3	0	3	Analyze	n.a.	0
r	nixedTypes	10	Less than a	Linear	Linear	Convex	n.a.	3	1	2	1	1	Enclosure	Necessary	0.099
ε	allints	11	Interval	Linear	Linear	Convex	n.a.	3	0	3	3	0	Enclosure	Necessary	0.183

Visualizing Shape: Function Profile

- 2 dimensional plot between 2 endpoints in nspace
- End-points selectable and configurable in multiple ways

Constrained Region Workshop

🔤 Constrained	Region Work	kshop	×			
convex region almost convex region	constraint count	For valid results, all function analyses should use the same sampling enclosure. Estimated Shape of Constrained Region 100% effective constraints have been ignored. 0% effective constraints have been ignored. Analysis for remaining constraints	s:			
nonconvex region		Region is nonconvex. Note warnings below.				
100% effective constr.	2	Feasibility Analysis Constrained region appears to be infeasible.				
redundant constraints	0	Redundancy Analysis (relative to sampling enclosure) Model can be simplified by removing redundant constraints or	-			
0% effective constr.		 bounds. [note: redundant constraints and bounds are part of the sampling enclosure, 0% effective constraints were sampled inside 				
redundant bounds	0	the enclosure]				
not yet analyzed	0	Enclosu	ire			
not a function		Statistic				
shape error	1 K-	-WARNING: may invalidate analysis. Trace				
too many math errors ignored		Help				
	Press button to see relevant constraint list	Close				

Discovering Characteristics of Math Programs

Points Workshop

Model loaded.				Variable: x		Constraint:	myquadratic	Objective: sinobj	
Point Title: 0 of 2 best found points are feasible Information for this Point									
best found pt for current objective							Sel. Obj. Value at this Poir	nt: 6.9896E+01	
Ľ.	•						Distance from Con. myo	uadratic (violated) 6.031E+03 🖵	
E	select user-de	tinea poli	π			SINF:	1.60665E+05		
De	scription:						NINE:	7/12	
Be	est found point	for object	ctive sin	obj	▲		Constraint Euclus		
							VIEW		
1					v		View Objective Evaluat	ion Errors: 0	
Po	oint Info Mode	-							
	variable	i.d.	type	value	gradient value	con gradient	۷.	-	
	x	0	Real	-5.33617E+01	0E+00	-2.13447E+02			
	z1	2	Real	6.69106E+00	0E+00	0E+00			
	z2	3	Real	-7.43965E+00	0E+00	0E+00			
	sinquad1	4	Real	-5.49001E+00	0E+00	0E+00			
	sinquad2	5	Real	4.19051E+00	0E+00	0E+00			
	rnt1	6	Real	-9.48069E-01	0E+00	0E+00			
	mt2	7	Real	-9.68463E-01	0E+00	0E+00			
	y1	8	Binar	7.00611E-01	0E+00	0E+00			
	y2	9	Binar	3.53693E-01	0E+00	0E+00			
	sinp1	10	Real	1.36949E+01	-9.99957E-01	0E+00			
	sinp2	11	Real	8.35908E+01	1E+00	0E+00		▼	
s	ort on selecte	d columni	(\$) >	ascending 👻	Show Temp Br	id Info 🔲 Shov	w Orig Bnd Info	v only > all	
Perform Action > do random sampling to look for points of interest Calif this							his Point Find \	'ariable Trace Help Exit	

Discovering Characteristics of Math Programs

Conclusions

- Model probing and analysis tools a vital part of IDE for math programming
- Shape analysis tools are heuristic and based on random sampling
 - Tools don't *always* work, but *often* do.
 - Can be slow for very large or very complex models
 - Performance depends on characteristics of the model
- Download: <u>www.sce.carleton.ca/faculty/</u> <u>chinneck/mprobe.html</u>

Research Directions

- Better Sampling
 - Interior pts on line segments means more samples towards centre of sampling box
- Better bound tightening

 Better interaction among the component methods
- Determining best approximations of functions (e.g. best piecewise linear approximation)
- Connection to computer algebra system (Matlab?)
- Tool for identifying implied equalities
- Etc.....

References

- Chinneck, J.W. (2003), "The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs", *INFORMS Journal on Computing*, to appear.
- Chinneck, J.W. (2002), "Discovering the Characteristics of Mathematical Programs via Sampling", *Optimization Methods and Software*, vol. 17, no. 2, pp. 319-352.
- Chinneck, J.W. (2001), "Analyzing Mathematical Programs using MProbe", *Annals of Operations Research*, vol. 104, pp. 33-48.