Function Specifications

for

the Model 15 Amplifier System

(Second Draft)
Author: Aarti Goge

Supervisor: Prof. Adrian Chan

 Date of Submission: July 28, 2003
1.0 Introduction:
The Model 15 amplifier system is a programmable, modular, multi-channel signal conditioning system. It provides an interface between various biomedical signal sources and data acquisition systems. Signal sources are monitored using a transducer (e.g. electrode) appropriate for the desired signal source and protocol. The data acquisition system can range from oscilloscopes to sophisticated computer-based systems utilizing Grass PolyVIEW, Gamma and other software packages. The amplifier system provides electrical isolation of the client so that it can be used for human recording applications.

The Model 15 has eight amplifier plug-in slots. The current system has two 15A54 Quad, wide-band, high-gain, programmable AC amplifiers in slots 1 and 2: all the other slots are empty. Each 15A54 amplifier module has four discrete channels, giving the current system a total of eight channels. Most of the system functions can be controlled via RS-232 serial port.
This is a function specification document, explaining various command functions for controlling the Model 15 amplifier system behavior. It provides the basic building blocks for programmatically controlling this system in the Matlab environment. The following section provides a brief description of all the command functions classified as general, system and amplifier commands.
2.0 Commands:

Each subsection begins with a block diagram illustrating the co-relation within all the command functions followed by a brief description of the individual functions.

The function format is as follows:

function outputs = M15_FunctionName(inputs)
function purpose

input arguments

function algorithm
output arguments

All the system and amplifier commands sent to the Model 15 are short ASCII strings beginning with the escape character and ending with a 2-byte checksum and carriage return:

command = [esc, address, command, amplifiernum, parameter1, parameter2, checksum, cr]

The parts of the commands sequence that are in italics are considered “optional” parameters, since not all of the commands require these parameters.

[address]: This is the address of the Model 15 system, from 1 to 8. This must match the address setting that is selected with the ID Number dip switch in the upper left hand corner of the Controller module. The address must be a single byte, ASCII-encoded decimal. The default factory setting is 1,which corresponds to the system’s current configuration.

[command]: The command is 1-byte, uppercase ASCII letter representing the desired command.

[amplifiernum]: The amplifiernum is a 2-byte sequence from 0 to 32 in ASCII-encoded hexadecimal (“00” to “20”), specifies which amplifier the command will affect. To apply the command to all amplifiers for the given Model 15 system, specify “00” for the amplifiernum parameter. The current system has 8 amplifiers, address from “01” to “08”.
[parameter1][parameter2]: parameter1 and parameter2 are only required for some commands and are explained in the command description that follows.
[checksum]: The checksum is a 2-byte, ASCII-encoded hexadecimal result of adding all of the bytes sent, including the “escape” character, but not including the checksum or the final carriage return. The result is truncated to lower 2 bytes, if necessary. A checksum of 243 decimal (F3 hex) must be transmitted as the 2 characters “F” followed by “3”.

2.1 Global constants and variables:
Constants:

M15_ESC = 27, decimal value for escape character

M15_CR = 13, decimal value for carriage return character
M15_DEBUG = 1, if want to see all the command values are properly set or not, else 0

Status codes for the response from the device:

M15_OK = 0

M15_CM = 1
M15_CK = 2

M15_CH = 3

M15_VU = 4

M15_NA = 5
Variables:

M15_SerialPort, the serial port object
M15_Address, the address of the Model 15 system (default ‘1’)
M15_Amplifiers, an array of amplifier numbers in the range 0 to 32
M15_CalFlag, calibration mode flag (if the mode is set to calibration then M15_CalFlag is set to 1, else 0)
M15_DcFlag: DC flag (if the frequency is set to 0 for DC then the flag is set to 1, else 0)
2.2 General Commands:
Block diagram explaining co-relation within all the general command functions.

[image: image1]
The following functions are used by both system and amplifier command functions:

function M15_InitializeSerialPort(varargin)
M15_InitializeSerialPort creates a serial port object and connects it to the device.
Input = varargin (serialportname(string),M15_Address(decimal))

Initialize appropriate variables:

switch nargin,

case 0:
assign default values,

serialportname = ‘COM1’

M15_Address = ‘1’

case 1:
assign appropriate variable,

if (varargin{1}= numeric value)

M15_Address = varargin{1} (write formatted data to a string)

serialportname = 'COM1' (default serial port name is 'COM1')

else

serialportname = varargin{1}

M15_Address = '1' (default M15_Address is '1')

case 2:

serialportname = varargin{1}

M15_Address = varargin{2)
 (write formatted data to a string)

otherwise: display an error

Create a serial port object.
Connect the serial port object to the device.
Output = none

This function makes use of built-in Matlab functions as follows:
To check if the input is a numeric value:

isnumeric(varargin{1})
(returns logical true (1) if input is a numeric array and logical false (0) otherwise)
To write formatted data to a string:

M15_Address = sprintf(‘%u’, varargin{1})
To display an error message:

error('Invalid number of Inputs')

To create a serial port object:

M15_SerialPort = serial(serialportname)
To connect the serial port object to the device:
fopen(M15_SerialPort)
function M15_DestroySerialPort
M15_DestroySerialPort destroys a serial port object.
Input = none

To disconnect the serial port object from the device, we use the built-in Matlab function as follows:
fclose(M15_SerialPort)
Output = none
function response = M15_SerialRead
M15_SerialRead reads data from the device.
Input = none
To read data from the device, it makes use of built-in Matlab function as follows:

response = fscanf(M15_SerialPort)
Output = response, reply from the device (string)
function M15_SerialWrite(command)
M15_SerialWrite adds escape character and address at the beginning of the command.

It adds checksum and carriage return at the end of the command and writes the command

to the device.
Input = command (string)

Create the command:

command = [M15_ESC M15_Address command]

command = [command M15_CheckSum(command) M15_CR], ASCII string ending with the ASCII “carriage return” character

To write data to the device, it makes use of built-in Matlab function as follows:

fprintf(M15_SerialPort, command)
Output = none

function checksum = M15_CheckSum(command)
M15_CheckSum adds all of the bytes to be sent, including the escape character, but not including the checksum or final carriage return. The result is a 2-byte, ASCII encoded hexadecimal and is truncated to lower 2 bytes, if necessary. A checksum of 243 decimal (F3 hex) must be transmitted as 2 characters “F” followed by “3”.
Input = command, ASCII string beginning with the ASCII “escape” character

Sum all the bytes in the command and write formatted data to a string.

The string must be truncated to lower 2 bytes.

Output = checksum (2 characters)
This function makes use of built-in Matlab functions as follows:

To sum all of the bytes to be sent and to write formatted data to a string:

checksum = sprintf('%X', sum(abs(command)));

To get the length of the checksum vector:

N = length(checksum) (N must be 2 bytes long. If N<2, append the checksum by ‘0’. If N>2, take lower two bytes for checksum and ignore higher bytes.)

function [code, errormsg] = M15_StatusCode(response)
The Model 15 responds to most commands with “OK<cr>”, if the command is accepted. Otherwise, a 2-byte error code “XX<cr>” is sent.
M15_StatusCode resolves the response into appropriate code and error message.
Input = response (string)
To find a string within another, longer string, it makes use of built-in Matlab function as follows:

k = strfind(str1,str2)
Searches the longer of the two input strings for any occurrences of the shorter string, returning the starting index of each such occurrence in the double array, k. If no occurrences are found, then strfind returns the empty array, []

str1 is the response(input) and str2 varies with ‘OK’, ‘CM’, ‘CK’, ‘CH’, ‘VU’.

If response is not in table 2.2.1, the function returns:

code = M15_NA and errormsg = ‘undetected error message’
Output = code (integer)

 = errormsg (string)
Table 2.2.1 Status Codes

	response
	code
	errormsg

	OK<cr>
	M15_OK
	command accepted/executed

	CM<cr>
	M15_CM
	command/data error

	CK<cr>
	M15_CK
	checksum error

	CH<cr>
	M15_CH
	invalid channel number

	VU<cr>
	M15_VU
	invalid setting or value

function M15_VerifyCode(code, errormsg)
M15_VerifyCode outputs an error message if the code is not equal to M15_OK.
Input = code (integer)

 = errormsg (string)
if (code ~= M15_OK)

To output the errormsg, it makes use of built-in Matlab function as follows:

fprintf(errormsg)
end

Output = none
2.3 System Commands:
Block diagram explaining co-relation within all the system command functions.
 SHAPE * MERGEFORMAT

function M15_WhoYouAre(ampconfig)
This command must be sent first. It tells the Model 15 what type of amplifier module is in each slot. Without this other commands will not be sent properly. This should be sent every time a new connection is established with the Model 15.
M15_WhoYouAre creates and writes a command to the system. The system responds with appropriate message and outputs an error message if any.

Input = ampconfig (an array of amplifier types in 8 slots(Please refer Table 2.3.1 WHO X), e.g.[0 0 9 9 9 9 9 9] for the current amplifier system)
if (nargin=0): initialize input with the current(default) amplifier setting,

ampconfig = [0 0 9 9 9 9 9 9]
if (input array size < 8): throw an error message

Check if all array elements are valid and create a string command.
command = sprintf('%u',ampconfig), write formatted data to a string

command = [‘F’ command]
M15_SerialWrite(command)

response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code, errormsg)
Output = none
Table 2.3.1 WHO X
	Setting
	hexadecimal
	char

	15A54 or 15A94 Amplifier
	30
	0

	15A12 Amplifier
	31
	1

	Empty slot, 15A04 or 15A02
	39
	9

function M15_Initialize
This command initializes all amplifiers to the non-volatile default settings and clears any pending errors.
The non-volatile default settings are:

High Filter = 30 Hz

Low Filter = 1.0 Hz

Line Filter = OFF
Gain Range = 1000
Gain = 10000
M15_Initialize creates and writes a command to the system. The system responds with appropriate message and outputs an error message if any.
Input = none

command = [‘I’]

M15_SerialWrite(command)

response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code, errormsg)

if (code = M15_OK): display the default setting for all amplifiers

To display text or array, it makes use of built-in Matlab function as follows:

disp(X), displays an array, without printing the array name. If X contains a text string, the string is displayed.
Output = none
function firmwarenum = M15_QueryID
This command responds with the Model 15 firmware revision number.
M15_QueryID creates and writes a command to the system. The system responds with appropriate error message followed by a firmware revision number. The function outputs the firmware revision number.

Input = none

command = [‘U’]
M15_SerialWrite(command)

firmwarenum = M15_SerialRead
(firmwarenum = “OK<cr>GRASS Model15 Rev.XX.XX”)

Output = “GRASS Model 15 Rev.XX.XX”
function M15_QueryStatus
This command checks the status of the Model 15 and responds with either “OK” or the last encountered error code “XX”.
M15_QueryStatus creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = none

command = [‘E’]

M15_SerialWrite(command)

response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code, errormsg)

Output = none
function M15_SetMode(setting)
This command sets the Model 15 into either the Calibration or Use mode (to switch all of the amplifier inputs to either the calibrator circuit or the electrode inputs).
M15_SetMode creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (string ‘use’ or ‘cal’)
if(nargin=0): default setting is 'use' mode

if(setting=‘cal’)

M15_CalFlag = 1

else

M15_CalFlag = 0

command = [‘C’ parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code, errormsg)

Output = none
Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.3.2 Mode Setting

	setting
	parameter1

	use
	0

	cal
	1

function M15_CalSettings(volfreq, setting)

This command sets the calibrator frequency and amplitude. One of the two inputs designates whether the command is for the frequency or amplitude setting. The other input designates the setting itself.
 M15_CalSettings creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = volfreq (string ‘voltage’ or ‘frequency’)

 = setting (decimal)
if(M15_CalFlag~=1)

 error('The system must be in Calibration mode in order to set voltage/frequency.');

if (nargin=0): throw an error asking for both the valid inputs

command = [‘K’ parameter1 parameter2]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code, errormsg)

Output = none
Parameter1 and parameter2 should be sent in ASCII-encoded hexadecimal, representing the following settings:
Table 2.3.3 Calibrator Setting

	volfreq
	parameter1

	voltage
	A

	frequency
	F

	setting (in (V)
	parameter2 (Voltage)

	5
	0

	10
	1

	20
	2

	50
	3

	100
	4

	200
	5

	500
	6

	1000
	7

	setting (in Hz)
	parameter2 (Frequency)

	0
	0

	0.3
	1

	1
	2

	3
	3

	10
	4

	30
	5

	100
	6

	300
	7

	1000
	8

function M15_DcCalEnable(setting)

This command applies or removes a DC calibration signal, when the system is in the Calibration mode and the frequency is set to 0 for DC.
M15_DcCalEnable creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (string ‘off’ or ‘on’)
if(M15_CalFlag~=1 | M15_DcFlag~=1)

 error('The system must be in Calibration mode and the frequency must be set to 0 in order to apply/remove a DC calibration signal.')

command = [‘D’ parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

Output = none
Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.3.4 DC Calibrator Enable Setting

	setting
	parameter1

	off
	0

	on
	1

function M15_TraceRestore(setting)

This command applies or removes the trace restore function (clamp amplifiers).
M15_TraceRestore creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (string ‘off’ or ‘on’)
command = [‘A’ parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

Output = none
Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.3.5 Trace Restore Setting

	setting
	parameter1

	off
	0

	on
	1

2.4 Amplifier Commands:
Block diagram explaining co-relation within all the amplifier command functions.

[image: image3]
function M15_SetLineFilter(setting, amplifiernum)

This command changes the line frequency filter setting for the designated amplifier to either off or on.

M15_SetLineFilter creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (string ‘off’ or ‘on’)

 = amplifiernum (an array of amplifier numbers in the range, 0 to 32)

switch nargin,

 case 0: throw an error('Atleast enter valid line filter setting(off/on).');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Check if the setting is valid (Please refer Table 2.4.2).

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 0 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

end

command = [‘N’ amplifiernumstr parameter1]

M15_SerialWrite(command)

response = M15_SerialRead

[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

end

Output = none

Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.4.2 Line Filter Setting

	setting
	parameter1

	off
	0

	on
	1

function M15_ElectrodeTest(setting,amplifiernum)

This command initiates an electrode test sequence. The test can be turned off or on.
M15_ElectrodeTest creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (string ‘off’ or ‘on’)

 = amplifiernum (an array of amplifier numbers in the range, 1 to 32)
switch nargin,

 case 0: throw an error('Atleast enter valid electrode test setting(off/on).');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Check if the setting is valid (Please refer Table 2.4.1).

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 1 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

end

command = [‘T’ amplifiernumstr parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)
end
Output = none
Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.4.1 Electrode Test Setting

	setting
	parameter1

	off
	0

	on
	1

function M15_SetGainRange(setting, amplifiernum)
This command changes the gain range setting for the designated amplifier to either ×10 or ×1000.

M15_SetGainRange creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (decimal)

 = amplifiernum (an array of amplifier numbers in the range, 0 to 32)

switch nargin,

 case 0: throw an error('Atleast enter valid gain range setting.');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Check if the setting is valid (Please refer Table 2.4.5).

N = max(size(amplifiernum));

for(i=1:N)

if amplifiernum is not in the range: 0 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

end

command = [‘R’ amplifiernumstr parameter1]

M15_SerialWrite(command)

response = M15_SerialRead

[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

end

Output = none

Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.4.5 Gain Range Setting

	gain range
	Setting
	parameter1

	×1000
	1000
	0

	×10
	10
	1

function M15_SetGain(setting, amplifiernum)

This command changes the gain setting for the designated amplifier to the setting represented by the input. The overall gain for the channel is the product of the gain range and the gain setting.
M15_SetGain creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting(decimal)

 = amplifiernum (an array of amplifier numbers in the range, 0 to 32)

switch nargin,

 case 0: throw an error('Atleast enter valid gain setting.');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Sort the setting into proper amplification and gain range (Please refer Tables 2.4.6, 2.4.5).

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 0 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

end

command = [‘G’ amplifiernum parameter1]

M15_SerialWrite(command)

response = M15_SerialRead

[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

end

Output = none

Parameter1 should be sent in ASCII-encoded hexadecimal, representing the following settings:

Table 2.4.6 Amplification Setting

	amplification
	parameter1

	5
	0

	10
	1

	20
	2

	50
	3

	100
	4

	200
	5

function M15_SetHighFilter(setting, amplifiernum)
This command changes the high-filter setting for the designated amplifier to the setting represented by the input.
M15_SetHighFilter creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (decimal)

 = amplifiernum (an array of amplifier numbers in the range, 0 to 32)

switch nargin,

 case 0: throw an error('Atleast enter valid high filter setting.');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Check if the setting is valid (Please refer Table 2.4.3).

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 0 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

end

command = [‘H’ amplifiernumstr parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

end
Output = none
Parameter1 should be sent in ASCII-encoded decimal, representing the following settings:
Table 2.4.3 High Filter Setting

	15A54 setting
	setting
	parameter1

	30 Hz
	30
	0

	100 Hz
	100
	1

	300 Hz
	300
	2

	1 kHz
	1000
	3

	3 kHz
	3000
	4

	6 kHz
	6000
	5

function M15_SetLowFilter(setting, amplifiernum)

This command changes the low-filter setting for the designated amplifier to the setting represented by the input.
M15_SetLowFilter creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = setting (decimal)

 = amplifiernum (an array of amplifier numbers in the range, 0 to 32)

switch nargin,

 case 0: throw an error('Atleast enter valid low filter setting.');

 case 1: default is amplifiers in all(group) channel basis,

 amplifiernum = M15_Amplifiers;

end

Check if the setting is valid (Please refer Table 2.4.4).

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 0 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i));

elseif (amplifiernum(i)<33)

amplifiernumstr = sprintf('%2X',amplifiernum(i));

command = [‘L’ amplifiernumstr parameter1]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

Output = none
Parameter1 should be sent in ASCII-encoded decimal, representing the following settings:
Table 2.4.4 Low Filter Setting
	setting (in Hz)
	parameter1

	0.01
	0

	0.1
	1

	0.3
	2

	1.0
	3

	3.0
	4

	10
	5

	30
	6

	100
	7

function M15_SaveDefaults
This command saves the current settings to the non-volatile memory so that the amplifiers are initialized to these stored settings on power up.
M15_SaveDefaults creates and writes a command to the system. The system responds with appropriate message and the function outputs an error message if any.

Input = none
command = [‘Z’]

M15_SerialWrite(command)
response = M15_SerialRead
[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

Output = none
function M15_QuerySettings(amplifiernum)

This command reads back the amplifier’s settings specified by the amplifiernum as an input. The response from the Model 15 amplifier system will provide basic characteristics of the desired amplifier(high filter, line filter, gain range, gain, low filter).

M15_QuerySettings creates and writes a command to the system. The system responds with appropriate message and the setting of the desired amplifier. If the message is ‘OK’, then it invokes M15_AmpSetting to sort out the response into appropriate amplifier setting and displays this setting.

Input = amplifiernum (an array of amplifier numbers in the range, 1 to 32)
if (nargin=0): default is amplifiers in all(group) channel basis,

amplifiernum = M15_Amplifiers;

N = max(size(amplifiernum));

for(i=1:N)

 if amplifiernum is not in the range: 1 to 32, throw an error message

elseif (amplifiernum(i)<10)

amplifiernumstr = sprintf('%02X',amplifiernum(i))

 else

amplifiernumstr = sprintf('%2X',amplifiernum(i))
command = [‘Q’ amplifiernumstr]

M15_SerialWrite(command)

response = M15_SerialRead

(response = [esc address S amplifiernum High Filter Line Filter Gain Range Gain Low Filter checksum cr])

[code, errormsg] = M15_StatusCode(response)

M15_VerifyCode(code,errormsg)

if (code=M15_OK): get and display amplifier setting

[highfilter,linefilter,gainrange,gain,lowfilter] = M15_AmpSetting(response);

Output = none

function [highfilter,linefilter,gainrange,gain,lowfilter] = M15_AmpSetting(response)
This function checks if the response indicates valid amplifier and sorts out the response into appropriate output variables.

M15_AmpSetting checks for the whole response(19 characters) for an amplifier and sorts it into appropriate highfilter, linefilter, gainrange, gain and lowfilter values. For sorting, it makes use of the Tables 2.4.3, 2.4.2, 2.4.5, 2.4.6, 2.4.4 respectively. If the input string is incomplete then the amplifier does not exist.
Input = reposnse (string containing amplifier information)

if the response is complete, assign output variables else the amplifier doesn't exist

if((max(size(response)))=19)

highfilter = response(11)

linefilter = response(12)

gainrange = response(13)

amplification = response(14)

lowfilter = response(15)

for all the variables, assign valid values based on the corresponding tables referred above

gain = amplification × gainrange

else

initialize output variables as ‘null’

Output = [highfilter linefilter gainrange gain lowfilter] (Refer Tables: 2.4.3, 2.4.2, 2.4.5, 2.4.6, 2.4.4)
function M15_AllChannelBasis(amplifiernum)
This function groups together all the input amplifier numbers and provides a method of controlling multiple amplifiers on an ‘all channel basis’.

M15_AllChannelBasis checks if every element of the input array is in the range 1 to 32 and initializes the global variable, M15_Amplifiers.
Input = amplifiernum (an array of amplifier numbers, range 1 to 32)
if (nargin=0): default is all channels for the current amp. system

amplifiernum = [1:8]

N = max(size(amplifiernum))
for(i=1:N): if amplifiernum is not in the range: 1 to 32, throw an error message
M15_Amplifiers = amplifiernum (initialize the global variable M15_Amplifiers)

Output = none

function M15_TurnOffChannel(amplifiernum)
This function closes the amplification down to minimum filter and amplification settings.
M15_TurnOffChannel sets minimum gain, gain range, high filter, low filter and line filter values for the input amplifier numbers.
Input = amplifiernum (an array of amplifier numbers, range 1 to 32)
if (nargin=0): default is amplifiers in all(group) channel basis,

amplifiernum = M15_Amplifiers
N = max(size(amplifiernum))
for(i=1:N)
 if amplifiernum is not in the range: 1 to 32, throw an error message
set minimum gain:

M15_SetGain(50,amplifiernum(i))

set minimum gain range:

M15_SetGainRange(10,amplifiernum(i))

set minimum high filter value:

M15_SetHighFilter(30,amplifiernum(i))

set minimum low filter value:

M15_SetLowFilter(0.01,amplifiernum(i))

set line filter as 'off':

M15_SetLineFilter('off',amplifiernum(i))

Output = none

M15_VerifyCode(code, errormsg)

M15_AllChannelBasis(amplifiernum)

M15_StatusCode(response)

M15_SerialWrite(command)

M15_WhoYouAre(ampconfig)

M15_TraceRestore(setting)

M15_QueryID

M15_SetMode(setting)

M15_CalSettings(volfreq, setting)

M15_DcCalEnable(setting)

M15_QueryStatus

M15_VerifyCode(code,errormsg)

M15_SerialRead

M15_StatusCode

M15_Initialize

M15_SerialRead

M15_QuerySettings(amplifiernum)

M15_AmpSetting(response)

M15_SerialWrite(command)

M15_SetLowFilter(setting, amplifiernum)

M15_SetGainRange(setting, amplifiernum)

M15_SetGain(setting, amplifiernum)

M15_SaveDefaults

M15_SetHighFilter(setting, amplifiernum)

M15_ElectrodeTest(setting,amplifiernum)

M15_SetLineFilter(setting,amplifiernum)

M15_StatusCode(response)

M15_CheckSum(command)

M15_SerialWrite(command)

M15_SerialRead

M15_DestroySerialPort

M15_InitializeSerialPort(varargin)

M15_VerifyCode(code,errormsg)

M15_TurnOffChannel(amplifiernum)

PAGE
3

