Low-cost biomedical instrumentation: possibilities and applications

Carleton University Life Science Day,
5 May 2017

Andy Adler

Systems and Computer Engineering, Carleton University, Ottawa
Instrumentation = “Smart . . .”

Smart Objects?

- Smart . . . Home / Office / Building
- Smart . . . Watches
- Smart . . . Shirt
- Smart . . . Lights

1 https://en.wikipedia.org/wiki/Smart_objects
Instrumentation = “Smart . . .”

Smart Objects?

• Smart . . . Home / Office / Building
• Smart . . . Watches
• Smart . . . Shirt
• Smart . . . Lights

Smart objects properties:\(^1\)

• Awareness
• Representation
• Interaction

\(^1\)https://en.wikipedia.org/wiki/Smart_objects
Instrumentation = “Smart . . .”

Smart Objects?
- Smart . . . Home / Office / Building
- Smart . . . Watches
- Smart . . . Shirt
- Smart . . . Lights

Smart objects properties:\(^1\)
- Awareness \(\leftarrow\) Instrumentation
- Representation
- Interaction

\(^1\)https://en.wikipedia.org/wiki/Smart_objects
Why instrumentation?

- ↑ reliability ↓ cost
- New business models
 - rental jet engines, remote coaching
- Customization
 - Taser’s “smart-weapon”
Instrumentation drives new insights

3He images of distribution of ventilation in two COPD patients2.

Instrumentation used to be expensive

1990 My final year undergrad project. We used a 3-axis accelerometer for a μgravity application $10k

2017 Most of you are carrying at least one Biomedical instrumentation...
Instrumentation used to be expensive

1990 My final year undergrad project.
 We used a 3-axis accelerometer for a μgravity application
 \sim10k

2017 3-axis accelerometer.
 $0.67
Instrumentation used to be expensive

1990 My final year undergrad project. We used a 3-axis accelerometer for a μgravity application \sim $10k$

2017 3-axis accelerometer. 0.67

2017 Most of you are carrying at least one
Example #1: Mobility Trainer

Bungee Mobility Trainer (Neurogym Technologies)³

Example #2: Electrical Imaging

Electrical Impedance Tomography

10-day old healthy baby with EIT electrodes

Source:
eidors3d.sf.net/data_contrib/if-neonate-spontaneous
Medical Applications of EIT

- Monitoring Mechanical Ventilation:

 - Overdistension
 - Collapse

 ![15 hPa](image1)
 ![30 hPa](image2)

Birth
Medical Applications of EIT

- Monitoring Mechanical Ventilation:
 - Overdistension
 - Right heart (pulmonary arterial) Pressure

- **15 hPa**
- **30 hPa**
- **35 hPa**
- **20 hPa**
Medical Applications of EIT

- Monitoring Mechanical Ventilation:
 - Overdistension
 - 15 hPa
 - 30 hPa
 - 35 hPa
 - 20 hPa

- Right heart (pulmonary arterial) Pressure
- Breathing in newborns

Birth
Instrumentation’s challenge . . . analysis

• Information = Data + Interpretation

• Real world challenges:
 • Isolate relevant features
 • Reject “other stuff” which we’re not interested in
 • Data errors
 • Permanence – are features stable over time?
 • Active deception
Instrumentation’s challenge . . . analysis

- Information = Data + Interpretation

- Real world challenges:
 - Isolate relevant features
 - Reject “other stuff” which we’re not interested in
 - Data errors
 - Permanence – are features stable over time?
 - Active deception
Data Quality

Depth Sounder – with analog and digital guages

Problem: With complex algorithms we can get pretty pictures, even when they are irrelevant.
Idea #1: Data quality measures using consistency

Images and data quality metric for each stage of the protocol

A: EIT images
B: Calculated data quality.
Idea #2: Community

- Open Data
- Open source analysis
Idea #2: Community

- Open Data
- Open source analysis
Idea #2: Community

⇒

Open Data
Open source analysis
Idea #2: Community

⇒

Open Data
Open source analysis
Idea #2: Community

We need

- Open Data
- Open source analysis
Idea #2: Community

We need
 • Open Data
Idea #2: Community

We need

- Open Data
- Open source analysis
For EIT . . .
For EIT...

EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software

Project Goal

Provide free software algorithms for forward and inverse modelling for Electrical Impedance Tomography (EIT) and Diffusion based Optical Tomography, in medical and industrial settings, and to share data and promote collaboration between groups working these fields.

Requirements

- Matlab (>=7.0) or Octave (>=3.4)
- Netgen Mesher (optional)

Getting Started

To try the EIDORS software, follow these steps:

1. Download the software (release or developer version):
 - Release Version: EIDORS 3.5 (14 Jul 2011)
 - Developer Version:
For EIT...

Contributed EIT Data:

Authors: S. Heinrich, H. Schiffmann, A. Frerichs, A. Klockgether-Radke, I. Frerichs

Date: 2006

Brief Description: 10-day old spontaneously breathing neonate lying in the prone position with the head turned to the left. Data were published in S. Heinrich, H. Schiffmann, A. Frerichs, A. Klockgether-Radke, I. Frerichs, Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study, Intensive Care Med., 32:1392-1398, 2006.

License: Creative Commons Artistic License (with Attribution)

Attribution Requirement: Use or presentation of these data must acknowledge Inez Frerichs, and reference this publication.

Format: EIT data were acquired with the Göttingen Goe-MF II device, 220 frames, 13 frames/s. Data are in .GET file format.

Methods: Neonate in prone position, with electrode #1 at the front of the chest, electrode #5 on the left side of the chest, electrode #9 on the back and electrode #13 on the right side of the chest.

Data: Data (zip format)
Low-cost biomedical instrumentation: possibilities and applications

Carleton University Life Science Day,
5 May 2017

Andy Adler

Systems and Computer Engineering, Carleton University, Ottawa