3D Image Reconstruction with GREIT

Bartłomiej Grychtol¹, Beat Müller², and Andy Adler³

¹Fraunhofer Project Group for Automation in Medicine and Biotechnology, Mannheim, Germany ²Swisstom AG, Landquart, Switzerland ³Systems and Computer Engineering, Carleton University, Ottawa, Canada

Table of contents

Motivation

GREIT

And now?

Questions

Motivation

Measurement setup already exists

- Swisstom Pioneer Set with 32 electrodes
- Watertank with 4 rings of connectors

GREIT in EIDORS

- Forward model 3D
- Extension of image plane to 3D
- Part of EIDORS 3.8

GREIT

$$\mathbf{R} = \underset{\mathbf{R}}{\operatorname{arg\,min}} \sum_{k} \left\| \tilde{\mathbf{x}}^{(k)} - \mathbf{R} \mathbf{y}^{(k)} \right\|_{\mathbf{W}^{(k)}}^{2}$$
(1)

- R: Reconstruction matrix
- *k* Training pairs $\{\tilde{\mathbf{x}}^{(i)}, \mathbf{y}^{(i)}\}$
- $\tilde{\mathbf{x}}^{(i)}$: Desired image of training disturbance *i*
- **y**⁽ⁱ⁾: Voltages of training disturbance i

GREIT: Voltages of training disturbances

Solve forward problem:

- 3D FEM model
- Placement of electrodes

Code available in EIDORS v3.8.

GREIT: Desired image

Main enhancements needed in EIDORS.

- Extend image plane from 2D to 3D
- Redefine desired image

GREIT: Training disturbances

Some small extensions in EIDORS.

- Distribution over whole object
- What happens to off-plane objects?

Image plane may not cover whole FE model.

Reconstruction using real data

Left: FE model of a water tank with cut planes between voxel layers and positions of non-conductive target. *Right:* images reconstructed using the proposed algorithm. Each row corresponds to one voxel layer, and each column to a

different target position.

And now?

Electrode placement:

- · How many rings of electrodes?
- How to place the electrodes?

And now?

Electrode placement: Simulation

And now?

Visualization:

• How to display the reconstructed images?

Figures of merit:

- Do they still work?
- How to visualize them?

Off-plane objects:

How must off-plane objects taken into account?

Any questions?