Conductivity Perturbations in EIT

Andy Adler¹ and Bill Lionheart²

¹Systems and Computer Engineering, Carleton University, Ottawa, Canada ²School of Mathematics, University of Manchester, UK

Conductivity Perturbations, Adler, Lionheart, 2015/06/03

EIT Sensitivity ...

What is sensitivity?

Conductivity Perturbations, Adler, Lionheart, 2015/06/03

EIT Sensitivity ...

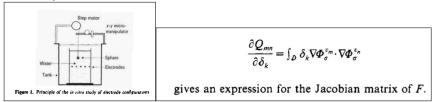
EIT forward problem

$$\mathsf{v}=\mathsf{F}(\sigma)$$

If we are doing

- difference imaging,
- analyzing the sensitivity, or
- designing drive and measurement strategies

we want to know the difference signal.

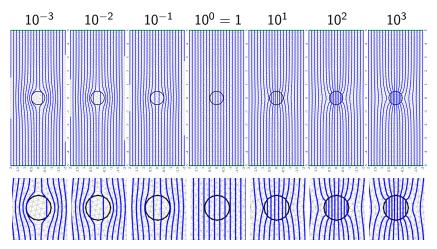

$$\Delta v = F(\sigma + \Delta \sigma) - F(\sigma)$$

in a homogeneous (σ_h) medium, we want the sensitivity to perturbation for $\Delta \sigma$ in a ROI

$$\|\Delta v\| = F(\sigma_h + \Delta \sigma) - F(\sigma_h)$$

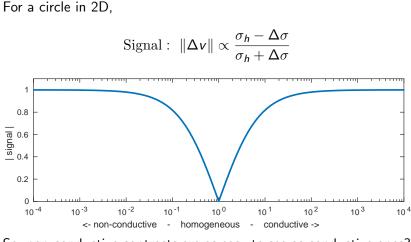
Two kinds of sensitivity!

Back in 1986 the first EIT meeting in Sheffield (Physiol Meas 1987 Suppl A)

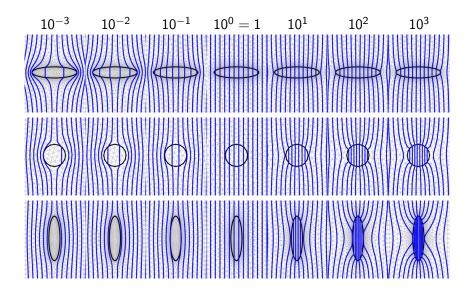


- Jossinet and Kardous (pp33–37) showed an experimental determination of sensitivity using a ball and micro-manipulator while Seagar, Barber and Brown (pp13–31) gave the formulae for a offset circular anomaly
- Breckon and Pidcock (pp77–84) exhibited the Fréchet derivative formula. This is an 'infinitesimal' change, is limit as Δσ tends to zero.

Sensitivity in 2D


Circular ball and the perturbation of streamlines

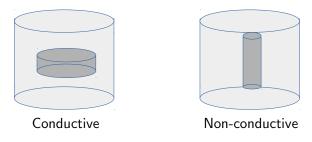
• Contrast
$$1 + \frac{\Delta \sigma}{\sigma_h}$$


Conductivity Perturbations, Adler, Lionheart, 2015/06/03

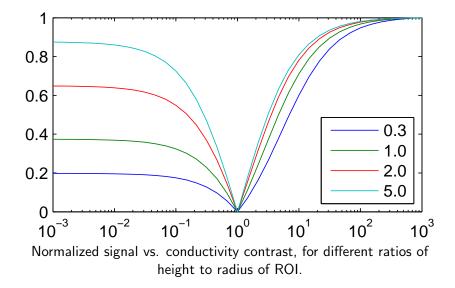
Sensitivity in 2D ...

So, non-conductive contrasts are as easy to see as conductive ones?

Sensitivity in 2D: Non-circular shapes


Sensitivity ...

We see that


• Non-conductive object most visible when *against the streamlines*

• Conductive object most visible when with the streamlines

But in 3D EIT, there are two directions with, and one against.

Sensitivity in 3D

• The so called polarization or polarizability tensor of Pólya and Szegö gives an expression for the dipole moment of the perturbation in potential due to an object with a finite conductivity contrast.

• For an ellipsoid there is an explicit formula that includes the *saturation* so it is better than the linear approximation in this respect

• It is a good approximation for well separated objects distant from the boundary, independent of boundary shape.

What does direction sensitivity tell us?

- Reconstruction algorithms have been based on linear sensitivity. Should we use non-linear sensitivites?
- Conductive contrast agents can be seen; no-one has ever succeeded with non-conductive contrasts. Does this explain why?