Imaging with Electricity:

Biomedical Engineering Seminar Carleton Univerity, Ottawa, ON, 22 Sep 2015

Andy Adler

Professor & Canada Research Chair in Biomedical Engineering Systems and Computer Engineering, Carleton University, Ottawa

Lung Imaging

Lung Imaging

Source: Kirby et al, Radiology 261.1 (2011)

Pre- and post-salbutamol ³He MR images (red) registered to two center coronal thoracic ¹H MR images (gray scale) for five representative patients with COPD

S1, S2: stage II disease, S3, S4: stage III disease, S5: stage IV disease.

Imaging ⇒ new clinical insights

Electrical Impedance Tomography

10-day old healthy baby with EIT electrodes

Source: eidors3d.sf.net/data_contrib/if-neonate-spontaneous

Electronics – Block Diagram

Finite Element Modelling

Finite Element Modelling

Simulated Voltages

Voxel Currents

Thorax Propagation

CT Slice with simulated current streamlines and voltage equipotentials

Thorax Propagation

CT Slice with simulated current streamlines and voltage equipotentials

Changing Conductivity

Heart receives blood (diastole) and is more conductive

Changing Conductivity

Heart receives blood (diastole) and is more conductive

Changing Conductivity

Application: Breathing

Chest images of tidal breathing in healthy adult

Application: Heart

Mechanical Ventilation

Mechanical Ventilator with EIT monitor

Source: Swisstom.com

Acute Respiratory Distress Syndrome (ARDS)

EIT + Lung State

Overdistension

Collapse

Imaging with Electricity, Andy Adler, 2015/09/22

Imaging with Electricity, Andy Adler, 2015/09/22

EIT for Non-Invasive Blood Pressure

Fig. 1 Tracking the propagation of arterial pressure pulses by EIT: After placing several electrodes around the chest (1), impedance measurements are performed for each electrode pair (2) and used to construct a tomographic impedance image (3). A CT-scan of pig chest is provided as anatomical reference. Lower panel shows an example

of pulse propagation during an entire cardiac cycle: a and b the filling of the heart is observed (black ROI). c The heart empties while the right lung (here on the left hand side) is starting to be perfused with conductive blood. d and e Both lungs are perfused (white ROI). Finally, f the cardiac cycle starts again

Pulse transit time from heart to descending aorta using EIT

Source: Sola et al, Med. Biol. Eng. Comput., 2011

Neonatal Breathing

- Preterm newborns have complex, unstable physiology
- Ventilatory support is often essential
- Currently, no adequate monitors of breathing
- These data are from a lamb model of neonates

Figure 1. Exponential pattern of volume change during a SI, as measured by EIT, in global thorax and gravity-dependent

EIT for Brain Imaging

Applications:

- Epileptic foci
- Stroke (Ischaemic vs. Haemoragic)
- Fast Neural Imaging

Source: Holder, www.ucl.ac.uk/medphys/research/eit/pubs/brain_EIT_overview.pdf

Fig. 2. Left: Finite element of the head used to produce images. Right: Example of EIT images produced in a saline filled tank

EIT for Cancer Imaging: Breast/Prostate

- Cancerous tissue has different electrical properties
- Image tissue
- Image increased vascularization

Source: Khan, Mahara, Halter *et al*, Conf. EIT, 2014

Non-medical applications

- Flow in pipes
- Mixing tanks
- Imaging metalic ores
- Hydro-geology

Figure shows resistivity in a cross-section of La Soufrière de Guadaloupe volcano.

Source: N. Lesparre et al, Conf. EIT, 2014

Why is EIT hard?

Inverse Problems ... Plato's cave

Plato's cave ... Shadows on the wall

Source: iamcriselleeee.files.wordpress.com/2013/11/cave-2.jpg

Forward Problem: *Forms* ⇒ *Shadows*

Forward Problem: Forms ⇒ Shadows Inverse Problem: Shadows ⇒ Forms

Forward Problem: Forms ⇒ Shadows Inverse Problem: Shadows ⇒ Forms

Ill-conditioned
 Sensitivity to some movements is low

Forward Problem: Forms ⇒ Shadows Inverse Problem: Shadows ⇒ Forms

- Ill-conditioned
 Sensitivity to some movements is low
- Ill-posed
 Some movements don't change shadows

Forward Problem: Forms ⇒ Shadows Inverse Problem: Shadows ⇒ Forms

- Ill-conditioned
 Sensitivity to some movements is low
- Ill-posed
 Some movements don't change shadows
- Noisy
 Flickering light

Techniques: to calculate stable & meaningful parameters in the presence of inversion difficulties Examples

- Image deblurring / restoration
- Medical imaging
- Geophyical imaging
- Model parameter fitting
- Reconstruction with incomplete/noisy data

Reconstruction in Pictures

Forward Problem

Reconstruction in Pictures

Forward Problem

Linear Solution: Minimize norm

measurement accuracy

Idea #1: Reconstruction with Data Errors

"Traditional" Solution

Idea #1: Reconstruction with Data Errors

Electrode Error compensation

Offline compensation using "jack-knife" approach (2005)

EIT images in anaesthetised, ventilated dog *A*: uncompensated, *B*: compensated. *Left*: ventilation *Centre*: saline (right lung) *Right*: ventilation and saline

- Automatic detection (via reciprocity comparison) (2009)
- New work to speed online calculation & use data quality

Idea #2: Electrode movement

Sensitivity to sensor movement

Idea #2: Electrode movement

Sensitivity to sensor movement

Adapted penalty function

Electrode movement compensation

Idea #3: Data Quality

Idea #3: Data Quality

Depth Sounder - with analog and digital guages

What's the problem?

With strong priors and complex algorithms, algorithms give us pretty pictures, even when they are irrelevant.

Question:

- how can we know when to trust a pretty picture?
- how can we know when the data are junk?

Data Quality Measure: Concept

- Concept: High Quality Data are Consistent
- Idea: Use IP to predict each data point from all others

Calculate error

$$\epsilon_i = d_i - \hat{d}_i^{(i)}$$

Example: Data quality measures

Clinical data and data quality metric for each stage of the protocol (R1–R4 — recruitment: PEEP↑, T1–T4 — titration: PEEP↓).

A: EIT images B: Calculated data quality.

Perspectives

- Data analysis is hard
- · powerful algorithms are useful
- we live in a world of big data
- complex systems fail in complex ways
- users like pretty pictures

So ... the situation will get worse

Thus, we need

Thus, we need

Open Data

Thus, we need

- Open Data
- · Open source analysis

For EIT ...

For EIT ...

For EIT ...

Thank you ...

Imaging with Electricity

Abstract: We use body surface electrical current stimulation and measurements to generate images of the internal electrical properties. This principle is used in geophysics, process monitoring, and medical imaging. Currently, the most successful medical application of electrical impedance tomography (EIT) is for imaging the thorax, where the movement on conductivity contrasting air and blood can be imaged over time. The generation of EIT images requires solving an inverse problem, which is ill-conditioned because of the diffuse nature of current propagation. The technology is thus sensitive to electrode properties, data quality, and patient movement. To address these issues, several innovative strategies to analyze and interpret these data have been developed. This talk will explain our recent progress in imaging the chest with EIT, and the image generation and interpretation strategies that are required.

