Edge Preserving Image Reconstruction: Experimental Applications to Thoracic EIT

Presenter:

Peyman Rahmati,

PhD Candidate,

Electrical Eng., Dept. of Systems and Computer Eng., Carleton University, Ottawa, Ontario, Canada.

Supervisor:

Professor Andy Adler

December 2013

Contents

• Introduction to Electrical Impedance Tomography (EIT)

• Motivation

• Contributions of this thesis

• Conclusion

Electrical Impedance Tomography (EIT)

- Medical imaging modality in which an image of the internal conductivity/ permittivity distribution of the body is reconstructed from boundary electrical measurements.
- One pair of electrodes injects low frequency current to the medium and the other pairs of the electrodes collect the difference voltage on the surface.

Thesis Motivation using an Example

 A typical image reconstruction problem can be formulated as

$$x = argmin_{x} \{ D(h(x)-d_{real}) + P(x-x_{prior}) \}$$
Data Term Image Term

- Where;
 - x is the reconstructed image (inverse solution)
 - $D(h(x)-d_{real})$ is referred to as a data term and increases as the forward model h(x) is less able to predict the real data d_{real}
 - $P(x-x_{prior})$ is an image term (or a regularization term) which increases as the inverse solution x is less likely, given the prior understanding of the model parameters x_{prior} .

Thesis Motivation using an Example

14 dB zero mean Gaussian noise is added to the EIT simulated data!

Thesis Motivation using an Example

The 5th electrode causes a data loss (data outliers)!

Thesis Contributions

Edge Preserving Image Reconstruction Method Shape based **Image Reconstruction with** the Sum of the Absolutes Reconstruction **Method (Level Set) based Penalty Terms**

Main Contributions of this thesis

 Level Set based Reconstruction Algorithm for EIT Lung Images: First Clinical Results

• Level Set Technique for High Contrast Image Reconstruction using the sum of absolutes (L1 norms)

 A Generalized Inverse Problem using Weighted L1 and L2 Norms on Data and Regularization Terms Contribution #1: Level Set-based Reconstruction Algorithm using difference solver

• Problem:

Many applications deal with the reconstruction and optimization of geometries (shapes, topologies).

However, there is no natural a-priori information on shapes or topological structures of the solution.

• Solution:

Flexible representations of the shapes is needed!

LEVEL SET technique can do this for us! 🙂

What we proposed in 2011

Level Set-based Reconstruction Algorithm using difference solver

Shape based reconstruction algorithm (L2 norm)_ First clinical results (2011)

Frames

Acute Lung Injury Patients (18 patients)

Contribution #2: Level Set Technique for High Contrast Image Reconstruction (LSPDIPM, 2013)

• Problem:

L2 norms are sensitive to spatial noise and data outliers!

• Solution:

Redefine the cost functional based on L1 norms, instead of L2 norms:

$$\Delta \Phi(\Psi) = \left| d - h(\Phi(\Psi)) \right|_{1}^{1} + \left| \Phi(\Psi) - \Phi(\hat{\Psi}) \right|_{1}^{1}$$

Where Φ is a mapping function such as a step function, and Ψ is the level set function,

• Difficulty:

Minimization of the L1 norm based cost functional is not computationally easy!

Primal-Dual Interior Point Method (PDIPM)

Results (LSPDIPM)

(a)

(b)

(C)

Contribution #3: A Generalized Inverse Problem with Weighted L1 and L2 Norms on Data and Regularization Terms (GPDIPM, 2013)

where ξ and η are weighting parameters within the range [0,1].

Weighting Parameters Selection

ξ	0	0.3	0.6	1
η ` Ο	L2+L2	(0.3*L1+0.7*L2+L2)	(0.6*L1+0.4*L2+L2)	L1+L2
		?	?	
0.0	(L2+0.3*L1+0.7*L2)	(0.3*L1+0.7*L2+0.3*L1 +0 7*L2)	(0.6*L1+0.4*L2+0.3*L1 +0 7*L2)	(L1+0.3*L1+0.7*L2)
0.3	?	?	?	?
0.6	(L2+0.6*L1+0.4*L2)	(0.3*L1+0.7*L2+0.6*L1 +0.4*L2)	(0.6*L1+0.4*L2+0.6*L1 +0.4*L2)	(L1+0.6*L1+0.4*L2) ?
0.0	?	?	?	
	L2+L1	(0.3*L1+0.7*L2+L1) ?	(0.6*L1+0.4*L2+L1) ?	L1+L1
1				

Question to answer:

How different selection of weighting parameters affects the reconstructed image?!

Hyperparameter (λ) Selection using the L-Curve Method

EIT Clinical data

Patient with healthy lungs

EIT Clinical data

Patient with Acute Lung Injury (ALI)

Qualitative Evaluation which includes ROI based comparisons. Quantitative Evaluation which includes: Robustness metric (NM), and Morphological (or shape) Features.

Qualitative Evaluation

\backslash	GN_Tik (L2- Reconstructed	honov L2)	GN_No: (L2-L2 Reconstructed	ser 2)	Total Vari (L2-L Reconstructed	iation 1)	PDIP (L1-L Reconstructed	M 1)	Level	Set	
	Image	ROI	Image	RUI	Image	ROI	Image	RUI	(L2-L2)	(L1-L1)	
(a)	۲		۲					÷	9	•	
(b)	۲	3	٢	8	٢	\$	۲	C		9	
(c)		Ð								-	
(d)		Ð			۲	(Ì)		þ		6	
(e)	۲	()		¢)		÷+		()	ð	6)	

Quantitative Evaluation

(Accuracy Measurement using Morphological and Shape Features)

Reconstruction	Inclusion	Morphological Features				Shape Features		
Algorithms	merusion	Area	Perimeter	Axis-Ratio	Eccentricity	Bounding-Box	Compactness	Overlap
Ground Truth	Big object	734	113	1.889	0.848	$\left[10.5, 32.5, 44, 22\right]$	0.2747	1
Ground Truth	Narrow object	200	82.4	3.571	0.960	[14.5, 10.5, 36, 11]	0.6301	1
Tikhonov	Big object	925	142	1.757	0.822	[8.5, 28.5, 48, 27]	0.4262	0.7781
TIKHOHOV	Narrow object	421	111	2.415	0.910	[14.5, 7.5, 36, 17]	0.5654	0.4681
Nosor	Big object	964	144	1.692	0.807	[9.5, 28.5, 46, 28]	0.4148	0.7578
Nosei	Narrow object	432	91.6	2.291	0.9	[14.5, 8.5, 36, 17]	0.3530	0.4630
TV	Big object	682	104	1.859	0.843	[12.5, 32.5, 40, 21]	0.2067	0.9292
1 V	Narrow object	370	84.3	2.66	0.927	[14.5, 8.5, 36, 14]	0.3455	0.5405
DDIDM	Big object	780	121	1.709	0.811	[9.5, 32.5, 46, 25]	0.3307	0.8878
FDIFM	Narrow object	481	96.2	2.099	0.879	[14.5, 7.5, 36, 18]	0.3466	0.4158
ISDDIDM	Big object	676	137	1.854	0.843	[11.5, 29.5, 42, 24]	0.55	0.889
LSF DIF M_{L2L2}	Narrow object	188	78.4	3.604	0.961	[15.5, 11.5, 34, 10]	0.6159	0.8131
ISDDIDM	Big object	602	98.8	1.92	0.854	[12.5, 32.5, 39, 20]	0.2245	0.8202
LOF DIP M_{L1L1}	Narrow object	321	82.4	2.701	0.929	[14.5, 11.5, 35, 14]	0.4063	0.4158

In each column, the light gray indicates the most accurate method, the medium gray shows the second accurate method, and the dark gray indicates the third accurate method!

Quantitative Evaluation (Accuracy measurement for the bigger object)

Overall average accuracy score of 2.57 (out of 3) for the proposed LSPDIPM, vs. 1.78 for the Total Variation

Quantitative Evaluation (Accuracy measurement for the smaller object)

Overall average accuracy score of **3** (out of **3**) for the proposed LSPDIPM, vs. **1.42** for the Total Variation!

Quantitative Evaluation (Robustness Measurement for the LSPDIPM)

Measurement	Reconstruction	Robustness Metrics		
Conditions	Algorithms	NM	NMB (dB)	
Additional Noise	Tikhonov	3551	81.7	
Additional Noise	Noser	2219	77.04	
	TV	4006	82.95	
	PDIPM	2718	79.07	
	$\mathrm{LSPDIPM}_{L2L2}$	2408	77.86	
	$\mathrm{LSPDIPM}_{L1L1}$	1398	72.42	
Data Outlians	Tikhonov	1020	69.2	
Data Outliers	Noser	882	67.8	
	TV	1133	70.3	
	PDIPM	112	47.1	
	$\mathrm{LSPDIPM}_{L2L2}$	919	68.2	
	$\mathrm{LSPDIPM}_{L1L1}$	79	43.6	
Noise and Outliers	Tikhonov	973	68.8	
Noise and Outliers	Noser	862	67.6	
	TV	874	67.7	
	PDIPM	414	60.2	
	$\mathrm{LSPDIPM}_{L2L2}$	929	68.3	
	$\mathrm{LSPDIPM}_{L1L1}$	307	57.2	

Proposed LSPDIPM shows the highest robustness against the uncertainties with a NMB of 57.2 dB, vs. 60.2 dB for the PDIPM.

Quantitative Evaluation (Robustness Measurement for the GPDIPM)

Measurement Conditions	Reconstruction Method	Weighting Parameters	Robust: NM	ness Metrics NMB (dB)
Additional Noise	Tikhonov GPDIPM	$\begin{split} [\zeta, \eta] &= [0, 0] \\ [\zeta, \eta] &= [0, 1] \end{split}$	$\frac{31006}{12604}$	$103.4 \\ 94.4$
Data Outliers	Tikhonov GPDIPM	$\begin{split} [\zeta, \eta] &= [0, 0] \\ [\zeta, \eta] &= [0.6, 1] \end{split}$	1009 24	$69.1 \\ 31.7$
Noise and Outliers	Tikhonov GPDIPM	$\begin{split} [\zeta, \eta] &= [0, 0] \\ [\zeta, \eta] &= [1, 0] \end{split}$	816 631	$\begin{array}{c} 67 \\ 64.4 \end{array}$

Proposed GPDIPM with bigger values for either of its weighting parameters offers higher robustness against uncertainties.

For example, the GPDIPM with \zeta=1, \eta=0 has an NMB of 64.4 dB, vs. 67 dB for the traditional Tikhonov method.

Conclusion

- Novel edge-preserving image reconstruction methods (EPIRMs) using either level set technique or the L1 norm based inverse problems proposed.
- EPIRMs were applied on EIT clinical data and led to physiologically plausible results.
- An evaluation framework is proposed to measure the accuracy and the robustness of the EPIRMs against noise and data outliers.
- The Level set based reconstruction method using the L1 norms preserves the edges and is robust against noise and outliers (LSPDIPM).

Conclusion

- An overall average accuracy score of 2.57 (out of 3) for the proposed LSPDIPM, vs. 1.78 for the Total Variation.
- An average robustness score of 3 (out of 3), averaged over three different measurement conditions, for the proposed LSPDIPM, vs. 1.33 for the PDIPM.
- The proposed GPDIPM with bigger values for either of its weighting parameters (\zeta or \eta) tends to offer higher robustness against the uncertainties (noise and outliers).
- The L1 norm minimization is computationally expensive (10-15 iterations).

THANK YOU

Future work: Combining Level sets and Primal-Dual Interior Point Framework for Image Reconstruction in Inverse Problems.

• Problem:

The assumption of constant piece-wise pixel illumination values is to discriminate between two regions with sharp intensity transition. **However**, it may not be a realistic assumption when there are smooth conductivity gradients inside each region as well.

• Solution:

Hybrid regularization method (HRM), which is a two steps solution, to solve ill-posed, non-linear inverse problem containing both sharp and smooth coefficients.

Hybrid Regularization Method

Deformable model regularization method.

• Problem:

Due to the **boundary movement**, it is not only the electrodes which change their coordination but the nodes inside the mesh as well.

• Solution:

The following model parameters are calculated as part of the inverse solution:

- 1) The conductivity image,
- 2) The electrode displacements,
- 3) The node displacements inside the mesh.

The formulation of such deformable model regularization method is proposed in this thesis as future work.

Level Set Representation

C= boundary of an open domain

Advantages

• Automatically detects interior contours!

• Works very well for concave objects

• Allows for automatic change of topology

Proposed GPDIPM

- Advantages:
 - The weighted L1 and L2 norms can be independently applied over the data mismatch and the regularization terms (image term) of an inverse problem.
 - Preserve edges (non-smooth optimization),
 - Robust against measurement errors (noise and outliers).
- Difficulty:
 - Computationally more expensive than the GN method.
 GN (Non-linear)
 GPDIPM (Proposed method)
 10-15 iterations

Traditional Image reconstruction method

We need to minimize the following error function to find the best estimate of x, which is the solution of inverse problem.

Error function:

Data mismatch Image term mismatch term arg min_x { $\Delta x = \|h(x) - d_{real}\|_{m}^{m} + \|\lambda(x - x_{prior})\|_{n}^{n}$ }

where

- m, n =1 (L1 norm) or 2 (L2 norm) ,
- f(x) is measured data,
- d_{real} is real data,
- x is pixel intensity,
- x_{prior} is expected pixel intensity.
- λ is the regularization factor.

Traditional Image reconstruction method

One-step Gauss Newton method (L2 norm)

Advantage:

- Simple to implement,

Drawbacks:

- Smoothed edges,
- Sensitive to measurement errors (noise+outliers).