Electrode mesh refinement in EIDORS

Bartłomiej Grychtol1 and Andy Adler2
\texttt{b.grychtol@dkfz.de}

1German Cancer Research Center (DKFZ), Heidelberg, Germany
2Carleton University, Ottawa, Canada

April 23, 2013
Outline

1. Effects of electrode refinement in EIT
2. Electrode refinement in EIDORS
Effects of electrode refinement in EIT

Figure: Examples of (a) fine, (b) coarse and (c) refined meshes.
Models overview

Table: Mesh characteristics

<table>
<thead>
<tr>
<th>Model</th>
<th>C0</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>global maxh [mm]</td>
<td>6.25</td>
<td>7.14</td>
<td>8.33</td>
<td>10</td>
<td>12.5</td>
<td>16.7</td>
<td>25</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>elec. maxh [mm]</td>
<td>6.25</td>
<td>7.14</td>
<td>8.33</td>
<td>10</td>
<td>12.5</td>
<td>16.7</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td>16.7</td>
<td>12.5</td>
<td>10</td>
<td>8.33</td>
<td>7.14</td>
<td>6.25</td>
</tr>
<tr>
<td># elem. per elec. edge</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td># elements</td>
<td>1291473</td>
<td>1254681</td>
<td>633324</td>
<td>230947</td>
<td>160323</td>
<td>79787</td>
<td>19033</td>
<td>1983</td>
<td>3705</td>
<td>7893</td>
<td>14538</td>
<td>17778</td>
<td>23423</td>
<td>31188</td>
<td>38244</td>
</tr>
<tr>
<td># nodes</td>
<td>233640</td>
<td>224963</td>
<td>114363</td>
<td>43941</td>
<td>30642</td>
<td>15290</td>
<td>4047</td>
<td>524</td>
<td>874</td>
<td>1712</td>
<td>2956</td>
<td>3601</td>
<td>4692</td>
<td>6098</td>
<td>7436</td>
</tr>
<tr>
<td># elec. elem.</td>
<td>138</td>
<td>110</td>
<td>74</td>
<td>56</td>
<td>36</td>
<td>22</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>22</td>
<td>28</td>
<td>50</td>
<td>72</td>
<td>86</td>
<td>104</td>
</tr>
<tr>
<td>minEL<sup>a</sup> [mm]</td>
<td>3.37</td>
<td>3.55</td>
<td>3.95</td>
<td>5.53</td>
<td>6.7</td>
<td>9.1</td>
<td>13.9</td>
<td>35.4</td>
<td>17.9</td>
<td>11.9</td>
<td>8.2</td>
<td>6.76</td>
<td>5.34</td>
<td>4.94</td>
<td>4.25</td>
</tr>
<tr>
<td>maxEL<sup>b</sup> [mm]</td>
<td>15.4</td>
<td>15</td>
<td>19.1</td>
<td>25.2</td>
<td>30.9</td>
<td>41.4</td>
<td>52.3</td>
<td>103</td>
<td>96.1</td>
<td>84.2</td>
<td>85.5</td>
<td>82.7</td>
<td>75.3</td>
<td>73.5</td>
<td>74.4</td>
</tr>
<tr>
<td>minEV<sup>c</sup> [cm³]</td>
<td>0.00825</td>
<td>0.00888</td>
<td>0.0146</td>
<td>0.0407</td>
<td>0.0565</td>
<td>0.139</td>
<td>0.514</td>
<td>8.03</td>
<td>1.55</td>
<td>0.303</td>
<td>0.123</td>
<td>0.0814</td>
<td>0.034</td>
<td>0.0234</td>
<td>0.0131</td>
</tr>
<tr>
<td>maxEV<sup>d</sup> [cm³]</td>
<td>0.159</td>
<td>0.159</td>
<td>0.405</td>
<td>0.739</td>
<td>1.14</td>
<td>3.62</td>
<td>8.67</td>
<td>71.2</td>
<td>59.7</td>
<td>46.1</td>
<td>28.3</td>
<td>31</td>
<td>25.4</td>
<td>26.5</td>
<td>25.2</td>
</tr>
</tbody>
</table>

^a length of the shortest edge; ^b length of the longest edge; ^c volume of the smallest element; ^d volume of the largest element.
Simulation

(a) Potential distribution

(b) Sensitivity distribution

Figure: Reference results obtained on model C0.
Sensitivity

Figure: Average sensitivity in the electrode plane in the vicinity of an electrode (ROIs SE and SI). All images use the same color scale.
Sensitivity

Figure: C0
Sensitivity

Figure: C1
Sensitivity

Figure: C2
Sensitivity

Figure: C3
Sensitivity

Figure: C4
Sensitivity

Figure: C5
Sensitivity

Figure: C6
Sensitivity

Figure: C7
Sensitivity

Figure: R2
Sensitivity

Figure: R3
Sensitivity

Figure: R4
Sensitivity

Figure: R5
Sensitivity

Figure: R6
Sensitivity

Figure: R7
Sensitivity

Figure: R8
Current near electrode

Figure: Current flow in the electrode plane (ROIs ME and MI). Arrows in each image are scaled individually.
Results

Figure: Errors with respect to model C0.
Electrode refinement in EIDORS 3.7

Functions

- `ng_mk_cyl_models`
Electrode refinement in EIDORS 3.7

Functions

- `ng_mk_cyl_models`
- `ng_mk_ellip_models`
Electrode refinement in EIDORS 3.7

Functions

- `ng_mk_cyl_models`
- `ng_mk_ellip_models`
- `ng_mk_gen_models`
Electrode refinement in EIDORS 3.7

Functions

- `ng_mk_cyl_models`
- `ng_mk_ellip_models`
- `ng_mk_gen_models`
- `ng_mk_extruded_models`
Electrode refinement in EIDORS 3.7

Functions

- `ng_mk_cyl_models`
- `ng_mk_ellip_models`
- `ng_mk_gen_models`
- `ng_mk_extruded_models`
- `place_elec_on_surf`
place_elec_on_surf
Building the head mesh
Before & After
Before & After
Conclusions

- Electrode refinement improves accuracy
- Electrode refinement decreases computation cost
- But, how much electrode refinement is required?
- EIDORS provides a free tool for electrode refinement on arbitrary shapes
- It’s not ideal, but we have a money-back guarantee.
Conclusions

- Electrode refinement improves accuracy
- Electrode refinement decreases computation cost
- But, how much electrode refinement is required?
- EIDORS provides a free tool for electrode refinement on arbitrary shapes
- It’s not ideal, but we have a money-back guarantee.