

Electrode mesh refinement in EIDORS

Bartłomiej Grychtol¹ and Andy Adler² b.grychtol@dkfz.de

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Carleton University, Ottawa, Canada

April 23, 2013

dkfz.

Bartek Grychtol (Medical Physics in Radiology)

Outline

1 Effects of electrode refinement in EIT

2 Electrode refinement in EIDORS

Effects of electrode refinement in EIT

Figure: Examples of (a) fine, (b) coarse and (c) refined meshes.

Models overview

Model	C0	C1	C2	C3	C4	C5	C6	C7	R1	R2	R3	R4	R5	R6	R7
global maxh [mm]	6.25	7.14	8.33	10	12.5	16.7	25	50	50	50	50	50	50	50	50
elec. maxh [mm]	6.25	7.14	8.33	10	12.5	16.7	25	50	25	16.7	12.5	10	8.33	7.14	6.25
# elem. per elec. edge	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8
# elements	1291473	1254681	633324	230947	160323	79787	19033	1983	3705	7893	14538	17778	23423	31188	38244
# nodes	233640	224963	114363	43941	30642	15290	4047	524	874	1712	2956	3601	4692	6098	7436
# elec. elem.	138	110	74	56	36	22	6	2	6	22	28	50	72	86	104
minEL ^a [mm]	3.37	3.55	3.95	5.53	6.7	9.1	13.9	35.4	17.9	11.9	8.2	6.76	5.34	4.94	4.25
maxEL ^b [mm]	15.4	15	19.1	25.2	30.9	41.4	52.3	103	96.1	84.2	85.5	82.7	75.3	73.5	74.4
minEV ^c [cm ³]	0.00825	0.00888	0.0146	0.0407	0.0565	0.139	0.514	8.03	1.55	0.303	0.123	0.0814	0.034	0.0234	0.0131
maxEV ^d [cm ³]	0.159	0.159	0.405	0.739	1.14	3.62	8.67	71.2	59.7	46.1	28.3	31	25.4	26.5	25.2

Table: Mesh characteristics

^a length of the shortest edge; ^b length of the longest edge; ^c volume of the smallest element; ^d volume of the largest element.

Simulation

Figure: Reference results obtained on model C0.

Figure: Average sensitivity in the electrode plane in the vicinity of an electrode (ROIs SE and SI). All images use the same color scale.

Current near electrode

Figure: Current flow in the electrode plane (ROIs ME and MI). Arrows in each image are scaled individually.

Results

Bartek Grychtol (Medical Physics in Radiology)

Functions

• ng_mk_cyl_models

- ng_mk_cyl_models
- ng_mk_ellip_models

- ng_mk_cyl_models
- ng_mk_ellip_models
- ng_mk_gen_models

- ng_mk_cyl_models
- ng_mk_ellip_models
- ng_mk_gen_models
- ng_mk_extruded_models

- ng_mk_cyl_models
- ng_mk_ellip_models
- ng_mk_gen_models
- ng_mk_extruded_models
- place_elec_on_surf

place_elec_on_surf

1.25 1.2、 1.15 1.1、 1.05 🔍 1 0.95 0.9、 0.85 0.8 -0.1 -0.15 -0.2 -0.25 000000005

place_elec_on_surf

Building the head mesh

Before & After

Before & After

Conclusions

- Electrode refinement improves accuracy
- Electrode refinement decreases computation cost
- But, how much electrode refinement is required?
- EIDORS provides a free tool for electrode refinement on arbitrary shapes
- It's not ideal, but we have a money-back guarantee.

Conclusions

- Electrode refinement improves accuracy
- Electrode refinement decreases computation cost
- But, how much electrode refinement is required?
- EIDORS provides a free tool for electrode refinement on arbitrary shapes
- It's not ideal, but we have a money-back guarantee.