Challenges of Prolonged Continuous Monitoring of Mechanically Ventilated Pediatric Patients Using EIT

Hervé Gagnon, Philippe Jouvet, Jean-Christophe Gervais, Olivier Fléchelles, Robert Guardo, and Andy Adler.

- Carleton University, Ottawa, Canada.
- École Polytechnique de Montréal, Montréal, Canada.
- Hôpital Sainte-Justine, Montréal, Canada.

Canada's Capital University

CHU Sainte-Justine

Introduction

Introduction

 Experimental Set-up

 Preliminary Results

 Discussion and Conclusion

- EIT images of ventilation have been successfully compared and validated with:
 - Spirometry;
 - Plethysmography;
 - Radiology;
 - Pulmonary scintigraphy;
 - CT-Scans.
- Most of these studies were performed
 - In controlled environments;
 - Over relatively short periods of time.

Introduction

- Introduction
- Experimental Set-up
- Preliminary Results

 Discussion and Conclusion

- Prolonged continuous validation over the range of hours or days has not been performed for current EIT systems.*
 - Continuous monitoring in the intensive care unit (ICU) is important to:
 - Prevent ventilator-induced lung injury;
 - Detect the onset of pulmonary edema, atelectasis or pneumothorax.

* A Adler, MB Amato, JH Arnold, R Bayford, M Bodenstein, SH Böhm, BH Brown, I Frerichs, O Stenqvist, N Weiler, and GK Wolf, Whither lung EIT: Where are we, where do we want to go and what do we need to get there?, *Physiol. Meas.* **33** (2012) 679–694

Introduction

Introduction

 Experimental Set-up

 Preliminary Results

- Main goal:
- Correlate EIT images with ventilator data during prolonged continuous monitoring of mechanically ventilated patients in a pediatric intensive care unit.
- Specific goals:
 - Study long term variations in EIT images:
 - instrumentation drift;
 - electrode-skin contact impedance variations.
 - Study clinical events leading to large image artifacts:
 - electrode disconnection;
 - patient manipulation during regular staff interventions.

XVth International Conference on Electrical Bio-Impedance (ICEBI) XIVth Conference on Electrical Impedance Tomography (EIT) Heilbad Heiligenstadt, Germany, April 22-25, 2013

 Discussion and Conclusion

EIT Hardware

- Introduction
- Experimental Set-up
- Preliminary Results

 Discussion and Conclusion

Acquisition of EIT and Ventilator Data

- Introduction
- Experimental Set-up
- Preliminary Results

 Discussion and Conclusion

GUI of the Combined System

Experimental Protocol

- Introduction
- Experimental Set-up
- Preliminary Results
- Clinical staff were instructed on how to connect the system to the patient.

Passive recording with no recruitment

Two-hour recording.

protocol.

- Clinical staff were instructed:
 - to proceed with normal patient care;
 - to reconnect electrodes if they become disconnected.

XVth International Conference on Electrical Bio-Impedance (ICEBI) XIVth Conference on Electrical Impedance Tomography (EIT) Heilbad Heiligenstadt, Germany, April 22-25, 2013

 Discussion and Conclusion

Patient Information

- Introduction
- Criteria for inclusion:
- Experimental Set-up
- Preliminary Results

- Mechanically-ventilated;
- Age > 1 year;
- Weight > 10 kg;
- Stable patient.
- 6 patients have been included.
- Discussion and Conclusion

Observations

- Introduction
- Experimental Set-up

	P	reli	imi	ina	ry
	R	esi	ults	S	
ľ		П			1

	Ш	ш	
П			Г
—		_	

•	Discussion
	and
	Conclusion

- All patients were awake.
- Interactions with clinical staff included:
 - Repositioning of patient;
 - Caring and cleaning;
 - Airway Suctioning;
 - Percutaneous injection and blood sampling;
 - Clinical examination;
 - Physiotherapy;
 - Respiratory therapy.

Ventilation Mode

- Introduction
- Experimental Set-up
- Preliminary Results

•	Discussion	
	and	
	Conclusion	
Γ		

- Patient Range Selection:
 - Neonate Mode (4)
 - Adult Mode (2)
 - Ventilation Mode:
 - Pressure Control (1)
 - Pressure Reg. Volume Control (1)
 - Pressure Support / CPAP (2)
 - SIMV (Press. Contr.) + Pressure Support (1)
 - SIMV (Press Reg. Volume Control) + Pressure Support (1)

EIT Measurements vs Volume

EIT Measurements vs Volume Introduction Patient #5 Average Voltage (AUV) Time (s) Correlation = 0.030 Volume (ml) Time (s)

XVth International Conference on Electrical Bio-Impedance (ICEBI) XIVth Conference on Electrical Impedance Tomography (EIT) Heilbad Heiligenstadt, Germany, April 22-25, 2013

Experimental Set-up

EIT Measurements vs Temperature⁻¹

- Introduction
- Experimental Set-up
- Preliminary Results

Heilbad Heiligenstadt, Germany, April 22-25, 2013

EIT Measurements vs Temperature⁻¹

- Introduction
- Experimental Set-up

Heilbad Heiligenstadt, Germany, April 22-25, 2013

EIT Measurements vs Alarm

- Introduction
- Experimental Set-up

EIT Measurements vs O₂ Concentration

- Introduction
- Experimental Set-up

Time Difference Imaging Reference

- Introduction
 Full expiration.
- Experimental Set-up

 Preliminary Results

Discussion

Conclusion

and

- Average of one minute.
 - Average of whole dataset.

EIT Images vs Volume (Minimum Ref.)

EIT Images vs Volume (Average Ref.)

Reference Selection (Sliding Window)

EIT Images vs Volume (Slid. Win. Ref.)

EIT Images vs Volume (Slid. Win. Ref.)

8000

8000

Heilbad Heiligenstadt, Germany, April 22-25, 2013

Ventilator Data as Prior Information

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

- Real-time prior information for image reconstruction algorithms:
 - Breathing frequency.
 - Tidal volume.
 - Ventilation phase (inspiration, pause, expiration).
 - Change in ventilator settings (mode, PEEP, etc.).
 - Ventilator alarms to help in assessing data validity.

Planned Data Analysis

- Introduction
- Experimental Set-up
- Preliminary Results

- Statistical analysis:
 - Atypical events in EIT and ventilator data.
 - Correlations between EIT and ventilator data.
 - Limiting factors:
 - Low number of patients.
 - Low similarities between patients.

 Discussion and Conclusion Low data quality due to electrode disconnections. and numerous staff interventions on patients.

Factors Affecting EIT Image Quality

- Introduction
- Patients are awake and moving
- Experimental Set-up
- Preliminary Results

- Contact impedance variations
 - Torso geometry variations
- Patients that would more benefit from EIT would more likely be asleep and stand still.

Electrode Placement Constraints

- Introduction
- Experimental Set-up
- Preliminary Results

 Discussion and Conclusion

http://www.brice-taton.com

Prolonged Continuous Monitoring

Introduction

 Experimental Set-up

Preliminary

Results

- Minimization of measurement drift:
 - Hardware design techniques.
 - Mathematical modelling.
- Selection of reference dataset:
 - Sliding window technique.
 - Automatic reset of reference dataset.
 - Algorithm to automatically evaluate the quality and stability of the reference over time.
 - Accelerometer located on the patient.

XVth International Conference on Electrical Bio-Impedance (ICEBI) XIVth Conference on Electrical Impedance Tomography (EIT) Heilbad Heiligenstadt, Germany, April 22-25, 2013

 Discussion and Conclusion

ICU Applications

- Introduction
- Experimental Set-up

 Preliminary Results

 Discussion and Conclusion

- Electrode disconnections and contact impedance variations:
 - Automatic detection in hardware.
 - Management in software.
- EIT systems should be made more flexible for the number of required electrodes and their placement.

Thank you for your attention!

- This work was supported in part by:
 - Natural Sciences and Engineering Research Council of Canada (NSERC).
 - Canadian Institutes of Health Research (CIHR).
 - Fonds de recherche du Québec Nature et technologies (FQRNT).