Challenges of Prolonged Continuous Monitoring of Mechanically Ventilated Pediatric Patients Using EIT

Hervé Gagnon, Philippe Jouvet, Jean-Christophe Gervais, Olivier Fléchelles, Robert Guardo, and Andy Adler.

- Carleton University, Ottawa, Canada.
- École Polytechnique de Montréal, Montréal, Canada.
- Hôpital Sainte-Justine, Montréal, Canada.
Introduction

- EIT images of ventilation have been successfully compared and validated with:
 - Spirometry;
 - Plethysmography;
 - Radiology;
 - Pulmonary scintigraphy;
 - CT-Scans.

- Most of these studies were performed
 - In controlled environments;
 - Over relatively short periods of time.
Introduction

- Prolonged continuous validation over the range of hours or days has not been performed for current EIT systems.*

- Continuous monitoring in the intensive care unit (ICU) is important to:
 - Prevent ventilator-induced lung injury;
 - Detect the onset of pulmonary edema, atelectasis or pneumothorax.

* A Adler, MB Amato, JH Arnold, R Bayford, M Bodenstein, SH Böhm, BH Brown, I Frerichs, O Stenqvist, N Weiler, and GK Wolf, Whither lung EIT: Where are we, where do we want to go and what do we need to get there?, Physiol. Meas. 33 (2012) 679–694
Introduction

- **Main goal:**
 - Correlate EIT images with ventilator data during prolonged continuous monitoring of mechanically ventilated patients in a pediatric intensive care unit.

- **Specific goals:**
 - Study long term variations in EIT images:
 - instrumentation drift;
 - electrode-skin contact impedance variations.
 - Study clinical events leading to large image artifacts:
 - electrode disconnection;
 - patient manipulation during regular staff interventions.
EIT Hardware

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

XVth International Conference on Electrical Bio-Impedance (ICEBI)
XIVth Conference on Electrical Impedance Tomography (EIT)
Heilbad Heiligenstadt, Germany, April 22-25, 2013
Acquisition of EIT and Ventilator Data

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion
GUI of the Combined System

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion
Experimental Protocol

- Passive recording with no recruitment protocol.
- Clinical staff were instructed on how to connect the system to the patient.
- Two-hour recording.
- Clinical staff were instructed:
 - to proceed with normal patient care;
 - to reconnect electrodes if they become disconnected.
Patient Information

- Criteria for inclusion:
 - Mechanically-ventilated;
 - Age > 1 year;
 - Weight > 10 kg;
 - Stable patient.
- 6 patients have been included.
Observations

- All patients were awake.
- Interactions with clinical staff included:
 - Repositioning of patient;
 - Caring and cleaning;
 - Airway Suctioning;
 - Percutaneous injection and blood sampling;
 - Clinical examination;
 - Physiotherapy;
 - Respiratory therapy.
Ventilation Mode

- **Patient Range Selection:**
 - Neonate Mode (4)
 - Adult Mode (2)

- **Ventilation Mode:**
 - Pressure Control (1)
 - Pressure Reg. Volume Control (1)
 - Pressure Support / CPAP (2)
 - SIMV (Press. Contr.) + Pressure Support (1)
 - SIMV (Press Reg. Volume Control) + Pressure Support (1)
EIT Measurements vs Volume

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Graphs showing average voltage and volume over time for Patient #1.

Correlation = 0.486
EIT Measurements vs Volume

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

![Graph showing EIT Measurements vs Volume](image)

Correlation = 0.030

Note: The graph shows the correlation between EIT measurements and volume changes over time for Patient #5.
EIT Measurements vs Temperature$^{-1}$

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Patient #1

Average Voltage (AUV)

- Time (s)
- Correlation = 0.663

Temperature$^{-1}$

- Time (s)

XVth International Conference on Electrical Bio-Impedance (ICEBI)
XIVth Conference on Electrical Impedance Tomography (EIT)
Heilbad Heiligenstadt, Germany, April 22-25, 2013
EIT Measurements vs Temperature$^{-1}$

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Patient #5

![Graph showing temperature vs time and correlation coefficient]

Correlation = -0.623

Temperature$^{-1}$

Time (s)

Average Voltage (AUV)

Time (s)
EIT Measurements vs Alarm

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Patient #5

![Graph showing average voltage (AUV) over time](image)

Alarm

![Graph showing alarm levels over time](image)

Notes

- XVth International Conference on Electrical Bio-Impedance (ICEBI)
- XIVth Conference on Electrical Impedance Tomography (EIT)
- Heilbad Heiligenstadt, Germany, April 22-25, 2013
EIT Measurements vs O₂ Concentration

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Patient #5

Average Voltage (AUV)

Oxygen concentration (%)

Time Difference Imaging Reference

- Full expiration.
- Average of one minute.
- Average of whole dataset.
EIT Images vs Volume (Minimum Ref.)

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

![Graph showing average conductivity and volume over time for Patient #1 with correlation 0.425]
EIT Images vs Volume (Average Ref.)

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

Patient #1

```
Average Conductivity (AUC)

Time (s)

Correlation = 0.420

Average Volume (ml)
```

XVth International Conference on Electrical Bio-Impedance (ICEBI)
XIVth Conference on Electrical Impedance Tomography (EIT)
Heilbad Heiligenstadt, Germany, April 22-25, 2013
Reference Selection (Sliding Window)
EIT Images vs Volume (Slid. Win. Ref.)

- Introduction
- Preliminary Results
- Experimental Set-up
- Discussion and Conclusion

Patient #5

Average Conductivity (AUC)

Time (s)

Correlation = 0.119

Volume (ml)

Time (s)
Ventilator Data as Prior Information

- Real-time prior information for image reconstruction algorithms:
 - Breathing frequency.
 - Tidal volume.
 - Ventilation phase (inspiration, pause, expiration).
 - Change in ventilator settings (mode, PEEP, etc.).
 - Ventilator alarms to help in assessing data validity.
Planned Data Analysis

▸ Statistical analysis:
 ▪ Atypical events in EIT and ventilator data.
 ▪ Correlations between EIT and ventilator data.

▸ Limiting factors:
 ▪ Low number of patients.
 ▪ Low similarities between patients.
 ▪ Low data quality due to electrode disconnections and numerous staff interventions on patients.

XVth International Conference on Electrical Bio-Impedance (ICEBI)
XIVth Conference on Electrical Impedance Tomography (EIT)
Heilbad Heiligenstadt, Germany, April 22-25, 2013
Factors Affecting EIT Image Quality

- Patients are awake and moving
 - Contact impedance variations
 - Torso geometry variations
- Patients that would more benefit from EIT would more likely be asleep and stand still.
Electrode Placement Constraints

- Introduction
- Experimental Set-up
- Preliminary Results
- Discussion and Conclusion

http://www.brice-taton.com

XVth International Conference on Electrical Bio-Impedance (ICEBI)
XIVth Conference on Electrical Impedance Tomography (EIT)
Heilbad Heiligenstadt, Germany, April 22-25, 2013
Prolonged Continuous Monitoring

- Minimization of measurement drift:
 - Hardware design techniques.
 - Mathematical modelling.

- Selection of reference dataset:
 - Sliding window technique.
 - Automatic reset of reference dataset.
 - Algorithm to automatically evaluate the quality and stability of the reference over time.
 - Accelerometer located on the patient.
ICU Applications

- Electrode disconnections and contact impedance variations:
 - Automatic detection in hardware.
 - Management in software.
- EIT systems should be made more flexible for the number of required electrodes and their placement.
Thank you for your attention!

- This work was supported in part by:
 - Natural Sciences and Engineering Research Council of Canada (NSERC).
 - Canadian Institutes of Health Research (CIHR).
 - Fonds de recherche du Québec - Nature et technologies (FQRNT).