Data Quality and Inverse Problems

Bayesian Image Reconstruction Workshop U. Manchester, UK: 4 March 2013

Andy Adler

Professor & Canada Research Chair in Biomedical Engineering Systems and Computer Engineering, Carleton University

Data Quality

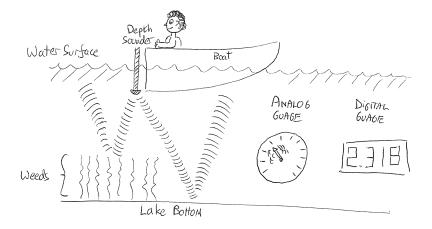
What is data quality?

- Wrong Data Data Errors
- Uninformative Data
- Misinterpreted Data

Outline:

- Examples
- Bayesian Framework
- Electrode Errors
- Data Quality Measures
- Thoughts from Biometrics & Information Theory
- A way forward?

Example #1: Data Quality

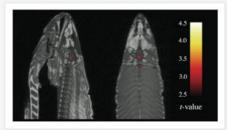


Depth Sounder - with analog and digital guages

Example #2: Data Quality

neuroskeptic.blogspot.ca/2009/09/fmri-gets-slap-in-face-with-dead-fish.html

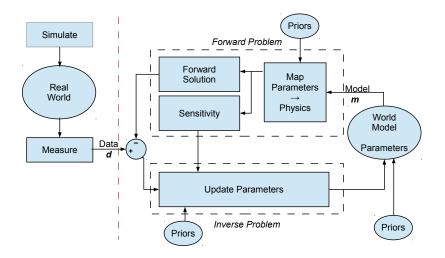
Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction



This is a poster presented by Bennett and colleagues at this year's Human Brain Mapping conference. It's about fMRI scanning on a dead fish, specifically a salmon. They put the salmon in an MRI scanner and "the salmon was shown a series of photographs depicting human individuals in social situations. The salmon was asked to determine what emotion the individual in the photo must have been experiencing."

According to the authors, subject, "not alive at the time of scanning"

Inverse Problem Framework



Framework for inverse problems. Note all the priors

With strong priors, algorithms give us pretty pictures, even when they are irrelevant.

Question:

- how can we know when to trust a pretty picture?
- how can we know when the data are junk?

Bayesian Formulation

 Forward Problem (Data d, Parameters m, noise n)

$$d=F(m)+n$$

Noise Model

$$n \sim \mathcal{N}(0, \Sigma_n)$$

Data Posterior Probablility

$$p(d|m) \propto exp\left(-rac{1}{2}\|d-F(m)\|_W^2
ight), \qquad W = {\Sigma_n}^{-1}$$

Bayesian Formulation

• Parameters Prior Probability

$$egin{array}{rcl} m &\sim & \mathcal{N}(m, \Sigma_m) \ p(m) &\propto & exp\left(-rac{1}{2}\|m-m_0\|_P^2
ight), & P=\Sigma_m^{-1} \end{array}$$

Posterior Probability

$$p(m|d) \propto p(d|m)p(m)$$

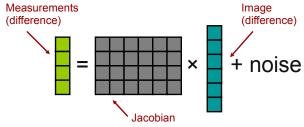
$$\propto exp\left(-\frac{1}{2}\|d-F(m)\|_W^2 - \frac{1}{2}\|m-m_0\|_P^2\right)$$

MAP solution minimizes norm

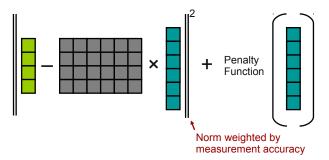
$$\|d - F(m)\|_W^2 + \|m - m_0\|_P^2$$

Reconstruction in Pictures

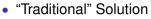
Forward Problem

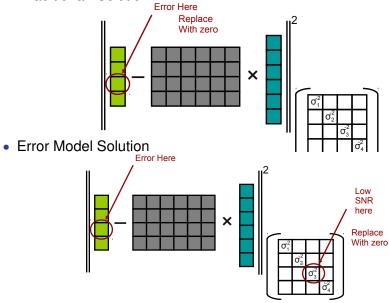


MAP Solution Norm



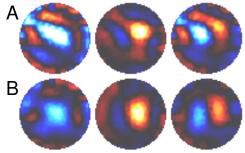
Reconstruction with Data Errors





Electrode Error compensation

• Offline compensation using "jack-knife" approach (2005)

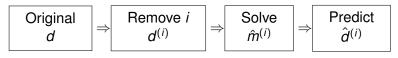


EIT images in anaesthetised, ventilated dog A: uncompensated, B: compensated. *Left*: ventilation *Centre*: saline (right lung) *Right*: ventilation and saline

- Automatic detection (via reciprocity comparison) (2009)
- New work to speed online calculation & use data quality

Data Quality Measure: Concept

- Concept: High Quality Data is Consistent
- · Idea: Use IP to predict each data point from all others



Calculate error

$$\epsilon_i = \mathbf{d}_i - \hat{\mathbf{d}}_i^{(i)}$$

Data Quality Measure: Linear Case

•
$$\epsilon$$
 from data d
 $\epsilon_i = d_i - \hat{d}_i^{(i)}$ where $\hat{d}^{(i)}$ is predicted without i
 $\hat{d}^{(i)} = J\hat{m}^{(i)} = JRd$
 $\hat{d}^{(i)} = JR^{(i)}d$ where $R^{(i)}$ is Rec. Matrix without i
 $R = \Sigma_m J^t (J\Sigma_m J^t + \Sigma_n)^{-1}$
 $R^{(i)} = \Sigma_m J^t (J\Sigma_m J^t + \alpha^2 I + \mu^2 \Xi^{(i)})^{-1}$ where $\Xi^{(i)}$ is 1 at (i, i)
 $\epsilon_i = [d - \hat{d}^{(i)}]_i = [d - JR^{(i)}d]_i = [I - JR^{(i)}]_i d$

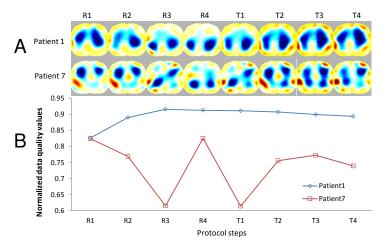
• Quality Matrix Q

$$\epsilon = Qd$$

where $Q_i = I - J^t \Sigma_m J^t \left(J \Sigma_m J^t + \alpha^2 I + \mu^2 \Xi^{(i)} \right)^{-1}$

• Q calculation can be optimized

Example: Data quality measures

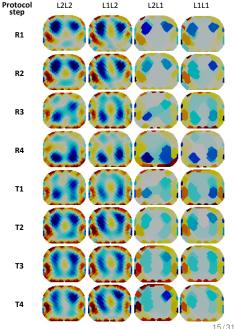


Clinical data and data quality metric for each stage of the protocol (R1–R4 — recruitment: PEEP↑, T1–T4 — titration: PEEP↓). A: EIT images (one-step Gauss-Newton solver with a 2D forward model), *B*: Calculated data quality.

Example: Robust Algorithms

$$\|d - F(m)\|_{\ell_d} + \|m - m_0\|_{\ell_m}$$

- *l*₁ norm for the image prior allows "blocky" reconstructions
- l₁ norm for the data mismatch gives improved robustness to outliers
- Figure: Reconstructions with mixed (data/image) norms for clinical data for each stage of the protocol (R1–R4 — recruitment: PEEP↑, T1–T4 — titration: PEEP↓).



A way forward?

- Inverse Problems are hard; priors are useful; users like pretty pictures
 - \Rightarrow the situation will get worse
- Complex systems fail in complex ways
- Very complex systems (human brains) fail in extremely sophisticated ways. These errors are carefully researched (psychology, neuroscience)
- Idea: we need a new research area inverse problem problems IP²

 \Rightarrow goal: understand/classify situations where IPs fail.

Low Quality Data are Less Informative:

Measuring Quality via Information Content

Andy Adler, Richard Youmaran Carleton University, Ottawa, Canada

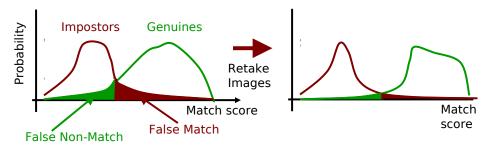
From: Presentation at NIST Biometric Biometric Quality Workshop II, Nov 2007

Biometric Sample Quality

- Biometric Sample Quality measures:
- character
 - inherent features
- Fidelity
 - accuracy of features
- Utility
 - predicted system performance

INCITS, Biometric Sample Quality Standard Draft, M1/06-0003

Utility Quality



Since the algorithm errors were less, the retaken images had higher quality But, could we have done better with the first images?

Utility Quality

- The ability of the system to use the data to achieve low error rates
- Dependent on processing algorithm
- Doesn't measure "inherent" quality in the data

Character / Fidelity

Descriptions of "inherent" quality of a biometric sample

Character Quality Problems

- Blur
- Shadows
- Poor lighting
- Fidelity Quality Problems
 - A good image of the wrong part

Example: Character Quality

←Best Faces Human Selections Worst Faces →

Example: Fidelity Quality

How can we measure character quality?

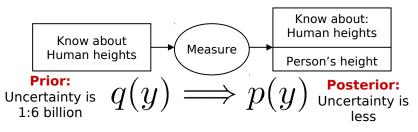
Probing question:
 Why do we worry about low quality data?

Answer:

They have less information .

Definition: *MI* (Mutual Information) *Measurement Information:*

the decrease in uncertainty about the identity of an individual based on a measurement of biometric features.



 Measure KLD (Kullback-Leibler divergence) the "extra bits" of information needed to represent p(y) wrt q(y). Average over population to get MI (mutual information)

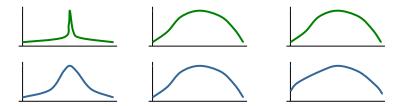
Example #1: measure Height

Measure #1 (at doctor's office, ie. accurate)

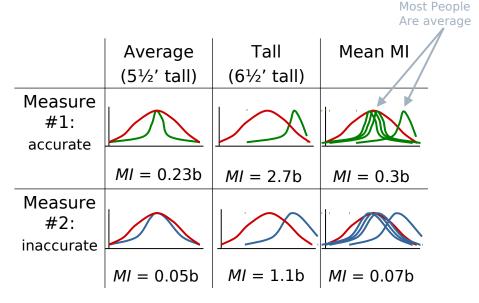
Measure #2 (via telescope, ie. inaccuate)

Individual Variability (+device errors) Population Variability

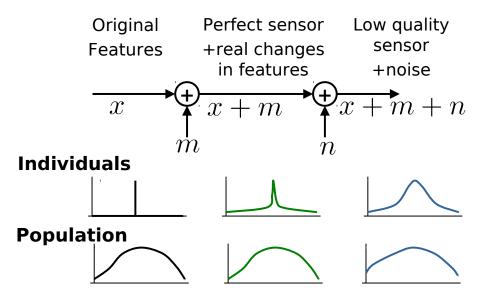
Overall Distribution



MI for height data



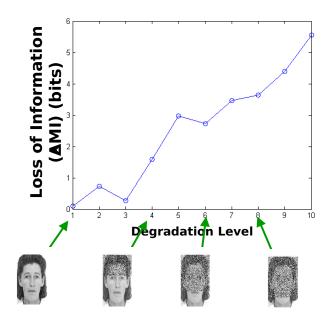
Quality Loss Model



Formula page ... • KLD: $D(p||q) = \int p(\mathbf{y}) log_2 \frac{p(\mathbf{y})}{q(\mathbf{y})} d\mathbf{y}$

- MI: $= \mathop{E}_{q} \left[D(p \| q) \right]$
- Gaussian Models: $= \frac{1}{2} log_{2} | \Sigma_{q} \Sigma_{p}^{-1} | + tr \left(\Sigma_{p} \Sigma_{q}^{-1} \right) |$ When signal>noise When noise>signal, ignore With noise model: $= \frac{1}{2} log_{2} | \Sigma_{x} (\Sigma_{m} + \Sigma_{n})^{-1} + \mathbf{I} |$

Results: loss of MI with addition of image noise



Comment: Quality

- Quality is a value laden term
- Can we tell users this?

Error		X
8	Your face image quality is too low	
ок	CANCEL	

Comment: Quality

- Quality is a value laden term
- Can we tell users this?

Error	×
8	Your face image quality is too low
ок	CANCEL GET PLASTIC SURGERY