Role of Transthoracic Impedance on the success of synchronized electrical cardioversion By Varsha Chaugai *under the supervision of* Dr. Andy Adler, Dr. Adrian D.C. Chan, Timothy Zakutney

**Masters Thesis Defense Presentation – August 23, 2012** 





In partial fulfillment of the requirements for the degree of

**Masters of Applied Science** 





# **Motivation**

- Cardioversion Treatment to restore normal sinus rhythm for atrial fibrillation (AF), atrial flutter (AFL) and ventricular tachycardia (VT).
- Successful cardioversion

   sufficient current (I) for depolarization
- $I \propto \frac{1}{Transthoracic Impedance (TTI)}$



#### Cardioversion setup





# **Motivation**

- Biphasic defibrillators compensate for the TTI
- Low success rate for patients with high TTI.
- More shocks for high TTI patients unbeneficial.
- Impedance compensating biphasic defibrillators improve the success rate for high TTI patients - UNCLEAR





# **Thesis Objectives**

1. Effect of TTI on the success rate of cardioversion







# **Thesis Objectives**

- 2. Examine the effect of pad positions using FEM
  - Pad position clinician specific
  - No general agreement





## **Overview of Contributions**







# **Contribution #1 :** Statistical analysis to examine the effect of TTI on the efficacy of cardioversion.

## <u>Methodology :</u>

- 574 cases (952 shocks) for AF, 112 cases (125 shocks) for AFL, 89 cases (176 shocks) for VT.
- Shocks classified as "success" and "failure".
- Divided into categories of low and high energy and impedance.
- Chi-square and Fischer's exact test at  $\alpha = 0.05$





Results :



100

100

• Statistically significant results for AF and VT.





### Conclusion :

• High TTI, lower success rate.

 Inefficient impedance compensation.







# **Contribution #2 :** Determination of current amplitude for a successful cardioversion

## <u>Methodology :</u>

Clinical cardioversion data

## Results :

 Optimal current range between 24 A – 48 A





• TTI influences  $\rightarrow$  current  $\rightarrow$  the success rate.





Contribution #3 : Effect of TTI on current density distribution in the thorax using FEM on different patient types <u>Methodology :</u> Thin







Results :













# **Contribution #4 :** Effect of pad position on cardioversion



• Pad positions modelled using FEM





#### Results :

- Least current
- Low resistance
- Higher uniformity AP2 in current

## **Conclusion:**

• AP2 - most effective







# **Effect of pad position on patient size:**

## Methodology:

• Modelling the three positions on the three patient types.

## Results:

• Less current and energy for large patients at AP2

### **Conclusion:**

 Better defibrillation result in AP2







# **Thesis Conclusion:**

- TTI plays an important role in success rate of cardioversion.
- Pad position also affects the cardioversion efficacy.
- One of the ways to increase the success rate for high TTI patients is to change the pad position to AP2 during cardioversion.





# **Publication:**

#### **Contribution #4: Conference paper**

 Chaugai V, Adler A, Chan ADC, Zakutney T, "Estimation of effective pad positions during cardioversion using 3-dimensional finite element model", 35<sup>th</sup> Conference of the Canadian Medical & Biological Engineering Society, Halifax, Canada, 2012. Role of Transthoracic Impedance on the success of synchronized electrical cardioversion By Varsha Chaugai *under the supervision of* Dr. Andy Adler, Dr. Adrian D.C. Chan, Timothy Zakutney

**Masters Thesis Defense Presentation – August 23, 2012** 





In partial fulfillment of the requirements for the degree of

**Masters of Applied Science** 





#### **Future work:**

- 1. Prospective Study
- 2. Current based defibrillators
- 3. Measurement of the impedance before the cardioversion procedure
- 4. Refining the FEM model
- 5. Analysis of pad shape and pad size
- 6. Finding current in the heart
- 7. Comparison of FEM results with the clinical data
- 8. Inclusion of Defibrillation events





#### **Questions:**

- Cardiac arrest – no electrical conduction in the heart



Atrial flutter

Atrial fibrillation

VT: rapid ventricular Contractions, no blood Pumped in the heart

- Pacemaker : something wrong with SA or AV node or during cardiac block





- true <u>null hypothesis</u> was incorrectly rejected (Type I error) or where one fails to reject a false <u>null hypothesis</u> (Type II error).
- Impedance does not affect but u say impedance affect (type I error)
- Results show impedance affect, but u reject it and show the impedance doesnot affect (type II error)
- That's why we use 0.05 as we are less prone to make type II error
- Erroneous results if chi-square is used for <5
- Confounding effect variables that affect dependent & independent
   Variable (for our case like age, gender, duration of arrhythmia, patient's
   Condition, drug(medicine) consumption history.

  <sup>22</sup>





**Dysfunction – changed into different arrhythmia, harm is temporary** 

- Damage/injury- damage to the myocardial cells and it is permanent.– Thromboembolism, ischemia, degeneration of the cells, myocarditis, Cell necrosis
  - How is giving more number of shocks harmful? Causes damage Strength-duration relationship