Quantification of Right Ventricular Function in Pulmonary Hypertension using Cardiac PET Images

Simisani Takobana M.A.Sc Defense Department of Systems and Computer Engineering Carleton University

Supervisors: Dr. Ran Klein, University of Ottawa Heart Institute Dr. Andy Adler, Carleton University

Canada's Capital University

Motivation and Goals

Motivation:

- 3 year survival 48% without treatment and 55% with current therapy. <u>Long term goal:</u>
- To understand the risk factors and causes of pulmonary hypertension (PH), understand disease progression, and develop therapies.

<u>Immediate goal:</u>

- Develop an automatic tool with optional operator intervention for defining RV region of interest in 3D cardiac images:
 - Used to quantify RV cardiac function. 0
 - Used to quantify RV molecular function. 0

http://www-sop.inria.fr/asclepios/projects/Health-e-Child/DiseaseModels/content/cardiac/tofSimul intr oduction.php

Normal RV

Introduction – Literature Review

- Advanced PH is associated with RV hypertrophy and dysfunction.^{1,2}
- Previous work investigated use of SPECT for imaging advanced disease.^{1,2,4}
 - Limited understanding of PH and its relation to RV function.
 - Manual segmentation of the RV.
- Early RV disease may be better <u>detected</u> and <u>understood</u> with SPECT and PET imaging.¹
 - Perfusion?
 - Metabolism?
- Automatic quantification of left ventricular (LV) function using FlowQuant.³
 - RV function not currently measured for PET images.

[1] Pereira, JNM 1997:38(2);254.

[2] Naeije, European Heart Journal Supplements, vol. 9, no. suppl H, p. H5, 2007

[3] Klein, Nuclear Science Symposium Conference Record, 2006.

[4] Mannting, JNM, vol. 40, no. 6, pp. 889–894, Jun. 1999.

Brief Overview of PET and SPECT

- Injected tracer trace amounts of specific molecule that interacts physiologically.
- Specialized camera detect radiation and reconstruct 3D image **volume** of tracer concentrations.

Introduction – Model properties

- Automatically register RV ROI with optional operator intervention:
- Accommodate all RV anatomies (normal, hypertrophic)
- Minimum control points and degrees of freedom

Defining Model Shape

- I2 control points (I3 degrees of freedom).
 - Initially estimated based on LV shape.
 - Automatically optimized
 - Adjustable by operator (GUI)

Defining Model Shape - Interpolation

- Sampling points interpolated in pseudo-cylindrical coordinate system:
 - I6 slices by I8 sectors = 288 sampling points.
 - Radii interpolated for each slice and sector.

Graphical Representation

3D Mesh

Horizontal Long Axis (HLA) slice

Short axis (SA) slices

Global Contour Optimization

- Minimization of a cost function
 - $C = C_{intensity} + C_{constraints}$
- Maximization of sampled image intensity
 - $C_{intensity} = \sum_{p \in ROI} \frac{I_{max}}{I_{max} I_p}$ where I_{max} is the maximum image intensity and I_p is the image intensity of pixel p
- Constraints on RV shape and size

Model Validation and Characterization

- Model Appropriateness
 - Manual adjustment of control points
- Automation Performance
- Operator Dependent Variability
 - 2 operators x 2 runs each
 - Tracer uptake reproducibility
 - Sampling point position variability
- Cavity Volume and EF Accuracy (PET vs. CMR)

Model Validation-Results

- Model appropriateness 20 Images (5 non-PH, 5 PH, 5 normal rat, 5 PH rats*)
 - 14 passed, 6 failed
 - Low image intensity in normal rats
- Automation performance 14 Images that passed model evaluations:
 - 7 complete automation
 - 13 successful automatic fitting of the free wall

* PH induced by treating with monocrolatine (MCT)

6

5

4

3

2

1

mm

Model Validation - Operator Variability

- 2 operators
 - Expert and Novice
- 2 runs each:
 - separate days
 - anonymized
 - Randomized order

		RV (current)	LV (Klein et-al)
		RPC	RPC
Intra Operator	Op I (expert)	5.6	0.97
Variability	Op 2 (novice)	6.4	1.2
Inter Operator Variability		8.2	1.8

Cavity volume and EF accuracy-Results

• (PET vs. CMR)

Results Summary

- Complete automation not achieved due to:
 - Image Intensity (low around the atrium)
 - Spillover from LV
 - A wide range of RV anatomies
 - RV bifurcation into PA and RA
- Nevertheless, semi-automated tool can be used for current research.

Discussion and Limitations

- Operator reproducibility
 - Did not include animal images.
 - Limited demographics.
- Cardiac function accuracy (PET vs. CMR)
 - Small number of patients.
 - Limited demographics.
- Only used ¹⁸F labeled tracers.
 - Lower quality images not included.
 - Did not include SPECT image.

Conclusions

- Developed, validated, characterized, and demonstrated a spline model that sufficiently registers the RV region of interest semi-automatically.
 - First of its kind
 - Sufficient for current and future research of PH in animal models and clinical studies.
- Future Work
 - Improve Automation
 - More Validation
 - Development and evaluation of kinetic modeling for quantification of physiologic function.

Acknowledgement

- Ran Klein
- Andy Adler
- Robert deKemp
- Stephanie Thorn
- Lisa Mielniczuk

End

0