Optimal PEEP selection in Mechanical Ventilation using EIT

Ravi B. Bhanabhai

Carleton University - 2009/11 M.A.Sc

January 20, 2012
1. Introduction
 - The Problem
 - How to solve the problem?

2. Contributions
 - IP Calculation
 - Fuzzy Logic System

3. Results
 - Sigmoid vs. Linear
 - Linear vs. Visual
 - Optimal PEEP

4. References
Introduction

- This is a presentation outlining the work done within Ravi Bhanabhai M.A.Sc thesis.
- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.

Mathematical Tools:
1. Linear and Non-Linear curve fitting techniques
2. Fuzzy Logic.

Contributions:
1. Summarize scholarly papers on ALI.
2. Inflection Point (IP) location on EIT and pressure data.
3. Creation of Fuzzy Logic System using IP.

Novel Aspects:
1. Use of short recruitment maneuver (≤ 2min)
2. Regional Inflection Points used
3. Use of Inflection Points within an automated classification system
This is a presentation outlining the work done within Ravi Bhanabhai M.A.Sc thesis.

Purpose: Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.

Mathematical Tools:
1. Linear and Non-Linear curve fitting techniques
2. Fuzzy Logic.

Contributions:
1. Summarize scholarly papers on ALI.
2. Inflection Point (IP) location on EIT and pressure data.
3. Creation of Fuzzy Logic System using IP.

Novel Aspects:
1. Use of short recruitment maneuever (≤ 2min)
2. Regional Inflection Points used
3. Use of Inflection Points within an automated classification system
This is a presentation outlining the work done within Ravi Bhanabhai M.A.Sc thesis.

Purpose: Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.

Mathematical Tools:
1. Linear and Non-Linear curve fitting techniques
2. Fuzzy Logic.

Contribtions:
1. Summarize scholarly papers on ALI.
2. Inflection Point (IP) location on EIT and pressure data.
3. Creation of Fuzzy Logic System using IP.

Novel Aspects:
1. Use of short recruitment maneuever (≤ 2min)
2. Regional Inflection Points used
3. Use of Inflection Points within an automated classification system
Introduction

- This is a presentation outlining the work done within Ravi Bhanabhai M.A.Sc thesis.

- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.

- **Mathematical Tools:**
 1. Linear and Non-Linear curve fitting techniques
 2. Fuzzy Logic.

- **Contributions:**
 1. Summarize scholarly papers on ALI.
 2. Inflection Point (IP) location on EIT and pressure data.
 3. Creation of Fuzzy Logic System using IP.

- **Novel Aspects:**
 1. Use of short recruitment maneuver (≤ 2min)
 2. Regional Inflection Points used
 3. Use of Inflection Points within an automated classification system
ALI & VILI

Respiratory Failure

Oxygenation Failure (hypoxemia)

Ventilatory Failure (hypercapnia)

+ more oxygen related conditions

Acute Lung Injury (ALI)

Ventilator Induce Lung Injury (VILI)

* Cyclic opening and closing
* overdistension

PEEP
Respiratory Function Models

\[P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \]

(1)
Respiratory Function Models

\[P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \]

Interested in \(\frac{V}{C} \) only.
Respiratory Function Models

\[P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \]

- Interested in \(\frac{V}{C} \) only.
- To remove other components this thesis data did two things:
 1. Slow Constant Flow
 2. Antheysia
Pressure-Volume Curves

- Used to help guide ventilation strategies by locating points of compliance change.
Pressure-Volume Curves

- Used to help guide ventilation strategies by locating points of compliance change.
- Points are Lower Inflection Point (LIP) and Upper Inflection Point (UIP)
Pressure-Volume Curves

- Used to help guide ventilation strategies by locating points of compliance change.
- Points are Lower Inflection Point (LIP) and Upper Inflection Point (UIP)

(e) Linear Fit of PI data
Data used

Data used:

- 26 patients
- low constant flow maneuver (4 L/min)
- start 0 mbar → 35 mbar / 2L
Electrical Impedance Tomography (EIT)

EIT is real-time impedance tomography, it can be used to accurately measure air distribution within the thorax.
Electrical Impedance Tomography (EIT)

EIT is real-time impedance tomography, it can be used to accurately measure air distribution within the thorax.

(a) Start of Inflation (b) Max Pressure (c) End of Deflation

Figure: Example reconstruction using the GREIT methods of a healthy lung patient (patient 7).
Contributions

- Automated IP calculation
Contributions

- Automated IP calculation
- Rule-base Fuzzy Logic Classifier
Three Types of IP location methods were used:
Three Types of IP location methods were used:

1. Sigmoid method
Three Types of IP location methods were used:

1. Sigmoid method
2. Visual heuristics
Three Types of IP location methods were used:

1. Sigmoid method
2. Visual heuristics
3. 3-piece linear spline method
Three Types of IP location methods were used:

1. Sigmoid method
2. Visual heuristics
3. 3-piece linear spline method

Multiple methods were implemented for comparison reasons.
Sigmoid Method

Sigmoid Method

\[
\text{Plip} = c - 2d = 11.1
\]

\[
\text{Plip} = c + 2d = 22.9
\]

\[
c = 17 \text{ cm H2O}
\]

\[
a = 12 \text{ ml}
\]

\[
b = 1173 \text{ ml}
\]
Visual Heuristics

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 1. Find location where PV curve has linear compliance
 2. Pressure where rapid increase in compliance occurs
 3. Place two line. 1) Along low compliance. 2) Along high compliance. Locate intersection.
Visual Heuristics

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 1. Find location where PV curve has linear compliance

Visual Heuristics

Clinicians used this method to locate Inflection Points from global PV curves.

Multiple methods exist:
1. Find location where PV curve has linear compliance
2. Pressure where rapid increase in compliance occurs
Contributions

IP Calculation

Visual Heuristics

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 1. Find location where PV curve has linear compliance
 2. Pressure where rapid increase in compliance occurs
 3. Place two line. 1) Along low compliance. 2) Along High compliance. Locate Intersection.
Clinicians used this method to locate Inflection Points from global PV curves.

Multiple methods exist:
1. Find location where PV curve has linear compliance
2. Pressure where rapid increase in compliance occurs
3. Place two line. 1) Along low compliance. 2) Along High compliance. Locate Intersection.

This thesis:
1. 5 participants
2. Fit in linear manner to get closest to all the data points
Visual Heuristic

Trial3/4 − Deflation

One chance only, be carefull

Trial1/4 − Deflation

One chance only, be carefull
3-piece Linear Spline Method

- Similar to visual methods
3-piece Linear Spline Method

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection
3-piece Linear Spline Method

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection
- **This Thesis**: No Constraints on fitting other than minimization of criteria
3-piece Linear Spline Method

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection
- **This Thesis:** No Constraints on fitting other then minimization of criteria
Introduction

The Fuzzy System is designed into 4 sections:
The Fuzzy System is designed into 4 sections:

1. Location of IP
Introduction

The Fuzzy System is designed into 4 sections:

1. Location of IP
2. Fuzzification
Introduction

The Fuzzy System is designed into 4 sections:

1. Location of IP
2. Fuzzification
3. Premise Calculation (Application of IF-THEN)
4. Defuzzification and Optimization
Conclusions

Fuzzy Logic System

Inference and Defuzzification

- **Inflection Points**
- **Fuzzification**
- **Rule Base**
- **Premise Calculation**
- **Optimization**

- **Pressure - Inflation**
- **Pressure - Deflation**

Good States

Bad States

Pressure based Membership Graph

- **Deflation**
- **Inflation**

EIT based Membership Graph

- **Deflation**
- **Inflation**

EIT Conductivity

- **Linear Fit - Inflation**
- **Linear Fit - Deflation**

Inflection Points Fuzzification Premise Calculation Optimization Rule Base

- **Above**
- **In Between**
- **Below**

Inference and Defuzzification

Contributions

Safety Keeping Ventilation Patients

Ravi B. Bhanabhai (Carleton U)
IP and Fuzzification

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.
IP and Fuzzification

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.

<table>
<thead>
<tr>
<th>Membership</th>
<th>Input 1 (mbar)</th>
<th>Input 2 (mbar)</th>
<th>Input 3 (mbar)</th>
<th>Input 4 (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below</td>
<td>min(p)</td>
<td>min(p)</td>
<td>-2+LIP</td>
<td>LIP</td>
</tr>
<tr>
<td>In Between</td>
<td>-2+LIP</td>
<td>LIP</td>
<td>LIP</td>
<td>2+UIP</td>
</tr>
<tr>
<td>Above</td>
<td>UIP</td>
<td>2+UIP</td>
<td>max(p)</td>
<td>max(p)</td>
</tr>
</tbody>
</table>

Table: Details on creating the trapezoidal based fuzzy membership functions
IP and Fuzzification

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.

<table>
<thead>
<tr>
<th>Membership</th>
<th>Input 1 (mbar)</th>
<th>Input 2 (mbar)</th>
<th>Input 3 (mbar)</th>
<th>Input 4 (mbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below</td>
<td>min(p)</td>
<td>min(p)</td>
<td>-2+LIP</td>
<td>LIP</td>
</tr>
<tr>
<td>In Between</td>
<td>-2+LIP</td>
<td>LIP</td>
<td>UIP</td>
<td>2+UIP</td>
</tr>
<tr>
<td>Above</td>
<td>UIP</td>
<td>2+UIP</td>
<td>max(p)</td>
<td>max(p)</td>
</tr>
</tbody>
</table>

Table: Details on creating the trapezoidal based fuzzy membership functions

Figure: Trapezoidal Fuzzy Membership graph
Inference and Defuzzification

The Inference is conducted using the Rule base. With key relations to previous papers:

1. Pressure below the LIP is considered collapsed
2. Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

1. 'Good' = Normal states
2. 'Bad' = Collpased + Overdistended states

Upon averaging over lung region MAX value between the difference of 'Good' and 'Bad' states is performed to locate the PEEP.
Inference and Defuzzification

The Inference is conducted using the Rule base. With key relations to previous papers:

1. Pressure below the LIP is considered collapsed
2. Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

1. 'Good' = Normal states
2. 'Bad' = Collapsed + Overdistended states

Upon averaging over lung region MAX value between the difference of 'Good' and 'Bad' states is performed to locate the PEEP.
Inference and Defuzzification

The Inference is conducted using the Rule base. With key relations to previous papers:

1. Pressure below the LIP is considered collapsed
2. Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:
Inference and Defuzzification

The Inference is conducted using the Rule base. With key relations to previous papers:

1. Pressure below the LIP is considered collapsed
2. Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

1. ‘Good’ = Normal states
2. ‘Bad’ = Collapsed + Overdistended states
Inference and Defuzzification

The Inference is conducted using the Rule base. With key relations to previous papers:

1. Pressure below the LIP is considered collapsed
2. Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

1. ‘Good’ = Normal states
2. ‘Bad’ = Collapsed + Overdistended states

Upon averaging over lung region MAX value between the difference of ‘Good’ and ‘Bad’ states is performed to locate the PEEP.
Sigmoid vs. Linear

Figure: How frequent each sigmoid and linear method are not able to find IP.
Sigmoid vs. Linear

Figure: How frequent each sigmoid and linear method are not able to find IP.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIP - Inflation</td>
<td>1.47</td>
<td>3.02</td>
<td>1.50</td>
</tr>
<tr>
<td>UIP - Inflation</td>
<td>-6.80</td>
<td>2.54</td>
<td>-6.82</td>
</tr>
<tr>
<td>LIP - Deflation</td>
<td>4.07</td>
<td>1.84</td>
<td>4.07</td>
</tr>
<tr>
<td>UIP - Deflation</td>
<td>-2.37</td>
<td>2.24</td>
<td>-2.78</td>
</tr>
</tbody>
</table>

Table: Difference between Sigmoid and Linear Method
Linear vs. Visual Heuristics

- **Difference** = Linear IP − Visual Heuristic IP
Linear vs. Visual Heuristics

- \textit{Difference} = \textit{Linear IP} − \textit{Visual Heuristic IP}

- -0.6247\text{mbar} for LIP

- -0.4662\text{mbar} for UIP
Results

Linear vs. Visual Heuristics

- Difference = Linear IP - Visual Heuristic IP
- \(-0.6247\) mbar for LIP \(-0.4662\) mbar for UIP
- best average = 0.016 mbar worst average = \(-1.507\) mbar

Provides insight to accuracy of linear method

Ravi B. Bhanabhai (Carleton U)
Linear vs. Visual Heuristics

- **Difference** = Linear IP − Visual Heuristic IP
- −0.6247mbar for LIP −0.4662mbar for UIP
- best average = 0.016mbar worst average = −1.507mbar
- Provides insight to accuracy of linear method
Heterogeneity

Figure: Progressive change of lung state with pressure
LIP+2 vs FLS

(a) Patient 12 (b) Patient 16

(c) Patient 8 (d) Patient 17

Figure: Global PI curve with LIP, UIP, and the LIP+2 mbar pressure and the Fuzzy optimal selection with according FLS based pressure.

Fuzzy Logic Schematic

ending