Optimal PEEP selection in Mechanical Ventilation using EIT

Ravi B. Bhanabhai

Carleton University - 2009/11 M.A.Sc

January 20, 2012

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 1 / 28

Outline

Introduction

- The Problem
- How to solve the problem?

Contributions

- IP Calculation
- Fuzzy Logic System

3 Results

- Sigmoid vs. Linear
- Linear vs. Visual
- Optimal PEEP

References

- This is a presentation outlining the work done within **Ravi Bhanabhai** M.A.Sc thesis.
- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.

< 回 > < 三 > < 三 >

- This is a presentation outlining the work done within **Ravi Bhanabhai** M.A.Sc thesis.
- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.
- Mathematical Tools:
 - Linear and Non-Linear curve fitting techniques
 - Puzzy Logic.

くほと くほと くほと

- This is a presentation outlining the work done within **Ravi Bhanabhai** M.A.Sc thesis.
- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.
- Mathematical Tools:
 - Linear and Non-Linear curve fitting techniques
 - Puzzy Logic.
- Contributions:
 - Summarize scholarly papers on ALI.
 - Inflection Point (IP) location on EIT and pressure data.
 - S Creation of Fuzzy Logic System using IP.

過 ト イヨ ト イヨト

- This is a presentation outlining the work done within **Ravi Bhanabhai** M.A.Sc thesis.
- **Purpose:** Investigate the use of Electrical Impedance Tomography (EIT) within mechanical ventilation.
- Mathematical Tools:
 - Linear and Non-Linear curve fitting techniques
 - Puzzy Logic.
- Contributions:
 - Summarize scholarly papers on ALI.
 - Inflection Point (IP) location on EIT and pressure data.
 - S Creation of Fuzzy Logic System using IP.
- Novel Aspects:
 - **1** Use of short recruitment maneuever (≤ 2 min)
 - 2 Regional Inflection Points used
 - Use of Inflection Points within an automated classification system

- 4 同 6 4 日 6 4 日 6

The Problem

ALI & VILI

Respiratory Function Models

$$P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \tag{1}$$

<ロ> (日) (日) (日) (日) (日)

Respiratory Function Models

$$P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \tag{1}$$

• Interested in $\frac{V}{C}$ only.

Respiratory Function Models

$$P_{ao} = \frac{V}{C} + \dot{V}R + \ddot{V}I - P_{mus} \tag{1}$$

- Interested in $\frac{V}{C}$ only.
- To remove other components this thesis data did two things:
 - Slow Constant Flow
 - 2 Antheysia

Pressure-Volume Curves

• Used to help guide ventilation strategies by locating points of compliance change.

Pressure-Volume Curves

- Used to help guide ventilation strategies by locating points of compliance change.
- Points are Lower Inflection Point (LIP) and Upper Inflection Point (UIP)

< 回 > < 三 > < 三 >

Pressure-Volume Curves

- Used to help guide ventilation strategies by locating points of compliance change.
- Points are Lower Inflection Point (LIP) and Upper Inflection Point (UIP)

Data used

Data used:

- 26 patients
- low constant flow maneuver (4 L/min)
- start 0 mbar \rightarrow 35 mbar / 2L

∃ →

Electrical Impedance Tomography (EIT)

EIT is real-time impedance tomography, it can be used to accuratly measure air distrubtion within the thorax.

Electrical Impedance Tomography (EIT)

EIT is real-time impedance tomography, it can be used to accuratly measure air distrubtion within the thorax.

Figure: Example reconstruction using the GREIT methods of a healthy lung patient (patient 7).

- 4 回 ト - 4 回 ト

Contributions

• Automated IP calculation

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

 ↓
 ≥

 </th

イロト イヨト イヨト イヨト

Contributions

- Automated IP calculation
- Rule-base Fuzzy Logic Classifier

< ロ > < 同 > < 三 > < 三

Three Types of IP location methods were used:

イロト イ団ト イヨト イヨト

IP Calculation

Three Types of IP location methods were used:

Sigmoid method

イロト イ団ト イヨト イヨト

IP Calculation

Three Types of IP location methods were used:

- Sigmoid method
- O Visual heuristics

Three Types of IP location methods were used:

- Sigmoid method
- ② Visual heuristics
- 3-piece linear spline method

- 4 同 ト - 4 三 ト - 4 三

Three Types of IP location methods were used:

- Sigmoid method
- ② Visual heuristics
- 3 -piece linear spline method

Multiple methods were implemented for comparison reasons.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sigmoid Method

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 - Ind location where PV curve has linear compliance

A (10) A (10) A (10)

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 - Ind location where PV curve has linear compliance
 - Pressure where rapid increase in compliance occurs

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 - Ind location where PV curve has linear compliance
 - 2 Pressure where rapid increase in compliance occurs
 - Place two line. 1) Along low compliance. 2) Along High compliance. Locate Intersection.

• • = • • = •

- Clinicians used this method to locate Inflection Points from global PV curves.
- Multiple methods exist:
 - Ind location where PV curve has linear compliance
 - Pressure where rapid increase in compliance occurs
 - Place two line. 1) Along low compliance. 2) Along High compliance. Locate Intersection.
- This thesis:
 - 5 participants
 - If in linear manner to get closest to all the data points

• • = • • = •

 Image: Non-State
 Image: Non-State

<ロ> (日) (日) (日) (日) (日)

• Similar to visual methods

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection

- **(())) (())) ())**

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection
- This Thesis: No Constraints on fitting other then minimization of criteria

- Similar to visual methods
- Fits to 3 lines with Inflection Points being located at intersection
- This Thesis: No Constraints on fitting other then minimization of criteria

→ 3 → 4 3

The Fuzzy System is designed into 4 sections:

The Fuzzy System is designed into 4 sections:

Location of IP

The Fuzzy System is designed into 4 sections:

- Location of IP
- ② Fuzzification

イロト イヨト イヨト イヨト

The Fuzzy System is designed into 4 sections:

- Location of IP
- Puzzification
- O Premise Calculation (Application of IF-THEN)
- Oefuzzification and Optimization

A E A

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 16 / 28

IP and **Fuzzification**

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.

- **(())) (())) ())**

IP and **Fuzzification**

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.

Membership	Input 1 (mbar)	Input 2 (mbar)	Input 3 (mbar)	Input 4 (mbar)
Below	min(p)	min(p)	-2+LIP	LIP
In Between	-2+LIP	LIP	UIP	2+UIP
Above	UIP	2+UIP	max(p)	max(p)

Table: Details on creating the trapezoidal based fuzzy membership functions

- 4 同 ト - 4 三 ト - 4 三

IP and **Fuzzification**

IP were taken from the 3-piece linear optimization portion and used in the creation of the fuzzification graphs.

Membership	Input 1 (mbar)	Input 2 (mbar)	Input 3 (mbar)	Input 4 (mbar)
Below	min(p)	min(p)	-2+LIP	LIP
In Between	-2+LIP	LIP	UIP	2+UIP
Above	UIP	2+UIP	max(p)	max(p)

Table: Details on creating the trapezoidal based fuzzy membership functions

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 17 / 28

The Inference is conducted using the Rule base. With key relations to previous papers:

< ロ > < 同 > < 三 > < 三

The Inference is conducted using the Rule base. With key relations to previous papers:

- Pressure below the LIP is considered collapsed
- Pressure above the UIP is considered overdistended

The Inference is conducted using the Rule base. With key relations to previous papers:

- Pressure below the LIP is considered collapsed
- Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

The Inference is conducted using the Rule base. With key relations to previous papers:

- Pressure below the LIP is considered collapsed
- **②** Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

- Good' = Normal states
- Bad' = Collpased + Overdistended states

The Inference is conducted using the Rule base. With key relations to previous papers:

- Pressure below the LIP is considered collapsed
- Pressure above the UIP is considered overdistended

Defuzzification was done by breaking the output states into two classifications:

- Good' = Normal states
- 2 'Bad' = Collpased + Overdistended states

Upon averaging over lung region MAX value between the difference of 'Good' and 'Bad' states is performed to locate the PEEP. • Fuzzy Logic Schematic

くほと くほと くほと

Sigmoid vs. Linear

Figure: How frequent each sigmoid and linear method are not able to find IP.

Sigmoid vs. Linear

Figure: How frequent each sigmoid and linear method are not able to find IP.

	Mean	Std	Median
LIP - Inflation	1.47	3.02	1.50
UIP - Inflation	-6.80	2.54	-6.82
LIP - Deflation	4.07	1.84	4.07
UIP - Deflation	-2.37	2.24	-2.78

Table: Difference between Sigmoid and Linear Method

Linear vs. Visual Heuristics

• Difference = Linear IP – Visual Heuristic IP

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 20 / 28

3

Linear vs. Visual

Linear vs. Visual Heuristics

- Difference = Linear IP Visual Heuristic IP
- -0.6247mbar for LIP -0.4662mbar for UIP

Linear vs. Visual Heuristics

- Difference = Linear IP Visual Heuristic IP
- -0.6247mbar for LIP -0.4662mbar for UIP
- best average = 0.016mbar worst average = -1.507mbar

Linear vs. Visual Heuristics

- Difference = Linear IP Visual Heuristic IP
- -0.6247mbar for LIP -0.4662mbar for UIP
- best average = 0.016mbar worst average = -1.507mbar
- Provides insight to accuracy of linear method

Results

Optimal PEEP

Hetergenaity

Figure: Progressive change of lung state with pressure

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 21 / 28

LIP+2 vs FLS

Figure: Global PI curve with LIP, UIP, and the LIP+2 mbar pressure and the Fuzzy optimal selection with according FLS based pressure.

01/20/2012 22 / 28

-

▲ @ ▶ ▲ @ ▶ ▲

References I

Adler, A., Amato, M., Arnold, J., Bayford, R., Bodenstein, M., Böhm, S., Brown, B., Frerichs, I., Stenqvist, O., Weiler, N., and Wolf, G. (2012).

Whither lung EIT: where are we, where do we want to go, and what do we need to get there?

Submitted for publication to Journal of Applied Physiology.

EIDORS (2011).

EIDORS: Electrical impedance tomography and diffuse optical tomography reconstruction software.

http://eidors3d.sourceforge.net/.

Graham, B. M. (2007). Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging. PhD thesis, Carleton University.

References II

Grychtol, B., Wolf, G. K., Adler, A., and Arnold, J. H. (2010). Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

Physiological Measurement, 31(8):S31.

Grychtol, B., Wolf, G. K., and Arnold, J. H. (2009). Differences in regional pulmonary pressure impedance curves before and after lung injury assessed with a novel algorithm. *Physiological Measurement*, 30(6):S137.

Holder, D. (2004).

Electrical Impedance Tomography: Methods, History, Applications. Institute of Physics Publishing.

イロト 不得下 イヨト イヨト

References III

Luepschen, H., Meier, T., Grossherr, M., Leibecke, T., Karsten, J., and Leonhardt, S. (2007). Protective ventilation using electrical impedance tomography. *Physiological Measurement*, 28(7):S247.

Mendel, J. M. (2001). Uncertain rule-based fuzzy logic system: introduction and new directions. Prentice-Hall PTR, 1st edition.

 Pulletz, S., Adler, A., Kott, M., Elke, B., Hawelczyk, B., Schädler, D., Zick, G., Weiler, N., and Frerichs, I. (2011).
 Regional lung opening and closing pressures in patients with acute lung injury.

Journal of Critical Care, 0000(0000):0000.

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

References IV

 Victorino, J. A., Borges, J. B., Okamoto, V. N., Matos, G. F. J., Tucci, M. R., Caramez, M. P. R., Tanaka, H., Sipmann, F. S., Santos, D. C. B., Barbas, C. S. V., Carvalho, C. R. R., and Amato, M. B. P. (2004).
 Imbalances in regional lung ventilation: A validation study on electrical impedance tomography. *Am. J. Respir. Crit. Care Med.*, 169(7):791–800.

Wolf, G. K., Grychtol, B., Frerichs, I., Zurakowski, D., and Arnold, J. H. (2010).

Regional lung volume changes during high-frequency oscillatory ventilation.

11(5):610-615.

- 4 同 6 4 日 6 4 日 6

References V

Wu, D. and Mendel, J. M. (2011).

Linguistic summarization using IFTHEN rules and interval type-2 fuzzy sets.

Fuzzy Systems, IEEE Transactions on, 19(1):136–151.

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

 ▶
 ■
 ■
 <</th>
 >
 <</th>
 <</th>

References

ending

▶ Fuzzy Logic Schematic

Ravi B. Bhanabhai (Carleton U)

Safe Keeping Ventilation Patients

01/20/2012 28 / 28

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで