Application of Electrical Impedance Tomography to Robotic Tactile Sensing

MASc Defence Ahmed Elsanadedy Supervisors: Dr. Mojtaba Ahmadi, Dr.Andy Adler 25/7/2012

Outline

- Motivation
- Pressure Distribution Sensor
- Equipment and Samples
- Flexible Sensor Assessment
- Stretchable Tactile Sensor
- Conclusion
- Future Works

Motivation

- Eliminate wires within active sensor area
- Reduce overall wiring complexity
- Enhance flexibility and stretch potential
- Single sensing element for complex geometric part coverage

Research Objectives

- Assess the accuracy and reliability of 2D EIT for pressure sensing
- Test different materials for compatibility
- Allow for integration over complex geometries

EIT Pressure Sensing Method

Discretization Approach

B. M. Graham, "Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging," Carleton University, 2007.

EIT Difference Imaging

• General form:

 $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{n}$

Jacobian:

$$\mathbf{H} = \mathbf{T} \left[\mathbf{Y}^{-1}(\sigma) \frac{\partial}{\partial \sigma} \mathbf{Y}(\sigma) \mathbf{Y}^{-1}(\sigma) \mathbf{I} \right]$$

Regularized solution:

 $\mathbf{x} = (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda^{2}\mathbf{R}^{\mathsf{T}}\mathbf{R})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{z}.$

EIT Forward Model and Configuration

- EIDORS
- Adjacent stimulation
- Distmesh used for mesh generation
- 16 electrodes
- Laplacian regularization method

Mesh of 4078 Elements and 2075 Nodes

Equipment

- SigmaTom II
 - Frequency12.5–100kHz
 - Amplitude 0–4mA
 - 208 measurements/frame

▶ MLP-25

- Nonlinearity 0.1% of R.O.
- Hysteresis 0.1% of R.O
- Excitation Voltage 10 VDC

EIT System

MLP-25 Load Cell

Flexible Sample Materials

Sample #1: Conductive Polymer stacked with copper (5cm*5cm)

Sample #2: Two layers of non-woven conductive fabric (21cm*21cm)

Experiments and Performance Metrics

 Static Compression Test

Fixed location varying load

- Pressure Map Test
 - Position Error (PE)
 - Resolution (RES)
 - Ringing (RNG)

Fixed load varying location

Flexible Sensor Pressure Response

Sample #1 Image Analysis

y=0.4

y=0.2

y=0

y=-0.2

y=-0.4

(cm)

Sample #2 Image Analysis

Stretchable Tactile Sensor

- Stretchable, woven, conductive fabric
- Cover complex geometric features using single element
- Allow for complex surface modelling in EIT imaging

Woven fabric in fixture

Results: Feature Recognition

Procedure for Complex Geometry Implementation

Complex 3D Geometry

- System matrix modification in EIDORS
- Testing using hemisphere shaped part

Normalized Forward Model

Simulated Pressure Distribution

Forward Problem

Results: Multi-touch under stretch

Contributions

- 2D EIT pressure sensor using a *Conductive Polymer* and *non-woven* fabric
- Novel EIT complex geometry surface modelling
- Stretchable touch sensor
 - Multi–touch
 - Feature recognition

Conclusion

- EIT is capable of effective pressure and touch sensing via 2D and 3D surface models
- Hysteresis is a significant impediment to the design
- Position error is mainly caused due to shape deformations and image artefacts

Future Works

- Investigate alternative electrode mounting and stimulation methods
- Real-time compact hardware setup
- Apply a real-time Preisach hysteresis compensator

Questions?

EIT Hardware Architecture

Benchmarking

(a)

