Technical Developments to Enable Electrical Impedance Tomography (EIT) Measurement of Blood Flow to Monitor Cardiac Output Key Engineering Contributions

Helga Ross
Systems and Computer Engineering, Carleton University, Ottawa, ON
Outline

- Introduction
- Problem
- Contributions
- Results
- Conclusion
- Future Work
Introduction

- Heart Disease: “is a group of conditions affecting the structure and functions of the heart.”

- Examples:
 - Angina
 - Arrhythmia
 - Atrial fibrillation
 - Coronary Artery Disease (CAD)
 - Etc.
Introduction (2)

- CAD
 - Most common form of heart disease
 - Occurs when arteries in the heart are blocked
 - Complications include
 - Angina (chest pain) due to lack of oxygen to the heart
 - Heart Attack due to part heart muscle death from lack of oxygen
Introduction (3)

- **Gold Standard for Diagnosis of CAD**
 - Angiography
 - Catheter inserted (groin or arm)
 - Guided through artery to a position near the heart
 - Contrast agent is administered through catheter
 - X-rays are taken in conjunction with release of contrast agent
 - Cardiac CT
 - Intravenous pump hookup
 - Contrast agent administered
 - X-ray images are taken in conjunction with the release of contrast agent
EIT

- Experimental imaging technique where changes inside the body can be imaged using a set of electrodes on the surface
- Advantages: Portable, non-ionizing, high acquisition rates, relatively inexpensive
- Disadvantages: Low resolution, high sensitivity to electrode movement, imaging anomalies are not well understood, use of ill conditioned problem to calculate images
The goal of this thesis is to develop a collection of Electrical Impedance Tomography (EIT) techniques to allow for monitoring of cardiac output and other parameters of heart function.
Contributions

- EIT Protocol
- Hardware Toolset
- Software Toolset
Contributions (CT Protocol)
Contributions (EIT Protocol)

EIT Protocol

1. Request Consent
2. 4 EIT Electrodes Placed on Patient
3. EIT Prep
 - Remaining 12 EIT electrodes placed on patient in circular plan around 9th intercostal space
 - One ground electrode placed on left abdomen
 - 2 ECG electrodes placed on patient (one right below the right clavicle, and the other just below the left clavicle) ground remains the same as EIT
 - Hooked up to EIT system
 - Hooked up to ECG amplifier
 - CT breathing protocol reiterated
4. Check impedance of EIT electrodes and act accordingly
5. EIT and ECG acquisition
 - EIT and ECG data simultaneously acquired
6. If electrode impedances are below threshold

*1 (link from CT Protocol)
Contributions (Hardware Toolset)
Contributions (Hardware Toolset) (2)
Contributions (Hardware Toolset) (3)
Contributions (Software Toolset)
Contributions (Software Toolset) (2)
Contributions (Software Toolset) (3)
Results (Simulation)
Results (Simulation) (2)

<table>
<thead>
<tr>
<th>τ</th>
<th>$\lambda = 0.01$</th>
<th>$\lambda = 0.1$</th>
<th>$\lambda = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$SNR = 20dB$
Results (Human Experiment)

- Subject #1
Conclusion

- Goal of this thesis was to design a toolset to enable the measurement of EIT cardiac parameters
- The results are promising
- A colleague is taking over this work
Future Work

- Compare EIT and CT Blood flow
- Test toolset on patients at UOHI
- Tweak EIT and Software Protocol as needed
- Include other EIT methods to improve cardiac EIT imaging
- Try several EIT systems
- Increase number of patients imaged with final hardware/software toolset
Thank You

- Questions
Results (Human Experiment) (2)

- Subject #2
Results (Human Experiment) (3)

- Subject #3
Results (Simulation) (2)

$SNR = \infty$

<table>
<thead>
<tr>
<th></th>
<th>$\lambda = 0.01$</th>
<th>$\lambda = 0.1$</th>
<th>$\lambda = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau = 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau = 0.8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tau = 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contributions (Software Toolset) (4)

Start

1. Calculate Matrix B
 \[
 \left(\frac{(J\Sigma_{\text{op}} + \Sigma_{\text{in}})}{B} \right)^{-1}
 \]

2. Matrix Multiply B and C
 \[
 \left(\frac{J\Sigma_{\text{op}}^T + \Sigma_{\text{in}}}{C} \right)^{-1}
 \]

3. Calculate Matrix A
 \[
 \left[\frac{\Sigma_{\text{op}} J^T}{A} \right]_{\text{top}}
 \]

4. Multiply Matrix A with Product from Step 2 (BC)
 \[
 \left[\frac{\Sigma_{\text{op}} J^T}{A} \right]_{\text{top}} \left(\frac{J\Sigma_{\text{op}}^T + \Sigma_{\text{in}}}{B} \right)^{-1}
 \]

End

Repeat Steps 3 and 4 for all iterations of x