Introduction

Regional cerebral blood flow is regulated by the "neurovascular unit" ([Gray, Anatomy, Random House, 1977]). Stroke can impair functional hyperemia despite persistent neuronal activity. Alteration of the blood oxygen level dependent (BOLD) signal has been observed post stroke ([Hamel, J. Appl. Physiol., 2006]).

- Functional hyperemia causes an increase in regional cerebral blood flow (rCBF) in relation to neural activity.
- This process is altered in cerebrovascular disease.
- Imaging functional hyperemia may help to localise and evaluate neurovascular impairment.

Methods

We evoke responses in the sensorimotor system and monitor motor responses during BOLD fMRI ([Rossini et al., Can Conf Med Bio Eng, 2003]). We designed an event-related visual feedback-controlled motor task to include a wide range stroke patients. The contiguity function quantifies the "connectedness" of a cluster.

- Sensorimotor system is evoked by hand gripping while motor and BOLD fMRI signals are measured.
- Single-handed grip force target is calibrated to ~25% of maximum, while both hands are monitored.
- Scanning process is noninvasive and takes ~15 mins.

Results

Motor task performance in right & left hands.

- Aggregate BOLD response in normal group.
- Individual case study separately identifies responding motor areas.

- Motor task performance varied, yet we obtained a 92% response rate.
- Stroke group had 58% more signals than normal—many anticorrelated.
- Stroke voxel clusters are less contiguous and less synchronised to motor signals than normal clusters.
- Normal group shows clear, focused sensorimotor responses, while the stroke group shows a less consistent dispersion of responses.

Conclusion

- Method produces consistent neurovascular responses in sensorimotor areas in normal group.
- Motor task was applicable to stroke patients with a wide range of motor deficits.
- Space-time characterisation identifies neurovascular impairment as a decrease in BOLD signal contiguity and correlation to the motor task.
- Future work will involve a longitudinal study to observe changes in the BOLD signal's space-time structure in recovering stroke patients.
- Monitoring regional neurovascular impairment may provide new insights for rehab programmes.

Acknowledgement:

This research was supported by the Behavioural Research and Imaging Network (BRAIN) in partnership with the Ontario Research Fund, and by the Heart and Stroke Foundation Centre for Stroke Recovery.

References:

1. H. Grey, Anatomy, Descriptive and Surgical, Random House, 1977
2. E. Hamel, J Appl Physiol, 100, 1059-64, 2006
5. A. Gelman et al, Bayesian Data Analysis, Chapman & Hall, 2004