Pattern Recognition of Functional Neuroimage Data of the Human Sensorimotor System after Stroke

Camille Gómez-Laberge, M.A.Sc., B.Eng., B.Sc.

Ph.D. Candidate Faculty of Engineering, Carleton University Neuroscience Program, Ottawa Hospital Research Institute

May 13, 2010

Outline

- I. Cerebral microcirculation
- 2. Experimental protocol
- 3. Pattern recognition of neuroimage data
- 4. Space-time structure of BOLD response signals
- 5. Bayesian hierarchical correlation model
- 6. Results from normal and stroke participants
- 7. Conclusion

The cerebral microcirculation

Cerebral microcirculation

Microcirculation plays a critical role in brain function

- neurons need a continuous blood supply of oxygen and glucose
- the human brain is a highly perfused organ being 2% of body mass and getting 15% of cardiac output
- the microcirculation is endowed with cellular mechanisms that control cerebral blood flow
 - cerebrovascular autoregulation
 - functional hyperemia

Cerebral microcirculation

The neurovascular unit

[adapted from Hamel, J Appl Physiol, 2006]

Unit members in the cerebral cortex are

- neurons
- astrocytes
- vascular pericytes

Neurons & glia release vasoactive chemicals to influence vessel tone *via* pericytes

Cerebral microcirculation

Functional hyperemia is a complex phenomenon

- regional microvessels do not possess sufficient vascular resistance to account for flow changes
- a retrograde vasodilation propagates upstream to relax the feeding pial artery the smooth muscle
- neurovascular units at all levels release signalling chemicals that act in concert to produce a timely and focused hemodynamic response

<u>Impairment of functional hyperemia takes place</u> <u>after stroke</u>

[adapted from Rossini et al, Brain, 2003]

Impairment of functional hyperemia takes place

after stroke

[adapted from Rossini et al, Brain, 2003]

• others report functional hyperemic alterations including attenuation, time delays, and absence in either hemisphere

Motivating question for my research:

Since the cerebral microcirculation is altered in cerebrovascular disease, then is it possible to locally characterise the state of the disease by monitoring functional hyperemia?

Motivating question for my research:

Since the cerebral microcirculation is altered in cerebrovascular disease, then is it possible to locally characterise the state of the disease by monitoring functional hyperemia?

- require a method that can simulatneously monitor neuronal and vascular signals
- the method must be non-invasive to enrol subjects in normal and patient populations
- the analysis must be flexible to identify a signal whose shape is unknown a priori

Experimental objectives:

- I. to reproducibly induce functional hyperemia
- 2. to simultaneously observe the nervous system response and the cerebrovascular response

The sensorimotor system

[adapted from Gray, Anatomy, 1977 and Kandel et al, Prinicples of Neural Science, 2000]

Why this system?

- evoked via basic sensorial and motor stimuli
- motor responses can be monitored
- has been previously studied

Event-related visual feedback controlled motor task

Display

Training:

- MVC calibration
- motor task training

Hand grip device

MRI:

- 1.5 Tesla
- 5 minute scan
- both hands monitored
- single-handed response
- target force: 25% MVC

Event-related visual feedback controlled motor task

<u>Data sources:</u>

- Images: I 60 GE-EPI I T2 FLAIR
- Timing: Scanning trigger Event schedule
- Motor: Left hand Right hand

Event-related visual feedback controlled motor task

Pattern recognition of neuroimaging data

Pattern recognition is "a <u>search</u> for <u>structure</u> in the data" <u>The search</u>:

- subjective assessment (eg human intuition)
- statistical modelling (eg estimation of the data generating process)
- component analysis (eg representation of the whole by its parts)

<u>The structure</u>:

• how information is organised within a data set

data X

data X assume k=3

data X assume k=3 form a 3-partition by NN

data X assume k=3 form a 3-partition by NN

Question: how to validate our choice of k=3? is this the optimal k-partition?

- a data point either
 belongs to A or B
 but not both
- points in A are considered equivalent
- thus set membership is uninformative of partition validity

data points have
 "fuzzy" membership- belong to some extent
 to both sets

- the points are now distinguishable

set membership is now informative of partition validity

 form a k-partition and represent membership by pixel intensity

- then different k lead to distributions of membership values

 form a k-partition and represent membership by pixel intensity

- then different k lead to distributions of membership values

 form a k-partition and represent membership by pixel intensity

- then different k lead to distributions of membership values

Dunn (1973) derived fuzzy k-means clustering algorithm based on a least-squares minimisation problem

$$J(X,U,V) = \sum_{i=1}^k \sum_{\mathbf{X}\in X} u_i^2(\mathbf{x}) d^2(\mathbf{x},\mathbf{v}_i)$$

- input: data X, metric d, and partition number k
- output: cluster memberships U and centroids V

$$\begin{split} \mathbf{v}_{i} &= \frac{\displaystyle\sum_{\mathbf{x} \in X} u_{i}^{2}(\mathbf{x}) \, \mathbf{x}}{\displaystyle\sum_{\mathbf{x} \in X} u_{i}^{2}(\mathbf{x})} \quad \text{for } 1 \leq i \leq k \\ u_{i}(\mathbf{x}) &= \frac{1/d^{2}(\mathbf{x}, \mathbf{v}_{i})}{\displaystyle\sum_{j=1}^{k} 1/d^{2}(\mathbf{x}, \mathbf{v}_{j})} \quad \text{for } 1 \leq i \leq k \end{split}$$

Dunn, (1973), J. Cybern., 3, 32-57.

The major caveat of fuzzy sets is the missing link between <u>cluster validity</u> and <u>probability theory</u>

• cannot say "given X, we reject the null hypothesis that k = 1 if p < 0.05"

Unique advantages:

- systematically analyses complex data yielding results in a human-readable form
- does not require model pattern a priori
- quantitatively determines optimal k value

<u>Subject</u>

<u>Subject</u>

$$X = (x,t) \qquad \longrightarrow \qquad x$$

block flashes when subject grips device with the right hand

data from this region have been processed to help you see the response

video is played at 4x

Correlation = 0.48 (sd 0.035)

Delay = 2.3 (sd 0.8) seconds

Space-time structure of BOLD response signals

Space: cluster contiguity function

 measures the spatial contiguity of a cluster based on the position of its member voxels

Space: cluster contiguity function

 measures the spatial contiguity of a cluster based on the position of its member voxels

Time: causal cross-correlation function

• stimulus response measured by correlation between *delayed voxel* and *motor* time series

$$x[n] \star p[n] = \sum_{n=0}^{N-1} x[n+d-N]p[n], \quad d=N,\cdots,N+\Delta t,$$

Time: causal cross-correlation function

• stimulus response measured by correlation between *delayed voxel* and *motor* time series

$$x[n] \star p[n] = \sum_{n=0}^{N-1} x[n+d-N]p[n], \quad d=N, \cdots, N+\Delta t$$

Comments on the proposed features

- spatial contiguity function:
 + indicates presence of focused responses
 + responses can be of any shape
 - requires input for minimum group & clique size
- causal cross-correlation function:
 + indicated presence of delayed responses
 + responses can be positive or negative
 - is not suitable if delay varies during session

Bayesian hierarchical model for cluster analysis

Bayesian hierarchical correlation model w.r.t. the motor signal

Bayesian hierarchical correlation model w.r.t. the motor signal

Bayesian hierarchical correlation model w.r.t. the motor signal

Parameters

Bayesian hierarchical correlation model w.r.t. the motor signal

Parameters

Model implementation

• we seek the joint posterior probability density for the parameters modelling global signal and each cluster

 $p(lpha, eta \,|\, y) \propto p(lpha) \, p(eta \,|\, lpha) \, p(y \,|\, lpha, eta)$

Model implementation

• we seek the joint posterior probability density for the parameters modelling global signal and each cluster

 $p(\alpha, \beta \,|\, y) \propto p(\alpha) \, p(\beta \,|\, \alpha) \, p(y \,|\, lpha, eta)$

- the model (alpha, beta) is fit to the data (y) by Bayesian methods
- used Markov chain Monte Carlo simulation to sample the posterior density

Model implementation

• we seek the joint posterior probability density for the parameters modelling global signal and each cluster

$p(\alpha, \beta \mid y) \propto p(\alpha) p(\beta \mid \alpha) p(y \mid \alpha, \beta)$

- the model (alpha, beta) is fit to the data (y) by Bayesian methods
- used Markov chain Monte Carlo simulation to sample the posterior density
- we consider a cluster significantly different from the global signal when $Pr(\beta_i = \alpha | y) < 0.05$

Demonstration using simulated data

Demonstration using simulated data

Demonstration using simulated data

- Normal group responded to all events without extra responses
- Performance from stroke patients varied widely:
 - event responses 92-98% across group
 - patients 2 & 3 often performed extra responses
 - patient 2 often performed mirror responses
 - patient 3 exhibited cognitive deficit during task
 - patient 4 has a plegic left hand

Bayesian hierarchical cluster analysis

Bayesian hierarchical cluster analysis

Bayesian hierarchical cluster analysis

- the factors for cluster selection: difference & certainty
- rejected clusters fall evenly around **alpha**
- most normal selected clusters are positively correlated
- 58% more selected clusters from stroke group than normal
- many stroke group selected clusters are negative correlated

Space-time structure of BOLD response signals

Space-time structure of BOLD response signals

Space

- stroke clutsers are significantly less contiguous than normal
- both groups have comparable signal-to-noise ratio

Space-time structure of BOLD response signals

Space

- stroke clutsers are significantly less contiguous than normal
- both groups have comparable signal-to-noise ratio

Time

- 80% normal clusters are positive correlated (2-4 s delay)
- 44% stroke clusters are negative correlated (0-2 s delay)

Identified brain regions: NORMAL GROUP

Identified brain regions: NORMAL GROUP

Basal ganglia

Sensorimotor cortex

Identified brain regions: NORMAL GROUP

Basal ganglia

Sensorimotor cortex

Identified brain regions: NORMAL GROUP

Basal ganglia

Sensorimotor cortex

Identified brain regions: NORMAL GROUP

Basal ganglia

Putamen & globus pallidus: - Turner et al. (2003), J Neurophysiol

Cerebral cortex

Contralateral SMC:

- Kandel et al. (2000) Princ Neur Sci

SMA:

- Nachev et al. (2008), Nat Neurosci

Ipsilateral premotor & parietal: - Reis et al. (2008), *J Neurophysiol*

Identified brain regions: STROKE GROUP

Identified brain regions: STROKE GROUP

- as expected, responses are sparse and inconsistent
- Rossini et al (2003), Brain provide compelling evidence of neurovascular dysfunction in both hemispheres
- Ward et al (2003), Brain, also describe sparse activation patterns in longitudinal stroke cohorts where best motor recovery correlated with SMC focused BOLD responses
- as expected, responses are sparse and inconsistent
- Rossini et al (2003), Brain provide compelling evidence of neurovascular dysfunction in both hemispheres
- Ward et al (2003), Brain, also describe sparse activation patterns in longitudinal stroke cohorts where best motor recovery correlated with SMC focused BOLD responses

- as expected, responses are sparse and inconsistent
- Rossini et al (2003), Brain provide compelling evidence of neurovascular dysfunction in both hemispheres
- Ward et al (2003), Brain, also describe sparse activation patterns in longitudinal stroke cohorts where best motor recovery correlated with SMC focused BOLD responses

Identified brain regions

References:

Contralateral SMC: - Kandel et al. (2000) SMA: - Nachev et al. (2008) Ipsilateral premotor & parietal: - Reis et al. (2008)

Contralateral SMC after stroke:
Cramer et al. (1999)
SMA after stroke:
Carusone et al. (2002)
Ipsilateral premotor & parietal:
Ward et al. (2003)

Ipsilateral SMC after stroke:

- Cramer et al. (1999)
- Carusone et al. (2002)
- Ward et al. (2003)

Proposed method is useful for case study

Proposed method is useful for case study

Experimental protocol & data acquisition

- Event-related visual feedback motor task:
 + reproducible BOLD signal in normal group
 + identify sensorimotor network
 - + potential for wide range of stroke population
 - results limited to sensorimotor network only
 - no simulataneous neural activity images

Proposed analysis method

- Fuzzy cluster analysis:
 + to identify and distinguish different BOLD signals
 + membership informative of optimal k-value
 link to probabilistic framework is still missing
 - lacking accountability for temporal dependence

Proposed analysis method

- Fuzzy cluster analysis:
 - + to identify and distinguish different BOLD signals
 - + membership informative of optimal k-value
 - link to probabilistic framework remains elusive
 - lacking accountability for temporal dependence
- Space-time structure:
 - + features can separate normal and stroke groups
 - insensitive to signal magnitude and delay change

Proposed analysis method

- Fuzzy cluster analysis:
 - + to identify and distinguish different BOLD signals
 - + membership informative of optimal k-value
 - link to probabilistic framework remains elusive
 - lacking accountability for temporal dependence
- Space-time structure:
 - + features can separate normal and stroke groups
 - insensitive to signal magnitude and delay change
- Bayesian hierarchical model:
 - + multilevel approach to data analysis
 - + no multiple comparisions corrections necessary
 - first application: will improve with further development

Interpretation of results

- A pilot study with small sample size
 hence, our clinical interpretation is very limited
- Changes in BOLD responses in stroke group
 our results corroborate the changes observed in previous research
- Are these changes directly caused by stroke?
 we cannot provide a definite answer due to uncontrolled factors e.g., age, co-morbidity, drugs, etc...
- Neurovascular dysfunction or neural plasticity?
 - literature & our normal group results suggest that neurovascular dysfunction is likely to persist after stroke

Future work should take place in a larger stroke trial: longitudinal stroke rehab with age-matched normals

- are there distinct BOLD indicators of CVD?
- can BOLD be related to degree of impairment?
- can neural plasticity be distinguished from neurovascular dysfunction?

Future work should take place in a larger stroke trial: longitudinal stroke rehab with age-matched normals

- are there distinct BOLD indicators of CVD?
- can BOLD be related to degree of impairment?
- can neural plasticity be distinguished from neurovascular dysfunction?

Optimisation of stroke recovery: to apply these answers to help monitor and develop stroke rehabilitation programmes

Acknowledgements

Supervisors:

- M. Hogan MD PhD (Neuroscience) Ottawa Hospital Research Institute
- A.Adler PhD (Biomedical Engineering) Carleton University

Co-investigators:

- I. Cameron PhD (MR Physics) The Ottawa Hospital
- T. Nguyen MD (Radiology) The Ottawa Hospital
- M. Sharma MA (Neurology) The Ottawa Hospital

Funding:

- Behavioural Research and Imaging Network (BRAIN)
- Ontario Research Fund
- Heart and Stroke Foundation Centre for Stroke Recovery

Pattern Recognition of Functional Neuroimage Data of the Human Sensorimotor System after Stroke

Camille Gómez-Laberge, M.A.Sc., B.Eng., B.Sc.

Ph.D. Candidate Faculty of Engineering, Carleton University Neuroscience Program, Ottawa Hospital Research Institute

May 13, 2010