

Fingerprint recognition performance in rugged outdoors and cold weather conditions

Ron F Stewart¹, Matt Estevao², Andy Adler²

¹Orica Canada Inc ²Carleton University, Ottawa, Canada

Background:

- Security required in hazardous chemicals and explosives industries:
 - Access control: buildings/magazines
 - Authorization of use of explosives equipment
 - Electronic blasting
- Biometrics technologies show key promise
- Requirement: need good performance in rugged outdoors and extreme weather
 - Hot weather performance has good recent experience, so we were interested in cold.

Research Approach / Questions

- We identified fingerprint biometrics as the most promising for the application:
 - Match to required workflow (using positive action)
 - Well understood operationally / multiple providers
- Biometrics scenario evaluation to determine:
 - Hardware/sensor performance issues:
 - Fingerprint physiology performance issues:
 - Usability factors

Blaster unit with added Biometric lock

Research Approach / Questions

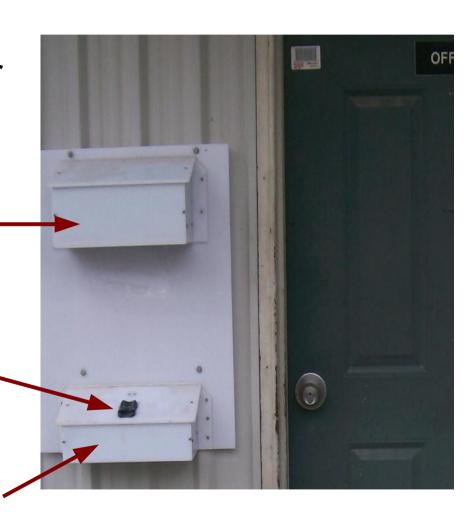
Hardware/sensor performance issues:

- Technology reliability
- Failure modes
- Effects of dirt / weather on sensors.

Fingerprint physiology performance issues:

- Fingerprint performance vs. temperature/humidity.
- Cold makes stiffer skin with less blood perfusion.
 We expect lower performance due to
 - Low compliance of friction ridges (optical scanner)
 - Increased impedance of dry skin (semiconductor)

Usability factors

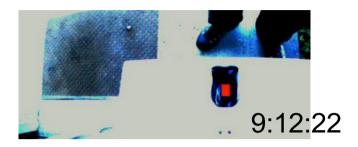

... which can be addressed in training or interface.

Experimental Configuration

Door access configuration at Orica regional explosives center

near Ottawa (large temp range –35 C – +35C).

- Video of users
- Chip based scanner for 1 year (UPEK TCS1)
- Optical scanner for 1 year (Futronic FS88)
- Heated / weather sealed box


Data Analysis: Unusual Usages

Rapid alternating of fingers

Cause:
Feedback on indicator lights was too slow

(1.0 sec. capture

1.0 sec. process)

Success

Data Analysis: Unusual Usages

- Cupping of hands around scanner.
 Cause: Indicator lights were not sufficiently bright in bright sunlight
- Chip sensor too hot to touch in direct sun

Survey: overall, this population likes biometric technology, when it works

How would you describe your understanding of biometrics technology before this study?

None (75%). Pretty good familiarity (25%)

Did you have any concerns about this project and usage of fingerprints?

None.

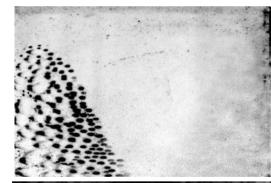
Overall, what did you like about fingerprint access technology?

• In order of frequency: 1) Ease of use, 2) Not needing keys, 3) Convenient, 4) "Knowing system recognizes me"

Overall, what did you dislike about fingerprint access technology?

• In order of frequency: 1) It doesn't work sometimes, 2) Takes a long time to analyze print and make decision, 3) Too hot to use in sunshine in summertime

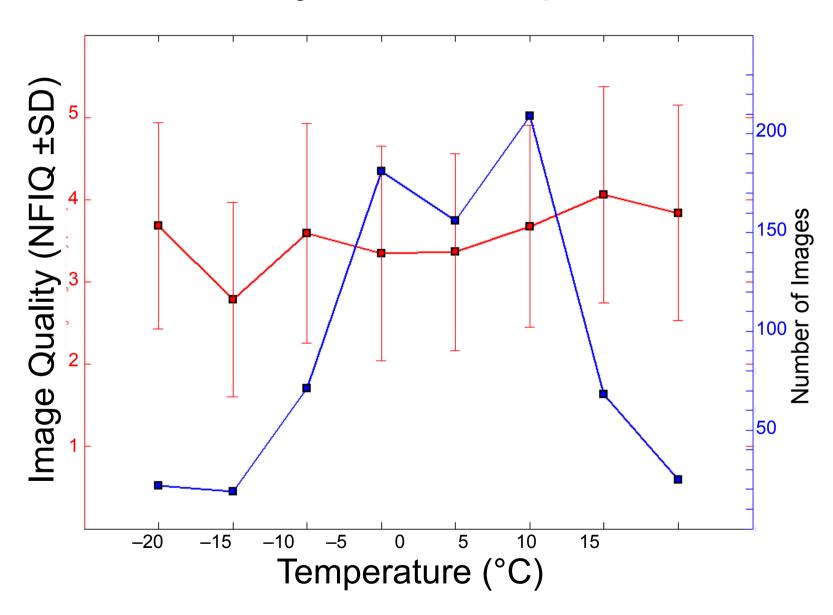
Capacitive Sensors: Reliability and Faults


- Two capacitive sensors failed (on cold winter days, ≈ – 25°C).
 - On one unit condensation caused short.
 - No visible failure on other sensor

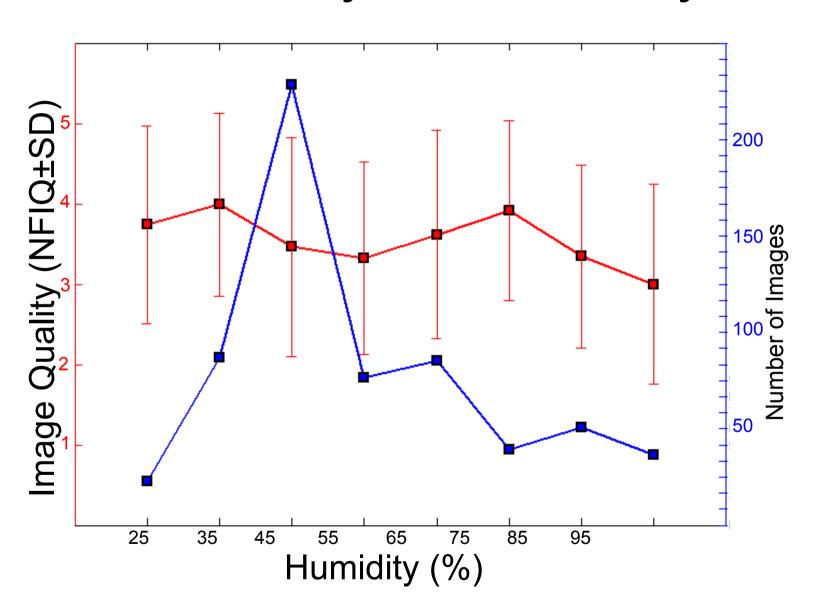
 In direct sun the capacitive sensor surface became unbearably hot to use

Optical Sensors: Reliability and Faults

- condensation colleted under the lexan optical window (on wet snow winter day)
- Liveness didn't work well
 - Especially in winter
- "Ghost" images
 - From sun on rain dropplets
 (causing a reject)
 - From sun shining through latent prints of previous users (sometimes being accepted)

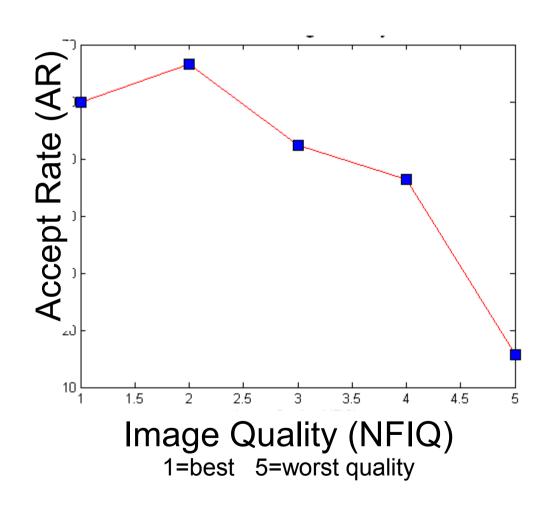


Cold / Humidity Effects


Methods:

- Reject Rate vs. Temp / Humidity
- Fingerprint Quality (NFIQ) vs. Temp / Humidity
- Overall, no significant correlation found.
 - Thus, our data show fingerprints work equally well in cold weather
 - This result surprised us, since anecdotal evidence has suggested a difference.

Quality vs. Temperature


Quality vs. Humidity

Quality vs Accept Rate

Validation of measure:

 Even though Quality (NFIQ) does not correlate to environmental variables, it does correlate to the AR for the study

Discussion

Results suggest:

- biometric performance has no significant dependence on temperature and humidity:
 - $-30^{\circ}\text{C} +20^{\circ}\text{C}$
- both chip based and optical fingerprint scanners have some issues in rugged and cold weather applications
 - Issues can be addressed by system design
- fingerprint biometric technology has a good level of usability in this application.
 - Users are broadly satisfied with use of this technology.