

Introduction

- Understanding the regulatory mechanisms of cerebral blood flow (CBF) and its dysfunction remains a central topic in the neurological scientific literature
- Ample evidence now indicates that certain factors related to age, disease, and medication can dramatically alter cerebrovascular regulation (Tablet 1)
- Studying the effects of these factors on the living human brain may be possible by exploratory analyses of functional neuroimaging modalities, e.g., MRI and PET

Methods

- We propose a unified exploratory method for the analysis of the cerebrovascular response to event-related stimuli as measured by the blood oxygen level-dependent (BOLD) MRI signal (Tablet 2)
- A key difficulty in employing exploratory analysis methods is that after the voxels have been clustered into groups having similar dynamics, the statistical significance of each cluster remains unknown
- We apply a modern Bayesian technique to calculate each cluster's significance in the overall hierachical structure of the data (Tablet 3)

Data acquisition and analysis

- 25 data sets from 6 normal subjects (28-55)
- Visually cued event-related hand motor task
- 1.5 T MRI scanner (SE-EPI pulse sequence)
- Simulated data using a phantom noise model
- Clustering using fuzzy k-means algorithm¹
- Temporal feature: centroid cross-correlation²
- Spatial feature: cluster contiguity²
- Statistical inference: Bayesian hierarchical model³
- Model parameters are obtained by Markov Chain Monte Carlo simulation

Exploring Cerebrovascular Dynamics in the Human Brain

C. Gómez-Laberge1,2, A. Adler2, I. Cameron3, and M. J. Hogan1

1. Neuroscience Program, Ottawa Health Research Institute, Ottawa 2. Department of Systems and Computer Engineering, Carleton University, Ottawa 3. Department of Diagnostic Imaging, Ottawa Hospital, Ottawa

Carleton