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Problem Overview

■ Automated face recognition performance 
suffers when conditions for facial image 
capture are not constrained.
– FRVT 2002 Evaluation [1]

– Median rank-1 identification rate 0.19 at 45o left/right rotation
– Median rank-1 identification rate 0.34 at 30o up/down rotation

– FRGC Evaluation [2]
– Median verification rate 0.91 with controlled illumination
– Median verification rate 0.42 with uncontrolled illumination
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Thesis Objective

QUESTION:
Is it possible to accurately predict the appearance of 

an individual and subsequently generate a frontal 
and uniformly illuminated view of their face from an 

image that is unconstrained in pose and 
illumination?
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3D Morphable Model

■ Introduced by Blanz & Vetter [3,4]
■ What is it?

– Generative three-dimensional face model that 
encodes face shape and texture in terms of 
model parameters.

■ How is it useful?
– Model parameters governing face shape and 

texture (and thus identity) are separated from 
image rendering parameters (such as pose and 
illumination).
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3DMM Details
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FaceGen Modeller
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Fitting Model to Image
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Fitting Model to Image, cont.

■ Inversion of the face modelling “function”
– Non-linear optimization problem

■ Define a weighted cost function: 
C = wICI + wECE + wPCP

– CI measures residual pixel difference
– CE measures goodness-of-fit between detected 

edges
– CP measures likelihood of modelled face based 

on a statistical prior
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Optimization Strategy

■ Levenberg-Marquardt method [5]
■ Jacobian matrix populated with partial 

derivatives
– Numerically calculated using perturbation 

method 
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Model Fitting Example

Target Image Model




12/183D Face Modelling Under 
Unconstrained Pose & Illumination

Model Fitting Example, cont.

Target 
Image

Fitted 
Model

Create 
Novel View

Ground Truth 
for Comparison
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Algorithm Performance

■ Results evaluated according to identification 
task by two distinct methods
– Direct comparison of model parameters
– Re-rendering of modelled face under 

constrained pose and illumination for testing 
with commercial face recognition system

■ Tested on a database of 37 individuals
– 2 images of each with variation in pose
– 1 image of each with illumination variation
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Identification using Model Parameters 
– Pose Variation
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Identification using Model Parameters 
– Illumination Variation
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Identification using
Normalized Images

■ Poor results
– Mean identification rank of 18.5 on a gallery of 

40 subjects
■ Key limiting factor = Lack of extracted skin 

detail
– Even adding skin detail not derived from the 

original target image can contribute to a 
significant improvement

– Face recognition algorithm dependent?
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Future Work

■ Skin detail texture extraction
■ Automatic facial feature detection
■ Modelling from multiple images
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Algorithm Block Diagram
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Levenberg-Marquardt Algorithm
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Sample Results

Good Fit Poor Fit
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