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Problem Overview

m Automated face recognition performance
suffers when conditions for facial image
capture are not constrained.

_ FRVT 2002 Evaluation [1]

— Median rank-1 identification rate 0.19 at 45° left/right rotation
— Median rank-1 identification rate 0.34 at 30° up/down rotation

— FRGC Evaluation [2]

— Median verification rate 0.91 with controlled illumination
— Median verification rate 0.42 with uncontrolled illumination

{r“‘%\ Carleton 3D Face Modelling Under

~” UNIVERSITY Unconstrained Pose & lllumination



Thesis Objective

QUESTION:

Is it possible to accurately predict the appearance of
an individual and subsequently generate a frontal
and uniformly illuminated view of their face from an
Image that is unconstrained in pose and
illumination?
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3D Morphable Model

m Introduced by Blanz & Vetter [3,4]

m \What is it?

— Generative three-dimensional face model that
encodes face shape and texture in terms of
model parameters.

m How is it useful?

— Model parameters governing face shape and
texture (and thus identity) are separated from
Image rendering parameters (such as pose and
illumination).
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3DMM Detalls

where S and T are average face shape and texture, o, §, are shape and texture parameters,
s;, t, are shape and texture principal components, and N, N, are the number of these components .
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FaceGen Modeller

31 FaceGen Modeller 3.2 Free { Model: FaceGen Default Model V3 )
File Edit Model Help
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Generate | Make a random face Set Average | Reset to average face
Step 2

"8" - Shape morph, "T" - Texture morph
Llse "Syne Lock! to synchronize movement ofthe 2 sliders.
Use "Rand Lock! to lock this control during random face generation.
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Fitting Model to Image

83~

Target Image Model Image

Image
Rendering
Parameters
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Fitting Model to Image, cont.

m Inversion of the face modelling “function”
— Non-linear optimization problem
m Define a weighted cost function:
C =w,C; + WgCg + WpCp
— Cymeasures residual pixel difference

— Ce measures goodness-of-fit between detected
edges

— Cpmeasures likelihood of modelled face based
on a statistical prior
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Optimization Strategy

m Levenberg-Marquardt method [9]
m Jacobian matrix populated with partial
derivatives

— Numerically calculated using perturbation
method

_o(p) _ Af(p)
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Model Fitting Example

Target Image
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Model Fitting Example, cont.

Create
Novel View

R

Ground Truth
for Comparison
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Algorithm Performance

m Results evaluated according to identification
task by two distinct methods
— Direct comparison of model parameters

— Re-rendering of modelled face under
constrained pose and illumination for testing
with commercial face recognition system

m [ested on a database of 37 individuals
— 2 images of each with variation in pose
— 1 image of each with illumination variation
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ldentification using Model Parameters
— Pose Variation

ldentification performance under pose variation
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ldentification using Model Parameters
— lllumination Variation
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ldentification using
Normalized Images

m Poor results

— Mean identification rank of 18.5 on a gallery of
40 subjects
m Key limiting factor = Lack of extracted skin
detail

— Even adding skin detail not derived from the
original target image can contribute to a
significant improvement

— Face recognition algorithm dependent?
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Future Work

m Skin detail texture extraction
m Automatic facial feature detection
m Modelling from multiple images
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Algorithm Block Diagram

Input: Target with
3 control points

sec 3.1}

<Example>

Case 1 - Lefteye comers & nose tip
Case 2 — Right eye corners & nose tip
Case 3 — Outside eye corners & nose tip
[Casze affects subseguent operations]
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Levenberg-Marquardt Algorithm

Set: k=0,r:=2.p:=po
Given: toly,tol; (tolerances);  fpee (maximum iterations); T
Algorithm:
A=1TT, epi=x— f(p)i g:= .]TEP:
Hi=TH 1113~“'Ca;=1:....m|:-‘1¢a;:|§
while (||g|| = tolh & (k < kmaz)
ki=k41;
Salve (A + pl)dp = g
if ([[0p]] = tola[|p])
break
else
Prew = P + 0p;
o= lep|® — |l —f {Prew)|® .
' dp ' (udptg) !
if p>0 [step improves solution]
P = Paew;
A=1TT,
fp =X — f(p)
g = JTe,;
= % max(%,l — (201 v=2
else
pr=pxr; vi=2%
endif
endif
endwhile
pi=p;
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Sample Results

Good Fit Poor Fit

Target Fitted Ground
Image Model Truth
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