3D Face Modelling Under Unconstrained Pose & Illumination

David Bryan

Ottawa-Carleton Institute for Biomedical Engineering Department of Systems and Computer Engineering Carleton University

January 12, 2009

- Problem Overview
- 3D Morphable Model
- Fitting Model to Image
- Model Fitting Example
- Algorithm Performance
- Future Work

Problem Overview

- Automated face recognition performance suffers when conditions for facial image capture are not constrained.
 - FRVT 2002 Evaluation [1]
 - Median rank-1 identification rate 0.19 at 45° left/right rotation
 - Median rank-1 identification rate 0.34 at 30° up/down rotation
 - FRGC Evaluation [2]
 - Median verification rate 0.91 with controlled illumination
 - Median verification rate 0.42 with uncontrolled illumination

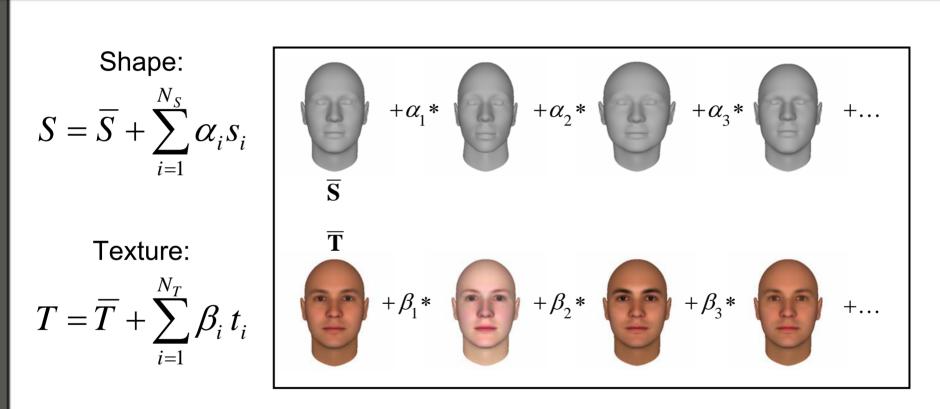
Thesis Objective

QUESTION:

Is it possible to accurately predict the appearance of an individual and subsequently generate a frontal and uniformly illuminated view of their face from an image that is unconstrained in pose and illumination?

3D Morphable Model

Introduced by Blanz & Vetter [3,4] What is it?

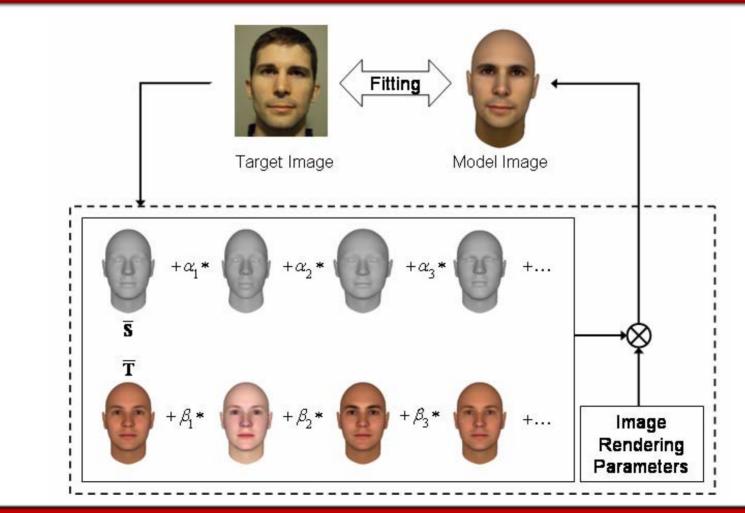

 Generative three-dimensional face model that encodes face shape and texture in terms of model parameters.

How is it useful?

 Model parameters governing face shape and texture (and thus identity) are separated from image rendering parameters (such as pose and illumination).

3DMM Details

where \overline{S} and \overline{T} are average face shape and texture, α_i , β_i are shape and texture parameters, s_i , t_i are shape and texture principal components, and N_s , N_T are the number of these components.



FaceGen Modeller

SI FaceGen Modeller 3.2 Free (Model: FaceGen Default Model V3 Eile Edit Model Help	
	Generate View Camera Shape Texture Genetic Tween Morph PhotoFit All Races African European SE Asian E Indian
Viewport Help Detail Texture Modulation (None) 0.0 1.5	Image: Solution of the second seco
Texture Overlay Texture Gamma Correction 1.5 2.0 2.5 Change Polys There are 6152 polys and 6292 vertices	All Races

Fitting Model to Image

Fitting Model to Image, cont.

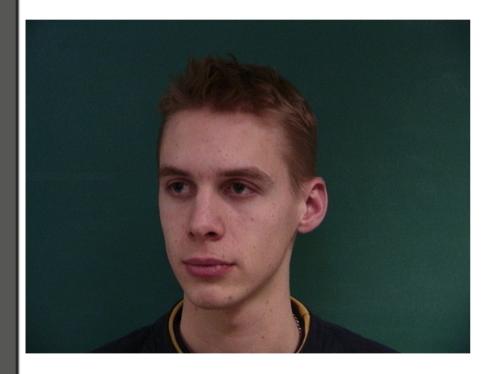
Inversion of the face modelling "function"

- Non-linear optimization problem
- Define a weighted cost function:

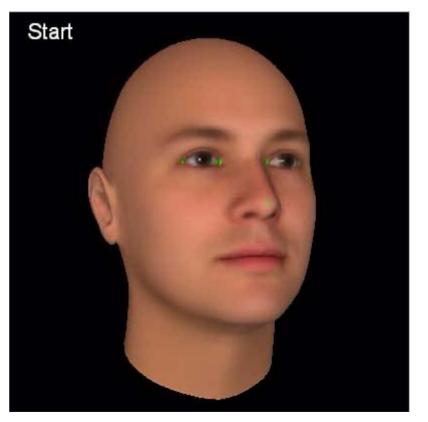
 $C = w_I C_I + w_E C_E + w_P C_P$

- $-C_I$ measures residual pixel difference
- C_E measures goodness-of-fit between detected edges
- $-C_P$ measures likelihood of modelled face based on a statistical prior

Optimization Strategy

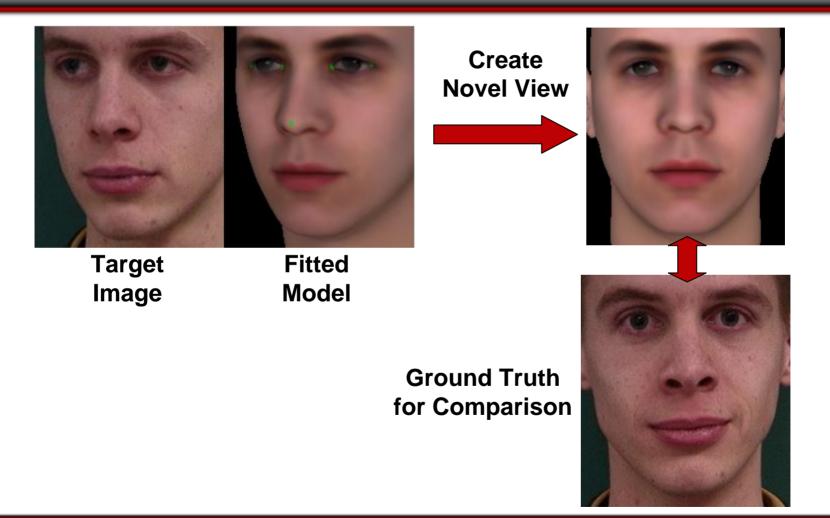

- Levenberg-Marquardt method [5]
- Jacobian matrix populated with partial derivatives
 - Numerically calculated using perturbation method

$$J_{ij} = \frac{\partial f_i(p)}{\partial p_j} \approx \frac{\Delta f_i(p)}{\Delta p_j}$$



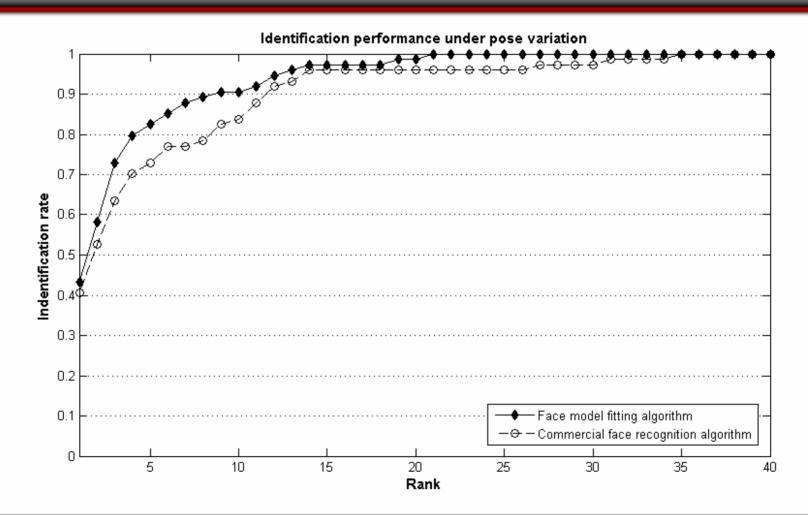
Model Fitting Example

Target Image



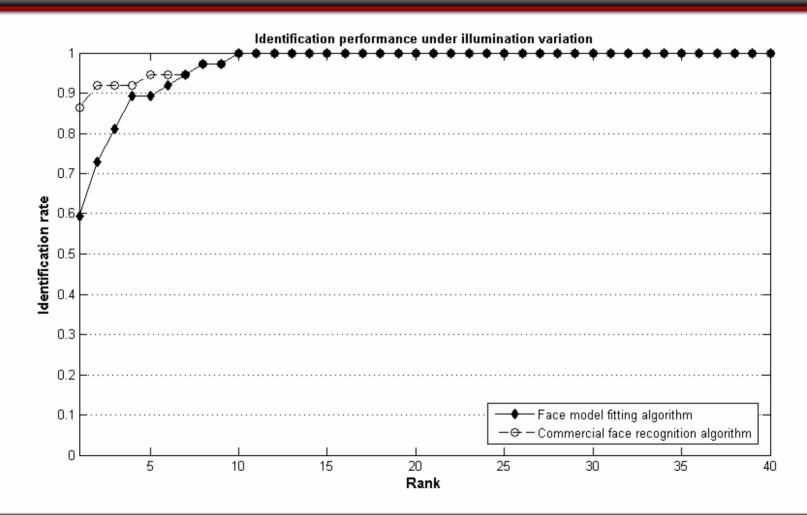
Model

Model Fitting Example, cont.


Algorithm Performance

Results evaluated according to identification task by two distinct methods

- Direct comparison of model parameters
- Re-rendering of modelled face under constrained pose and illumination for testing with commercial face recognition system
- Tested on a database of 37 individuals
 - -2 images of each with variation in pose
 - 1 image of each with illumination variation



Identification using Model Parameters – Pose Variation

Identification using Model Parameters – Illumination Variation

Identification using Normalized Images

Poor results

- Mean identification rank of 18.5 on a gallery of 40 subjects
- Key limiting factor = Lack of extracted skin detail
 - Even adding skin detail not derived from the original target image can contribute to a significant improvement
 - Face recognition algorithm dependent?

Future Work

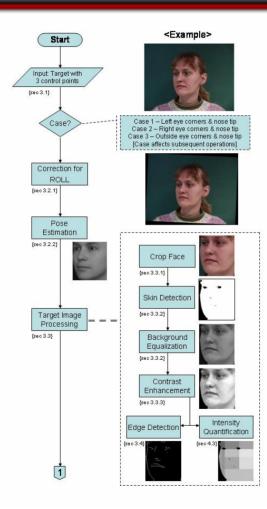
Skin detail texture extraction
 Automatic facial feature detection
 Modelling from multiple images

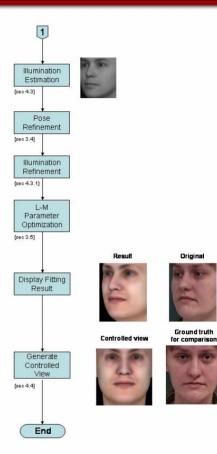
3D Face Modelling Under Unconstrained Pose & Illumination

David Bryan

Ottawa-Carleton Institute for Biomedical Engineering Department of Systems and Computer Engineering Carleton University

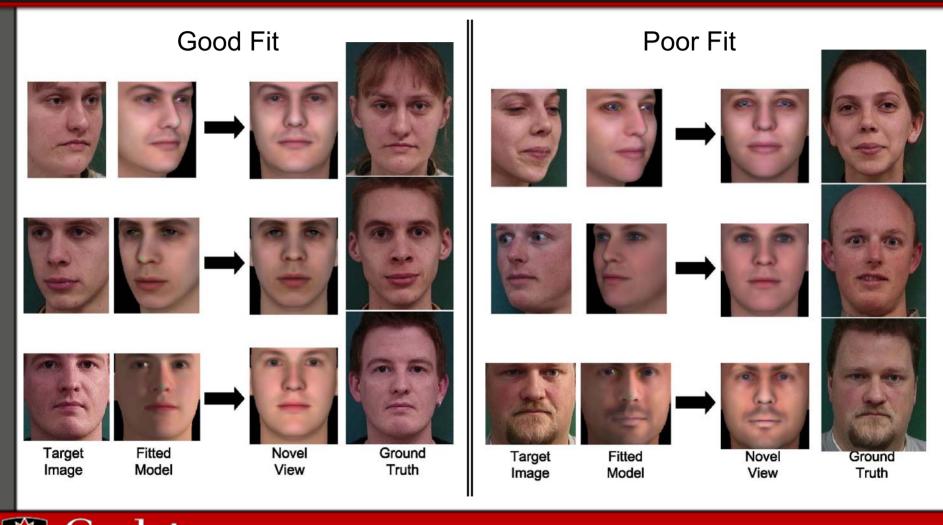
January 12, 2009




References

- 1. P.J. Phillips, P. Grother, R.J. Michaels, D.M. Blackburn, E. Tabassi, and M. Bone. *Face Recognition Vendor Test 2002: Evaluation Report*, Mar 2003. <u>http://www.frvt.org/FRVT2002/documents.htm</u>.
- 2. P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, and W. Worek. Preliminary Face Recognition Grand Challenge results. In *Proceedings, FGR 2006— International Conference on Automatic Face and Gesture Recognition*, pages 15–24. IEEE Computer Society, Apr 2006.
- 3. Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D faces. In *Proceedings, 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 99)*, pages 187–194, Aug 1999.
- 4. Volker Blanz and Thomas Vetter. Face identification across different poses and illuminations with a 3D morphable model. In *Proceedings, International Conference on Automatic Face and Gesture Recognition*, pages 192–197. IEEE, May 2002.
- 5. Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. *SIAM Journal on Applied Mathematics*, 11(2):431–441, 1963.

Algorithm Block Diagram



Levenberg-Marquardt Algorithm

```
Set: k := 0, \nu := 2, p := p_0
Given: tol_1, tol_2 (tolerances); k_{max} (maximum iterations); \tau
Algorithm:
\mathbf{A} := \mathbf{J}^{\mathsf{T}}\mathbf{J}; \quad \epsilon_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p}); \quad \mathbf{g} := \mathbf{J}^{\mathsf{T}}\epsilon_{\mathbf{p}};
\mu := \tau * \max_{i=1,\dots,m} (A_{ii});
while (\|\mathbf{g}\|_{\infty} \ge tol_1 \& (k < k_{max})
         k := k + 1;
           Solve (\mathbf{A} + \mu \mathbf{I})\delta_{\mathbf{p}} = \mathbf{g};
          if (\|\delta_{\mathbf{p}}\| \leq tol_2 \|\mathbf{p}\|)
                  break
         else
                   \mathbf{p}_{new} := \mathbf{p} + \delta_{\mathbf{p}};
                   \rho := \frac{\|\epsilon_{\mathbf{p}}\|^2 - \|\mathbf{x} - f(\mathbf{p}_{new})\|^2}{\delta_{\mathbf{p}} T(\mu \delta_{\mathbf{p}} + \mathbf{g})};
                   if \rho > 0 [step improves solution]
                            \mathbf{p} = \mathbf{p}_{new};
                            A := J^T J:
                            \epsilon_{\mathbf{p}} := \mathbf{x} - f(\mathbf{p});
                            g := J^{\mathsf{T}} \epsilon_{\mathbf{p}};
                            \mu := \mu * \max(\frac{1}{2}, 1 - (2\rho - 1)^3); \nu = 2;
                   else
                            \mu := \mu * \nu; \nu := 2 * \nu;
                   endif
         endif
endwhile
\mathbf{p}^* := \mathbf{p};
```


Sample Results

22/18

Carleton 3D Face UNIVERSITY Unconstraine