

Ottawa Health Research Institute

Bayesian Hierarchical Modelling of Clustered Cerebral BOLD Images

C. Gómez-Laberge^{1,2}, A. Adler², I. Cameron³, and M.J. Hogan¹

1. Neuroscience Program, Ottawa Health Research Institute, Ottawa 2. Systems and Computer Engineering, Carleton University, Ottawa 3. Dept. Diagnostic Imaging, Ottawa Hospital, Ottawa

Carleton University

Introduction

- Cerebral BOLD fMRI may be possible without imposing a model for the hemodynamic function
- First, the image data set can be partitioned into a set of *clusters* of time-sequence correlated voxels
- Second, from each cluster, a set of explanatory

Results

 We computed conditional posterior probability of cluster realization $Pr(\beta = \mu \mid y) < 0.05$ and compared results against selection with threshold |r| > 0.30

Efficacy of Hierarchical Model (Tablet 5)

 Model identified relevant cerebral territories of sensorimotor cortex and cerebellum in all data sets in agreement with threshold selection

variables can be measured

- Third, a *hierarchical model* can be fit to the data set by using all cluster measurements
- Once fit, the model can then be used to estimate the probability of chance-occurance of each observed cluster (Tablet 1)
- This poster describes a novel method for fMRI data analysis defining meaningful explanatory variables and applying a Bayesian hierarchical model for cluster analysis and selection

Methods

 25 data sets from 6 healthy volunteers (28-55 yrs) Visually cued event-related hand motor task

- Clusters selected by model have mean $|r| = 0.30 \pm 0.12$, while rejected have $|r| = 0.05 \pm 0.22$
- Model rejects highly correlated clusters caused by movement because of additional requirement of measured sample variance σ_i^2 misfit with τ^2

Effect of Data Preprocessing (Tablet 6)

- Exploratory results show largest performance benefit obtained from (in decreasing order) normalization, realignment, and smoothing
- Effects can be seen by examining magnitude of cluster vector $y' \in [0,1]^4$ onto planar projections referred to as cluster "footprint"

- 1.5 T Siemens Magnetom SE-EPI pulse sequence
- Data sets analyzed with fuzzy c-means clustering¹
- Clusters formed based on member-centroid correlation (Tablet 2)

Cluster Selection Criteria (Tablet 3)

- 4 explanatory variables from selection criteria²:
- Centroid-paradigm cross-correlation provides the maximum Pearson correlation r of the cluster allowing for a time delay d
- Cluster voxel-map contiguity provides the relative "compactedness" c of cluster voxels as a function of a membership correlation threshold s

Bayesian Hierarchical Model (Tablet 4)

$ \xrightarrow{T} T $											
$(v \star p)[d] = \sum_{t=1}^{\infty} v[t+d-T]p[t], d = 1, \dots, 2T-1$											$\begin{array}{c c} \beta_1 & \beta_2 \\ \hline & I & I \end{array}$
Spatial contiguity criterion:											
c = 1 $c = 0.86$ $c = 0.43$ $c = 0.21$ $c = 0$											$y_1 \ y_2$ The joint $p(eta, \mu, au)$
Fc T/	or exa	ample, c =	<i>GI</i> the t = (1) 3 :	$\sum_{l=n}^{2}$ third $\times 3 +$	imag -1×	ge has 9)/(2 ana	contigu 2×14)	uity: = 0.43 var	3 iables	S	This is a numerica
Г	BAYESIAN	I CLUSTER J	ANALYSIS	: 002-0	1-GISTO	1 2007052:	1 Fourth swr			1	1-
	 Cluster		Poste	rior Qu	antiles		 Signifi			0.5-	
	ا ا ز	2.5%	 25%	 50%	 75%	97.5%	 Pr(ß=µ y)	 Pr(ß=y)	Rhat		0 -1 -0.8 -0.6 -0.4
	 1 2 3 4 5	-0.37 -0.25 -0.07 -0.27 -0.29	-0.15 -0.12 +0.03 -0.19 -0.20	-0.03 -0.06 +0.08 -0.15 -0.15	+0.08 +0.01 +0.13 -0.11 -0.10	+0.28 +0.13 +0.23 -0.04 -0.02	- 0.274 0.138 0.460 0.013 0.015	 0.73 0.61 0.50 0.61 0.65	1.00 1.00 1.00 1.00 1.00 1.00		TABL
	6 7	-0.32 +0.35	-0.17 +0.42	-0.09 +0.46	-0.01 +0.50	+0.12 +0.58	0.101 0.000	0.66 0.68	1.00 1.00		
	8	+0.00	+0.09 +0.21	+0.14	+0.19	+0.29			1.00		Cluste
	10	-0.02	+0.08	+0.14	+0.19	+0.30	0.278	0.56	1.00		
	11 	-0.06	+0.07	+0.14	+0.21	+0.33	0.295	0.57 	1.00		data s
	mu tau	-0.10 0.14	+0.02 0.20	+0.07 0.23	+0.12	+0.23 0.43	N/A N/A	N/A N/A	1.00		

r = 0.490;

$\begin{array}{c c} & \text{Hyperprior density 1 data point } \mu \\ \mu & \mu 0, \infty \sim \mathrm{N}(0, \infty) \\ \hline & \mu $	•								
The joint posterior distribution for this model: $[\beta, \mu, \tau y) \propto p(\mu, \tau)p(\beta \mu, \tau)p(y \beta)$ $= p(\mu, \tau) \prod_{j=1}^{J} N(\beta_j \mu, \tau^2) \prod_{j=1}^{J} N(y_j \beta_j, \sigma_j^2)$ This is a <i>J</i> +2 dimensional function that is best sampled sumerically using Markov Chain Monte Carlo methods									
β - μ -									
ABLET 4: hierarchical model									

er footprints from one set for each processing stage: original, R, SR, WSR

The clustering algorithm used was less effective on unprocessed data, producing few clusters from several sources; sensorimotor cortex was identified in roughly 40% of the data sets

Conclusion

The proposed model fits cerebral BOLD data from healthy subjects and agrees with both thresholdbased cluster selection and standard ANOVA

Research in progress

- Multivariate hierarchical regression analysis
- Gaussian random field analysis of contiguity

• Model variables from cluster j as $y_j = (r_j, d_j, c_j, s_j)^T a$ realization from a stochastic system of 3 levels: 1) observable cluster data y, drawn from 2) underlying processes β , affected in turn by 3) an overall effect μ of subject & instrument

• Hierarchical model³ has normal likelihood $y_i | \beta_i$, conjugate normal population $\beta_i | \mu, \tau$ and noninformative μ,τ prior densities, leading to the conditional posterior density $p(\beta \mid \mu, \tau, y) \propto p(\beta \mid \mu, \tau) p(y \mid \beta)$

Simulate parameters using MCMC Gibbs sampler

Brief References:

Jarmasz, M et al. (2002). Exploring regions of interest with cluster analysis. Artif. Intell. Med., 25, 45-67.

Gómez-Laberge, C et al. (2008). Selection criteria for the analysis of data-driven clusters in cerebral fMRI. IEEE T. Biomed. Eng., in press: TBME-00102-2008.

Gelman, A et al. (2004). Bayesian Data Analysis, 2nd ed., Boca Raton, USA: Chapman & Hall/CRC press.

Acknowledgements: This research was supported by the Behavioural Research and Imaging Network in partnership with the Ontario Research Fund, and by the Heart and Stroke Foundation Centre for Stroke Recovery